
ALEX TORMÁSI∗, LÁSZLÓ T. KÓCZY**

IDENTIFICATION OF THE INITIAL RULE-BASE
OF A MULTI-STROKE FUZZY-BASED CHARACTER
RECOGNITION METHOD WITH META-HEURISTIC

TECHNIQUES

IDENTYFIKACJA POCZĄTKOWEJ BAZY REGUŁ
W METODZIE ROZPOZNAWANIA WIELOLINIOWEGO

PISMA ODRĘCZNEGO OPARTEJ
NA LOGICE ROZMYTEJ Z WYKORZYSTANIEM

TECHNIK METAHEURYSTYCZNYCH

A b s t r a c t

This paper summarizes the basic concept of the designed a fuzzy-based character recognition algorithm
family and the results of the optimization of its rule-base with two various meta-heuristic methods, the
Imperialist Competitive Algorithm and the bacterial evolutionary algorithm. The results are presented and
compared with two other methods from literature after a short overview of the recognition algorithm.

Keywords: fuzzy systems, character recognition, mate-heuristic optimization

S t r e s z c z e n i e

W niniejszym artykule podsumowano podstawową koncepcję projektowania rodziny algorytmów rozpo-
znawania pisma odręcznego opartej na logice rozmytej oraz wyniki optymalizacji bazy reguł, z wykorzysta-
niem dwóch różnych metod metaheurystycznych: algorytmu ewolucyjnego ICA (Imperialist Competitive
Algorithm) oraz ewolucyjnego algorytmu bakteryjnego. Przedstawiono krótkie podsumowanie algorytmu
rozpoznawania pisma, a także wyniki porównawcze z dwoma innych metodami dostępnymi w literaturze.

Słowa kluczowe: systemy rozmyte, rozpoznawanie pisma, optymalizacja metaheurystyczna

* M.Sc. Alex Tormási, e-mail: tormasi@sze.hu, Department of Information Technology, Faculty
of Engineering Sciences, Széchenyi István University, Györ.

** Prof. D.Sc. Ph.D. László T. Kóczy, Department of Automation, Faculty of Engineering Sciences,
Széchenyi István University Györ; Department of Telecommunications and Media Informatics,
Budapest University of Technology and Economics.

104

1. Introduction

At present, there are several handwriting solutions used which are based on various
techniques. Most of these techniques are also implemented on smart phones and tablet PCs,
but the default text entry methods are still physical or virtual keyboards and only a few
devices come with a stylus to support handwriting recognition.

There are several reasons why handwriting recognition techniques are still not used as
main text entry methods, such as usability issues caused by the latency of the recognition as
a result of the use of complex mathematical transformations. The other reason is the lack of
flexibility of recognition methods; there are many alphabets and various writing styles which
make recognition more difficult, and most of the methods are able to recognize only a few
of these.

The most important property of handwriting recognizers is accuracy; the user-acceptance
threshold is a 97% recognition rate, determined by LaLomia [1]. Recognition methods usually
apply various complex geometric transformation methods on the input to reach this level of
accuracy; even recent devices do not have the necessary hardware capacity to provide near
real-time recognition with such complexity of these methods.

Researchers must deal with all these problems to design an acceptable, wide-spread
handwriting recognizer. According to previous results, the properties of fuzzy logic [2] may
provide an acceptable solution for the mentioned problems. Meta-heuristic methods might
be able to optimize the fuzzy rule-bases [3, 4] to reach the user-acceptance threshold of the
recognition system.

After the introduction, the basic features and concept of the Fuzzy-Based Character
Recognition (FUBAR) algorithm-family are overviewed [5, 6, 7]. In section 3, concepts
of the investigated meta-heuristics are summarized. In section 4, results are presented and
analyzed for the optimization of a multi-stroke FUBAR rule-base. Results are compared to
the accuracy of other recognition methods and the possible orientations of future work are
also investigated in the last section.

2. Basic Concept of Multi-Stroke Fuzzy-Based Character Recognition

2.1. Features and Limitations

The following important key features were kept in mind during the development of the
recognition engine:
1. Accuracy: The algorithm has to reach an acceptable recognition rate or at least the same

as other accepted methods.
2. Efficiency: The designed methods must fit user’s requirements in response time and

in resources of the currently used hardware. This means that complex geometrical
transformations and other mathematical functions should be avoided.

3. Flexibility of the alphabet: The model of the alphabet must be easily modifiable to support
various alphabets and context-sensitive recognition.

4. Learning: The designed system should be able to learn user-specific writing styles.

105

The characteristics and properties of fuzzy systems are able to satisfy all the considered
features, which led to the use of the fuzzy inference method for the recognition method.
Fuzzy-Based Character Recognizer (FUBAR) is a family of algorithms of various single-
stroke and multi-stroke hand printed (handwritten, non-cursive, capital letters) character
recognition engines. The basic concept of the designed method is shown in Fig. 1 [5].

Fig. 1. The concept of FUBAR algorithms

The designed system is an online and personalized recognizer, which means that it
processes digital ink and the recognition uses user-specific information.

2.2. Input Handling

The input signal of the algorithm consists of two-dimensional (x, y) coordinates
in chronological order, representing the pen-movement (called (pen)stroke) as seen in
Fig. 2.

In unistroke (or single-stroke) recognizers, letters are represented by one single stroke;
in multi-stroke recognizers each symbol is represented by various numbers of strokes
(sub-strokes). The FUBAR algorithms handle multi-strokes as one stroke by merging all the
sub-strokes.

Usually, the received signal is non-continuous as a result of the bottlenecks of
hardware, such as the bandwidth of interfaces and the available CPU resources. This causes
information loss in recording the pen-movement; this information-loss causes difficulties
in the processing because the positions of the missing coordinates are non-deterministic as
seen in Fig. 3.

106

Fig. 2. A received 3-D stroke from various views: a) in 3-D, b) changes in the value of y by time,
c) the 2-D projection, d) changes in the value of x by time

Fig. 3. Received stroke (a) and re-sampled stroke (b)

The received signal must be normalized for further processing and better recognition rate
as seen in Fig. 3. In the FUBAR algorithm family, the points of the received signal are re-
sampled, the points between a given (Euclidean-)distance from the reference point (the very
first point of the stroke) are filtered out, the first and last points are always kept for reference.
The following formula describes the re-sampling (filtering):

a) b)

c) d)

a) b)

107

 (1)

where:
 l – the received stroke,
 l’ – the re-sampled stroke,
 lj – a point in the stroke,
 γ	 –	 the	threshold	of	distance	between	the	kept	points.

The	 re-sampling	of	 the	 strokes	 also	has	 an	 anti-aliasing	property,	which	 increases	 the	
degree	of	recognition	as	a	result	of	the	normalized	stroke	as	seen	in	Fig.	4.

′ = { }∪ =

∈ − −{ }
>

′ −()−

l l l l kj
j

j Nn N
j k

d lk l j
1

1 1

1argmin ,
, argm

γ
iin , , dim

p
i Nn N

i pd l l i l
∈ − −{ }

−′() −

 = ′

1 1

1 γ ∪∪{ }ln

Fig.	4.	Anti-aliasing	properties	of	re-sampling:	a)	received	stroke,	b)	received	signal	with	selected	
points,	c)	selected	points	of	the	stroke

2.3.	Character-Feature	Extraction

FUBAR	uses	two	kinds	of	stroke	features	for	the	recognition:	1)	the	width/height	ratio	of	
the	stroke	and	2)	the	average	number	of	points	in	the	rows	and	columns	of	the	grid	[5]	drawn	
around	the	stroke.

The	first	member	of	the	FUBAR	family	used	crisp	grid	(classical	grid	with	sharp	borders)	
for	the	feature	extraction,	but	the	system	reached	a	low	average	recognition	rate	as	a	result	of	the	
changing	writing	style	of	the	test	subjects.	Some	of	the	users	started	to	write	faster	and	use	an	
italic	writing	style	after	creating	a	few	samples,	according	to	the	collected	data	as	seen	in	Fig.	5.

The	sampled	points	of	the	strokes	of	oblique	and	normal	characters	could	be	located	in	
completely	different	rows	and	columns	of	the	grid.	This	caused	huge	overlap	between	the	
features	of	various	letters.	Other	methods	(like	[18])	are	rotating	the	input	characters	to	avoid	
the	negative	effects	of	the	italic	writing	style,	but	those	methods	are	complex	mathematical	
transformations,	which	would	 dramatically	 increase	 the	 computational	 complexity	 of	 the	
method.

Fuzzy	grids	were	designed	to	resolve	the	problems	caused	by	the	italic	writing	style	by	
the	increased	information	provided	by	it.	In	fuzzy	grids,	the	rows	and	columns	of	the	grid	are	
defined	by	fuzzy	sets.	It	can	be	also	considered	as	a	transformation	of	the	stroke	into	a	fuzzy	
space.

a) b) c)

108

Fig. 5. Straight (a) and italic letters (b) in a grid

a) b)

The optimal sizes of fuzzy grids were determined
in [8, 9], which is 6 × 6 for single-stroke and 4 × 3
for multi-stroke letters. If the computational cost and
recognition rate are both considered, then the optimal
size of fuzzy grid for single-stroke letters is 6 × 4,
while for the multi-strokes it does not change. The
points in a fuzzy grid may belong to two different
columns or rows at the same time with various
membership values as seen in Fig. 6.

2.4. Inference

In the designed recognition engine a Takagi-
Sugeno method [4] is used for inference. Each

symbol in the alphabet is represented by a single rule associated to it. The input parameters
of the rules are the features described in the previous sub-section. The output parameter of the
rules is the degree of matching between the features of the input stroke and the stored rules
as seen in Fig. 7, where Ri is the i-th rule, si is the degree of matching between the candidate
stroke and the one represented by the i-th rule.

Fig. 6. Concept of the fuzzy grid

Fig. 7. A rule describing a letter

FUBAR returns with the character associated to the best matching rule (the one with
the highest si value) after the rule evaluation phase. The initial rule-base was determined
statistically from 60 samples per character, collected previously from test subjects.

There are two main ways to reduce the complexity of a rule-based fuzzy system: reducing
the number of input parameters (antecedent) or reducing the number of rules evaluated.
Hierarchical rule-bases are used to reduce the number of rules evaluated during the inference
by partitioning the problem domain. Each partition contains a subset of the rules. Meta-rules
are added to select which subset of the rules should be evaluated in a particular case; the input

109

parameters of these rules might be completely independent from the ones used in the original
rules. Hierarchical rule-bases [10, 11] were used in some members of the FUBAR algorithm
to decrease the computational complexity [12]. The average (fuzzified) number of points in
the third row of a stroke was used as meta-rules in the single-stroke, while the number of
strokes in the multi-stroke FUBAR.

3. The Applied Optimization Techniques

The initial rule-base for multi-stroke characters was determined the same way as
described in [5] for single-stroke characters. The multi-stroke FUBAR algorithm reached
100% recognition rate for the 60 training sample per characters with the initial rule-base.

The fitness-function of each optimization algorithm was defined to maximize the average
recognition rate for the training set. The optimization algorithms could not modify the initial
rule-base because it had already reached the 100% accuracy. It does not mean that it can not be
improved at all; it just reflects that the used initial rule-base is already optimal for the training
set, so it can not be used during the meta-heuristic optimization and it must be changed to
reach a lower recognition rate in order to start the optimization. The fuzzy sets in the initial
rule-base for multi-stroke characters were modified with random values before the start of
the optimization algorithms; the modified initial rule-base reached 79.17% recognition rate
for the same training set and 74.7% for the validation sample set (120 samples per character)
before the optimizations. The same randomly modified rule-base was used during each test.

Each entity (bacterium or country) in the algorithms represents a rule from the rule
base. Each entity is coded into a vector, where the elements are the breakpoints of the fuzzy
sets describing the antecedent of the rule. However, this technique requires validating the
correctness of the new entities after any changes. The vector should be partially ordered for
each represented membership function (it should maintain a trapezoid shape). Each algorithm
had to be extended to use multiple populations (without migration), a further loop to say.
These modified algorithms represent each letter by a single population, this was required to
avoid the mixture between the data of various types of symbols.

Two different meta-heuristic algorithms were selected to optimize the modified initial
rule-base, the Imperialist Competitive Algorithm (ICA) and the Bacterial Evolutionary
Algorithm (BEA). Detailed description of Imperialist Competitive Algorithm can be found
in [13] and of the Bacterial Evolutionary Algorithm in [14]. Maximizing the average
recognition rate for the whole training set was used as a fitness function of the optimization
algorithms, which means that the results were evaluated for all the strokes in the training set.

The ICA was inspired by politic and strategic processes instead of biological analogy.
In the algorithm, countries are points in the search domain, the countries are determined
randomly in the first step. Each country can be a conqueror or a colony, the strongest countries
(those with the highest fitness values) are the conquerors.

The colonies are approaching the conqueror countries in the assimilation phase. The
conqueror countries are fighting for the colonies, which are providing the possibility to
increase their strength which is calculated by the aggregated fitness values of the empires
and colonies. This assimilation phase is repeated until only one empire stands. The colonies
can uprise against the conqueror countries (revolution phase), this step is included to prevent
the algorithm from sticking in local optimums.

110

Fig. 8. The diagram of the Imperialist Competitive
Algorithm

The BEA is based on the evolution process of bacteria. Each bacterium represents a point
in the search domain. The first step of the algorithm is the bacterial mutation, which is applied
to each bacterium individually. Each selected bacterium is cloned in this phase, then each
allele of the clones are changed (only one at a time). The clone (or the original bacterium)
with the best fitness value transfers its allele to the other clones.

The mutation phase is followed by the gene transfer (or infection) step. In this step, the
bacteria population is divided into the groups of good and bad bacteria by their fitness values.
A randomly selected good bacterium transfers a randomly selected allele to a randomly
selected bad bacterium. All steps are repeated until the algorithm reaches the maximal
number of generations.

Fig. 9. The diagram of the
Bacterial Evolutionary

Algorithm

111

4. Results of the Applied Optimization Techniques

The parameters of the bacterial evolutionary algorithm are the number of clones,
the number of infections and the number of generations. The parameters of the imperialist
competitive algorithm are the number of countries, the imperialist and the revolution
factor.

The parameters of optimization algorithms were set according to preliminary results from
formerly published works (where the single-stroke FUBAR was optimized), the ones with
the best results are presented in this paper. The number of countries was constantly 120 and
the number of imperialists was constantly 48 for the ICA, while the revolution factor was
varying between 10 and 14 (steps were 0.2). All the parameters, number of clones, maximum
generations and the number of infections were set to 10 in each BEA experiments.

The two best recognition rates achieved with the ICA for the validation set are 93.48%
and 94.1%, as you may see in Fig. 10, the first average recognition rate was achieved with
120 countries, 48 imperialists and 12.4 revolution factors in 2 generations. The second
result was reached by 120 countries, 48 imperialists and a revolution factor of 12.6 in
1 generation.

Fig. 10a) the second highest average recognition rate after the imperial competitive optimization,
b) the highest average recognition rate after the imperial competitive optimization

a)

b)

112

The best two results of BEA are average recognition rates of 96.65% and 97.54% in
3 and 4 generations, with the same parameter settings, which are 10 clones, 10 infections and
10 generations as seen in Fig. 11.

Fig. 11a) the second highest average recognition rate after the bacterial evolutionary optimization,
b) the highest average recognition rate after the bacterial evolutionary optimization

a)

b)

The best accuracy reached by the ICA decreased the average error rate by only 10.6%.
The highest average recognition rate of 97.54% was achieved by the BEA, which is a 62.72%
decrease in the average error rate.

The average of the results from the experiments with the same parameters for BEA is
96.145%. There is no significant variance between the results for ICA with the previously
described parameters; the average of the results is 93.67%.

It is also important to highlight the fact that only the ICA could reach 100% average
recognition rate for the training set during the optimization in the first few (1–5) generations,
while the bacterial evolutionary algorithm could not, the BEA finished only after the number
of the generations reached the maximum. It is important, because it reflects that ICA is able
to find (local)optimum solutions faster.

Despite the better convergence and lower resource consumption (computational cost), the
imperialist competitive algorithm reached a lower increase in the recognition rate compared

113

to the bacterial evolutionary algorithm, which has a moderate convergence (compared to the
imperialist competitive algorithm), a higher computational cost and a much higher increase
in the accuracy.

The BEA may give better results, but it takes more time to compute the results. While
BEA can process 0.0667 generations, ICA can evaluate 0.667 generations in a second. Both
algorithms used 99% of 7 CPU cores from 8 during the experiments.

5. Conclusion and Future Work

The imperialist competitive algorithm had a better convergence during the optimization
of the recognizer’s rule-base, while the BEA reached the highest average accuracy (97.54%)
for the validation sample set. The achieved average recognition rate reaches the 97% user
acceptance threshold.

The most similar recognizer to the FUBAR is the Palm’s Graffiti2 [15] and the $N
recognizers [16]. The Graffiti2 is the multi-stroke version of the Palm’s Graffiti unistroke
recognizer [17]. The accuracy of the algorithm was determined at 86.03% by Költringer and
Grechenig.

The $N recognizer is the multi-stroke successor of the $1 single-stroke recognizer [18],
which was developed by J.O. Wobbrock, A.D. Wilson and Y. Li. The $N was developed by
L. Anthony and J.O. Wobbrock.

The FUBAR algorithm with multi-stroke support reached a higher average recognition
rate with 26 different characters after the optimization, compared to the Graffiti2 algorithm,
which reached 86.03% accuracy and supports only 3 multi-stroke symbols, and compared
to the $N algorithm, which achieved a 96.7% average recognition rate for 16 single-stroke
symbols, as seen in Fig. 12.

Fig. 12. Average recognition rates of various multi-stroke recognition engines

The in-depth analysis of these and other meta-heuristic techniques in model identification
is important. Much more detail and further directions should be investigated such as a wider
range of parameter values and as other type of rule-bases.

Future research includes the investigation of modeling symbols with multiple rules in
the rule-base, this might increase the recognition rate by supporting various types of the
same symbols. The increased number of the rules in the rule-base causes higher resource

114

requirements by the algorithm. The hierarchical structure of the fuzzy rule-base might reduce
the resource requirements without any significant reduction in the average accuracy of the
FUBAR algorithms.

The support of off-line character recognition will be included in the FUBAR algorithm
family to extend the application areas of the method such as form processing.

Cursive handwriting is more general (especially in everyday uses), which makes its
support a high priority task in the near future. The segmentation of characters must be also
included in the FUBAR algorithms before the support of cursive writing recognition.

The FUBAR algorithm will be integrated into the HandSpy system [19], which is
a collaborative environment for managing experiments in the cognitive processes in writing.

This paper was supported by the Hungarian Scientific Research Fund (Hungarian abbreviation: OTKA)
K105529, K108405 and TÁMOP-4.2.2.A-11/1/KONV-2012-0012.
The used Meta-Heuristic algorithms were implemented by Márton Hevér as a part of his Master thesis
(thesis advisor: Alex Tormási).

R e f e r e n c e s

[1] LaLomia M.J., User acceptance of handwritten recognition accuracy, Companion
Proc. CHI ’94, New York 1994, 107.

[2] Zadeh L.A., Fuzzy sets, Inf. Control, 83, 1965, 338-35.
[3] Mamdani E.H., Assilian S., An experiment in linguistic synthesis with a fuzzy logic

controller, International Journal of Man-Machine Studies, Vol. 7, 1975, 1-13.
[4] Takagi T., Sugeno M., Fuzzy identification of systems and its applications to modeling

and control, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-15,
1985, 116-132.

[5] Tormási A., Botzheim J., Single-stroke character recognition with fuzzy method, New
Concepts and Applications in Soft Computing SCI, Vol. 417, V.E. Balas et al. (eds.),
2012, 27-46.

[6] Tormási A., Kóczy T.L., Improving the Accuracy of a Fuzzy-Based Single-Stroke
Character Recognizer by Antecedent Weighting, Proc. 2nd World Conference on Soft
Computing, Baku 2012, 172-178.

[7] Tormási A., Kóczy T.L., Fuzzy-Based Multi-Stroke Character Recognizer, Preprints
of the Federated Conference on Computer Science and Information Systems, Kraków
2013, 675-678.

[8] Tormási A., Kóczy T.L., Comparing the efficiency of a fuzzy single-stroke character
recognizer with various parameter values, Proc. IPMU 2012, Part I. CCIS, Vol. 297,
S. Greco et al. (eds.), 2012, 260–269.

[9] A. Tormasi, and Kóczy T.L., Efficiency and accuracy analysis of a fuzzy single-stroke
character recognizer with various rectangle fuzzy grids, Proc. CSCS ’12, Szeged 2012,
54-55.

[10] Sugeno M., Griffin F.M., Bastian A., Fuzzy hierarchical control of an unmanned
helicopter, Proc. IFSA ’93, Seoul 1993, 1262-1265.

[11] Kóczy T.L., Hirota K., Approximate inference in hierarchical structured rule-bases,
Proc. IFSA ’93, Seoul 1993, 1262-1265.

115

[12] Tormási A., Kóczy T.L., Improving the Efficiency of a Fuzzy-Based Single-Stroke
Character Recognizer with Hierarchical Rule-Base, Proc. 13th IEEE International
Symposium on Computational Intelligence and Informatics, Óbuda 2012, 421-426.

[13] Atashpaz-Gargari E., Lucas C., Imperialist Competitive Algorithm: An algorithm for
optimization inspired by imperialistic competition, Proc. 2007 IEEE Congress on
Evolutionary Computation, 7, Singapore 2007, 4661-4666.

[14] Nawa N.E., Furuhashi T., Fuzzy system parameters discovery by bacterial evolutionary
algorithm, IEEE Transactions on Fuzzy Systems, 7(5), 1999, 608-616.

[15] Költringer T., Grechenig T., Comparing the Immediate Usability of Graffiti 2 and
Virtual Keyboard, Proc. CHI EA’04, New York 2004, 1175-1178.

[16] Anthony L., Wobbrock J.O., A Lightweight Multistroke Recognizer for User Interface
Prototypes, Proc. GI 2010, Ottawa 2010, 245-252.

[17] Fleetwood M.D. et al., An evaluation of text-entry in Palm OS – Graffiti and the virtual
keyboard, Proc. HFES’02, Santa Monica, CA, 2002, 617-621.

[18] Wobbrock J.O., Wilson A.D., Li Y., Gestures without libraries, toolkits or training:
A $1 recognizer for user interface prototypes, Proc. UIST ‘07. ACM Press, New York
2007, 159-168.

[19] Monteiro C., Leal J.P., Managing experiments on cognitive processes in writing with
HandSpy, Computer Science and Information Systems, Vol. 10, No. 4, Novi Sad 2013,
1747-1773.

