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This paper summarizes the basic concept of the designed a fuzzy-based character recognition algorithm 
family and the results of the optimization of its rule-base with two various meta-heuristic methods, the 
Imperialist Competitive Algorithm and the bacterial evolutionary algorithm. The results are presented and 
compared with two other methods from literature after a short overview of the recognition algorithm.
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S t r e s z c z e n i e

W niniejszym artykule podsumowano podstawową koncepcję projektowania rodziny algorytmów rozpo-
znawania pisma odręcznego opartej na logice rozmytej oraz wyniki optymalizacji bazy reguł, z wykorzysta-
niem dwóch różnych metod metaheurystycznych: algorytmu ewolucyjnego ICA (Imperialist Competitive 
Algorithm) oraz ewolucyjnego algorytmu bakteryjnego. Przedstawiono krótkie podsumowanie algorytmu 
rozpoznawania pisma, a także wyniki porównawcze z dwoma innych metodami dostępnymi w literaturze.
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1. Introduction

At present, there are several handwriting solutions used which are based on various 
techniques. Most of these techniques are also implemented on smart phones and tablet PCs, 
but the default text entry methods are still physical or virtual keyboards and only a few 
devices come with a stylus to support handwriting recognition.

There are several reasons why handwriting recognition techniques are still not used as 
main text entry methods, such as usability issues caused by the latency of the recognition as 
a result of the use of complex mathematical transformations. The other reason is the lack of 
flexibility of recognition methods; there are many alphabets and various writing styles which 
make recognition more difficult, and most of the methods are able to recognize only a few 
of these.

The most important property of handwriting recognizers is accuracy; the user-acceptance 
threshold is a 97% recognition rate, determined by LaLomia [1]. Recognition methods usually 
apply various complex geometric transformation methods on the input to reach this level of 
accuracy; even recent devices do not have the necessary hardware capacity to provide near 
real-time recognition with such complexity of these methods.

Researchers must deal with all these problems to design an acceptable, wide-spread 
handwriting recognizer. According to previous results, the properties of fuzzy logic [2] may 
provide an acceptable solution for the mentioned problems. Meta-heuristic methods might 
be able to optimize the fuzzy rule-bases [3, 4] to reach the user-acceptance threshold of the 
recognition system.

After the introduction, the basic features and concept of the Fuzzy-Based Character 
Recognition (FUBAR) algorithm-family are overviewed [5, 6, 7]. In section 3, concepts 
of the investigated meta-heuristics are summarized. In section 4, results are presented and 
analyzed for the optimization of a multi-stroke FUBAR rule-base. Results are compared to 
the accuracy of other recognition methods and the possible orientations of future work are 
also investigated in the last section.

2. Basic Concept of Multi-Stroke Fuzzy-Based Character Recognition 

2.1. Features and Limitations

The following important key features were kept in mind during the development of the 
recognition engine:
1. Accuracy: The algorithm has to reach an acceptable recognition rate or at least the same 

as other accepted methods.
2. Efficiency: The designed methods must fit user’s requirements in response time and 

in resources of the currently used hardware. This means that complex geometrical 
transformations and other mathematical functions should be avoided.

3. Flexibility of the alphabet: The model of the alphabet must be easily modifiable to support 
various alphabets and context-sensitive recognition.

4. Learning: The designed system should be able to learn user-specific writing styles.
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The characteristics and properties of fuzzy systems are able to satisfy all the considered 
features, which led to the use of the fuzzy inference method for the recognition method. 
Fuzzy-Based Character Recognizer (FUBAR) is a family of algorithms of various single-
stroke and multi-stroke hand printed (handwritten, non-cursive, capital letters) character 
recognition engines. The basic concept of the designed method is shown in Fig. 1 [5].

Fig. 1. The concept of FUBAR algorithms

The designed system is an online and personalized recognizer, which means that it 
processes digital ink and the recognition uses user-specific information.

2.2. Input Handling

The input signal of the algorithm consists of two-dimensional (x, y) coordinates 
in chronological order, representing the pen-movement (called (pen)stroke) as seen in  
Fig. 2.

In unistroke (or single-stroke) recognizers, letters are represented by one single stroke; 
in multi-stroke recognizers each symbol is represented by various numbers of strokes  
(sub-strokes). The FUBAR algorithms handle multi-strokes as one stroke by merging all the 
sub-strokes.

Usually, the received signal is non-continuous as a result of the bottlenecks of 
hardware, such as the bandwidth of interfaces and the available CPU resources. This causes 
information loss in recording the pen-movement; this information-loss causes difficulties 
in the processing because the positions of the missing coordinates are non-deterministic as 
seen in Fig. 3.
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Fig. 2. A received 3-D stroke from various views: a) in 3-D, b) changes in the value of y by time,  
c) the 2-D projection, d) changes in the value of x by time

Fig. 3. Received stroke (a) and re-sampled stroke (b)

The received signal must be normalized for further processing and better recognition rate 
as seen in Fig. 3. In the FUBAR algorithm family, the points of the received signal are re-
sampled, the points between a given (Euclidean-)distance from the reference point (the very 
first point of the stroke) are filtered out, the first and last points are always kept for reference. 
The following formula describes the re-sampling (filtering):

a) b)

c) d)

a) b)
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  (1)

where:
 l – the received stroke,
 l’ – the re-sampled stroke,
 lj  – a point in the stroke,
 γ	 –	 the	threshold	of	distance	between	the	kept	points.

The	 re-sampling	of	 the	 strokes	 also	has	 an	 anti-aliasing	property,	which	 increases	 the	
degree	of	recognition	as	a	result	of	the	normalized	stroke	as	seen	in	Fig.	4.
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Fig.	4.	Anti-aliasing	properties	of	re-sampling:	a)	received	stroke,	b)	received	signal	with	selected	
points,	c)	selected	points	of	the	stroke

2.3.	Character-Feature	Extraction

FUBAR	uses	two	kinds	of	stroke	features	for	the	recognition:	1)	the	width/height	ratio	of	
the	stroke	and	2)	the	average	number	of	points	in	the	rows	and	columns	of	the	grid	[5]	drawn	
around	the	stroke.

The	first	member	of	the	FUBAR	family	used	crisp	grid	(classical	grid	with	sharp	borders)	
for	the	feature	extraction,	but	the	system	reached	a	low	average	recognition	rate	as	a	result	of	the	
changing	writing	style	of	the	test	subjects.	Some	of	the	users	started	to	write	faster	and	use	an	
italic	writing	style	after	creating	a	few	samples,	according	to	the	collected	data	as	seen	in	Fig.	5.

The	sampled	points	of	the	strokes	of	oblique	and	normal	characters	could	be	located	in	
completely	different	rows	and	columns	of	the	grid.	This	caused	huge	overlap	between	the	
features	of	various	letters.	Other	methods	(like	[18])	are	rotating	the	input	characters	to	avoid	
the	negative	effects	of	the	italic	writing	style,	but	those	methods	are	complex	mathematical	
transformations,	which	would	 dramatically	 increase	 the	 computational	 complexity	 of	 the	
method.

Fuzzy	grids	were	designed	to	resolve	the	problems	caused	by	the	italic	writing	style	by	
the	increased	information	provided	by	it.	In	fuzzy	grids,	the	rows	and	columns	of	the	grid	are	
defined	by	fuzzy	sets.	It	can	be	also	considered	as	a	transformation	of	the	stroke	into	a	fuzzy	
space.

a) b) c)
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Fig. 5. Straight (a) and italic letters (b) in a grid

a) b)

The optimal sizes of fuzzy grids were determined 
in [8, 9], which is 6 × 6 for single-stroke and 4 × 3 
for multi-stroke letters. If the computational cost and 
recognition rate are both considered, then the optimal 
size of fuzzy grid for single-stroke letters is 6 × 4, 
while for the multi-strokes it does not change. The 
points in a fuzzy grid may belong to two different 
columns or rows at the same time with various 
membership values as seen in Fig. 6.

2.4. Inference

In the designed recognition engine a Takagi-
Sugeno method [4] is used for inference. Each 

symbol in the alphabet is represented by a single rule associated to it. The input parameters 
of the rules are the features described in the previous sub-section. The output parameter of the 
rules is the degree of matching between the features of the input stroke and the stored rules 
as seen in Fig. 7, where Ri is the i-th rule, si is the degree of matching between the candidate 
stroke and the one represented by the i-th rule.

Fig. 6. Concept of the fuzzy grid

Fig. 7. A rule describing a letter

FUBAR returns with the character associated to the best matching rule (the one with 
the highest si value) after the rule evaluation phase. The initial rule-base was determined 
statistically from 60 samples per character, collected previously from test subjects. 

There are two main ways to reduce the complexity of a rule-based fuzzy system: reducing 
the number of input parameters (antecedent) or reducing the number of rules evaluated. 
Hierarchical rule-bases are used to reduce the number of rules evaluated during the inference 
by partitioning the problem domain. Each partition contains a subset of the rules. Meta-rules 
are added to select which subset of the rules should be evaluated in a particular case; the input 
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parameters of these rules might be completely independent from the ones used in the original 
rules. Hierarchical rule-bases [10, 11] were used in some members of the FUBAR algorithm 
to decrease the computational complexity [12]. The average (fuzzified) number of points in 
the third row of a stroke was used as meta-rules in the single-stroke, while the number of 
strokes in the multi-stroke FUBAR.

3. The Applied Optimization Techniques

The initial rule-base for multi-stroke characters was determined the same way as 
described in [5] for single-stroke characters. The multi-stroke FUBAR algorithm reached 
100% recognition rate for the 60 training sample per characters with the initial rule-base.

The fitness-function of each optimization algorithm was defined to maximize the average 
recognition rate for the training set. The optimization algorithms could not modify the initial 
rule-base because it had already reached the 100% accuracy. It does not mean that it can not be 
improved at all; it just reflects that the used initial rule-base is already optimal for the training 
set, so it can not be used during the meta-heuristic optimization and it must be changed to 
reach a lower recognition rate in order to start the optimization. The fuzzy sets in the initial 
rule-base for multi-stroke characters were modified with random values before the start of 
the optimization algorithms; the modified initial rule-base reached 79.17% recognition rate 
for the same training set and 74.7% for the validation sample set (120 samples per character) 
before the optimizations. The same randomly modified rule-base was used during each test.

Each entity (bacterium or country) in the algorithms represents a rule from the rule 
base. Each entity is coded into a vector, where the elements are the breakpoints of the fuzzy 
sets describing the antecedent of the rule. However, this technique requires validating the 
correctness of the new entities after any changes. The vector should be partially ordered for 
each represented membership function (it should maintain a trapezoid shape). Each algorithm 
had to be extended to use multiple populations (without migration), a further loop to say. 
These modified algorithms represent each letter by a single population, this was required to 
avoid the mixture between the data of various types of symbols.

Two different meta-heuristic algorithms were selected to optimize the modified initial  
rule-base, the Imperialist Competitive Algorithm (ICA) and the Bacterial Evolutionary 
Algorithm (BEA). Detailed description of Imperialist Competitive Algorithm can be found  
in [13] and of the Bacterial Evolutionary Algorithm in [14]. Maximizing the average 
recognition rate for the whole training set was used as a fitness function of the optimization 
algorithms, which means that the results were evaluated for all the strokes in the training set.

The ICA was inspired by politic and strategic processes instead of biological analogy. 
In the algorithm, countries are points in the search domain, the countries are determined 
randomly in the first step. Each country can be a conqueror or a colony, the strongest countries 
(those with the highest fitness values) are the conquerors.

The colonies are approaching the conqueror countries in the assimilation phase. The 
conqueror countries are fighting for the colonies, which are providing the possibility to 
increase their strength which is calculated by the aggregated fitness values of the empires 
and colonies. This assimilation phase is repeated until only one empire stands. The colonies 
can uprise against the conqueror countries (revolution phase), this step is included to prevent 
the algorithm from sticking in local optimums.
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Fig. 8. The diagram of the Imperialist Competitive 
Algorithm

The BEA is based on the evolution process of bacteria. Each bacterium represents a point 
in the search domain. The first step of the algorithm is the bacterial mutation, which is applied 
to each bacterium individually. Each selected bacterium is cloned in this phase, then each 
allele of the clones are changed (only one at a time). The clone (or the original bacterium) 
with the best fitness value transfers its allele to the other clones.

The mutation phase is followed by the gene transfer (or infection) step. In this step, the 
bacteria population is divided into the groups of good and bad bacteria by their fitness values. 
A randomly selected good bacterium transfers a randomly selected allele to a randomly 
selected bad bacterium. All steps are repeated until the algorithm reaches the maximal 
number of generations.

Fig. 9. The diagram of the 
Bacterial Evolutionary 

Algorithm
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4. Results of the Applied Optimization Techniques

The parameters of the bacterial evolutionary algorithm are the number of clones,  
the number of infections and the number of generations. The parameters of the imperialist 
competitive algorithm are the number of countries, the imperialist and the revolution  
factor.

The parameters of optimization algorithms were set according to preliminary results from 
formerly published works (where the single-stroke FUBAR was optimized), the ones with 
the best results are presented in this paper. The number of countries was constantly 120 and 
the number of imperialists was constantly 48 for the ICA, while the revolution factor was 
varying between 10 and 14 (steps were 0.2). All the parameters, number of clones, maximum 
generations and the number of infections were set to 10 in each BEA experiments.

The two best recognition rates achieved with the ICA for the validation set are 93.48% 
and 94.1%, as you may see in Fig. 10, the first average recognition rate was achieved with 
120 countries, 48 imperialists and 12.4 revolution factors in 2 generations. The second 
result was reached by 120 countries, 48 imperialists and a revolution factor of 12.6 in  
1 generation.

Fig. 10a) the second highest average recognition rate after the imperial competitive optimization,  
b) the highest average recognition rate after the imperial competitive optimization

a)

b)
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The best two results of BEA are average recognition rates of 96.65% and 97.54% in  
3 and 4 generations, with the same parameter settings, which are 10 clones, 10 infections and 
10 generations as seen in Fig. 11.

Fig. 11a) the second highest average recognition rate after the bacterial evolutionary optimization,  
b) the highest average recognition rate after the bacterial evolutionary optimization

a)

b)

The best accuracy reached by the ICA decreased the average error rate by only 10.6%. 
The highest average recognition rate of 97.54% was achieved by the BEA, which is a 62.72% 
decrease in the average error rate.

The average of the results from the experiments with the same parameters for BEA is 
96.145%. There is no significant variance between the results for ICA with the previously 
described parameters; the average of the results is 93.67%.

It is also important to highlight the fact that only the ICA could reach 100% average 
recognition rate for the training set during the optimization in the first few (1–5) generations, 
while the bacterial evolutionary algorithm could not, the BEA finished only after the number 
of the generations reached the maximum. It is important, because it reflects that ICA is able 
to find (local)optimum solutions faster.

Despite the better convergence and lower resource consumption (computational cost), the 
imperialist competitive algorithm reached a lower increase in the recognition rate compared 
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to the bacterial evolutionary algorithm, which has a moderate convergence (compared to the 
imperialist competitive algorithm), a higher computational cost and a much higher increase 
in the accuracy.

The BEA may give better results, but it takes more time to compute the results. While 
BEA can process 0.0667 generations, ICA can evaluate 0.667 generations in a second. Both 
algorithms used 99% of 7 CPU cores from 8 during the experiments.

5. Conclusion and Future Work

The imperialist competitive algorithm had a better convergence during the optimization 
of the recognizer’s rule-base, while the BEA reached the highest average accuracy (97.54%) 
for the validation sample set. The achieved average recognition rate reaches the 97% user 
acceptance threshold.

The most similar recognizer to the FUBAR is the Palm’s Graffiti2 [15] and the $N 
recognizers [16]. The Graffiti2 is the multi-stroke version of the Palm’s Graffiti unistroke 
recognizer [17]. The accuracy of the algorithm was determined at 86.03% by Költringer and 
Grechenig.

The $N recognizer is the multi-stroke successor of the $1 single-stroke recognizer [18], 
which was developed by J.O. Wobbrock, A.D. Wilson and Y. Li. The $N was developed by 
L. Anthony and J.O. Wobbrock.

The FUBAR algorithm with multi-stroke support reached a higher average recognition 
rate with 26 different characters after the optimization, compared to the Graffiti2 algorithm, 
which reached 86.03% accuracy and supports only 3 multi-stroke symbols, and compared 
to the $N algorithm, which achieved a 96.7% average recognition rate for 16 single-stroke 
symbols, as seen in Fig. 12.

Fig. 12. Average recognition rates of various multi-stroke recognition engines

The in-depth analysis of these and other meta-heuristic techniques in model identification 
is important. Much more detail and further directions should be investigated such as a wider 
range of parameter values and as other type of rule-bases.

Future research includes the investigation of modeling symbols with multiple rules in 
the rule-base, this might increase the recognition rate by supporting various types of the 
same symbols. The increased number of the rules in the rule-base causes higher resource 
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requirements by the algorithm. The hierarchical structure of the fuzzy rule-base might reduce 
the resource requirements without any significant reduction in the average accuracy of the 
FUBAR algorithms.

The support of off-line character recognition will be included in the FUBAR algorithm 
family to extend the application areas of the method such as form processing.

Cursive handwriting is more general (especially in everyday uses), which makes its 
support a high priority task in the near future. The segmentation of characters must be also 
included in the FUBAR algorithms before the support of cursive writing recognition.

The FUBAR algorithm will be integrated into the HandSpy system [19], which is 
a collaborative environment for managing experiments in the cognitive processes in writing.

This paper was supported by the Hungarian Scientific Research Fund (Hungarian abbreviation: OTKA) 
K105529, K108405 and TÁMOP-4.2.2.A-11/1/KONV-2012-0012.
The used Meta-Heuristic algorithms were implemented by Márton Hevér as a part of his Master thesis 
(thesis advisor: Alex Tormási).
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