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A b s t r a c t

The paper presents regulations for evaluating MRd – NRd interaction curves for reinforced 
concrete members subjected to axial force and bending moments in one plane, comparing two 
simplified methods. An example for application of interaction curves in designing columns was 
presented. The latter part of the paper consists of two simplified methods of designating second 
order effects according to EC2 – nominal curvature method, nominal stiffness method. The 
comparison of them was made with MRd – NRd interaction curves. 
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S t r e s z c z e n i e

W artykule przedstawiono zasady wykonywania krzywych interakcji MRd – NRd dla przekrojów 
elementów żelbetowych, obciążonych siłą osiową i momentem zginającym w  jednej płasz-
czyźnie, porównując dwie metody uproszczone ich opracowywania. Zaprezentowano również 
przykład zastosowania krzywych interakcji do doboru zbrojenia słupów krępych. W dalszej 
części pracy zawarto porównanie dwóch uproszczonych metod wyznaczania efektów II rzędu 
wg EC2 – metody nominalnej krzywizny i metody nominalnej sztywności, wykonane przy 
pomocy krzywych interakcji MRd – NRd. 
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1. Introduction

1.1. The purpose and scope of the article

The following paper presents regulations of determining MRd – NRd interaction curves, 
comparing two different methods [5, 16] (including an easy method suitable for creating 
spreadsheets). In the latter part of the article, two simplified methods of evaluating second 
order effects according to EC2 [17] were compared – nominal stiffness method (MNS) and 
nominal curvature method (MNC). 

The article is not intended to assess the accuracy of methods of MNS and MNC, because 
such an assessment can be credible only on the basis of experimental results. The aim of 
the paper is to indicate the need for comments to EC2 [17], which could be followed when 
choosing the method of calculating the second order effects.

The following comparison was made by placing values of second order moments on the 
interaction curves. In the analysis column, the slenderness λ, λ/λlim ratio, the reinforcement 
ratio and an effective creep coefficient were variable.

The article also presents an example of using interaction curves in designing reinforced 
concrete columns.

1.2. Interaction curves

The load-bearing capacity of a cross-section subjected to an axial force and a bending 
moment in one plane can be illustrated by an MRd – NRd interaction curve. An area created 
by the curve presents permissible values of pairs of generalised forces. A point (MEd, NEd) 
beyond the interaction curve means an exceeding of the ultimate limit state.

Fig. 1. MRd – NRd interaction curve with designated cases of concrete cross-section work

Interaction curves for assumed steel and concrete grades, reinforcement ratios and 
dimensions ratios, presented as nomograms suitable for designers are published in books 
and resources for designers. A set of such nomograms for different shapes of cross-sections 
is included for example in [1], and in CEB/FIP Manual on Bending and Compression Design 



95

of Sections under Axial Action Effects at the Ultimate Limit State [2]. In paper [3] there is 
a graph presenting a possible simplification of the MRd – NRd interaction curve (Fig. 2). 

Basic information and examples of nomograms were also included in M. Knauff’s recently 
published book [4]. A detailed description of this issue can be found in R. Kliszczewicz paper [5].

MRd – NRd interaction curves used and presented in papers and in specialist software 
[6, 7, 8, 9, 10, 11, 12, 13] are not commonly used in engineering projects. Not much attention 
is paid to this issue also in students books and teaching resources. However, interaction curves 
and nomograms based on them are popular in other countries [14, 15], for instance, they are 
found in a large part of an academic book for designing concrete structures, published by 
ČVUT in Prague [16].

Fig. 2. Possible simplification of an MRd – NRd interaction curve (according to [3])

2. Creating interaction curves with simplified methods

Drawing an interaction curve for reinforced concrete cross-sections is possible not only 
with a general method, but also with a so-called partly-simplified method [5]. This one is 
significantly easier in calculations, whilst simultaneously maintaining proper accuracy. 
Simplification is based on assumptions such as rectangular stress distribution in concrete, 
with a compressed zone depth λx and a value of ηfcd (λ = 0.8; η = 1.0 – values for concrete 
grades from C12/15 up to C50/60) or a  horizontal line at level fyd on stress-strain graph 
for reinforcing steel. Due to such assumptions, stresses in steel are taken as proportional to 
strains, which can be presented in the following way: 
•	 σsi = εsi∙Es if |εsi| ≤εyd
•	 σsi = fyd if εyd < |εsi| ≤ 10‰

In the current version of EC2 [17], there is no limitation of tensile reinforcement strains to 
10‰ assuming a horizontal top branch of σs – εs diagram. Such a  restriction can be applied, 
however, in the design procedures. Justification of such limitation can be found in [9] for example.

To draw an interaction curve, a  system of two equations of forces equilibrium in the 
cross-section is used (equations for rectangular cross-sections are presented below):
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•	 sum of longitudinal forces:

	 NRd = ⋅ ⋅ ⋅ + ⋅∑0 8
1

. f b x Acd

n

si siσ 	 (1)

•	 sum of moments on the axis parallel to the neutral axis, crossing the centre of concrete 
cross-section:

	 MRd = ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅( ) + ⋅ ⋅ ⋅ −( )∑0 8 0 5 0 4 0 5
1

. . . .f b x h x A h acd

n

si si iσ  	 (2)

2.1. Method presented by R. Kliszczewicz [5]

According to this method (marked in the following part of an article as RK) five ranges 
of possible column’s strains should be taken into consideration. The parameters of equations 
for the MRd – NRd interaction curves are:
•	 εc1 in the I range, 
•	 x in ranges II–IV, 
•	 εs2 in the V range. 

These ranges are given in Table 1 and presented in Fig. 3 and 4. Turns of forces in Fig. 4 
were assumed in accordance to turns of acting forces. Attention should be paid to three issues. 
Firstly, the RK method allows to consider the reinforcement in the varied location of the 
section’s height. Secondly, the effective depth of a cross-section d is treated here as a distance 
between the most compressed concrete fibre and the axis of the most distant reinforcement. 
Finally, values ai are given as distances from the most compressed concrete fibre, as well. 

T a b l e  1 

Design ranges of partly-simplified method, according to [3]

Range x Parameters of equilibrium 
equations Reinforcing steel strains

I x h
=
0 8.  

0 002 3 7
4

0 0021.
� .

−( ) ⋅ −( )
+

εc ih a
h  

II h x h≤ ≤
0 8.

x 0 002 7 7
7 3

. x a
x h

i−
−  

III
7
27
d x h≤ ≤

 
x 0 0035. x a

x
i−
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IV 0 7
27

≤ ≤x d
x − −

−
0 010. x a

x d
i

 

V x = 0
 

ε εs s
ia a
d a2 2

2

2
0 010− +( ) −

−
.

 

Ta b l e  1  –  c o n t i n u e d

Fig. 3. Design ranges of partly-simplified method, according to [5]

Fig. 4. Schemes for calculating load-bearing capacity for each range in RK method [5]

In ranges from I to IV, stress-strain distribution in compressed concrete zone is rectangular. 
In V range there is no compressed zone at all.

In all ranges, MRd and NRd values are calculated from equations (1) and (2); in the fifth 
range, an influence of concrete is omitted due to lack of compressed zone.

Ranges I and II apply to compression with very small eccentricity, when the neutral axis 
is placed beyond the cross-section. Stresses in concrete are equal to fcd. Reinforcement in 
ranges I and II is compressed on the whole depth and stresses in steel can access value of fyd. 

Range I: 

In range I, the whole cross-section is compressed. We assume that strains in reinforcement 
are proportional to εc1 strains of the less compressed edge of concrete and that they are equal to:

	 ε
ε

si
c ih a
h

=
−( ) ⋅ −( )

+
0 002 3 7

4
0 0021.
. .  
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Range II: h x h≤ ≤
0 8.

 

Stress distribution in the compressed zone (of depth 0.8x) does not cover the whole cross-
section. An assumption is made that strains for each reinforcing bar are proportional to strains 
εc = 2‰ of concrete in the distance of from the more compressed edge of concrete cross-

section and are equal to: εsi
ix a

x h
=

−
−

0 002
7 7
7 3

. .

Range III: 7
27
d x h≤ ≤  

Stress distribution in the compressed concrete zone of depth equal to 0.8x does not cover 
the whole cross-section; there are three possibilities of neutral axis location:

–– neutral axis located between d and 3
7

h  (d ≤ x < h) – reinforcement in the cross-section is 
not subjected to tension (the tension zone reaches no further than to the bottom reinforce-
ment axis);

–– compression zone depth is lower than effective depth of the cross-section 
700

700
d
f

x d
yd+
≤ ≤











 – bottom reinforcement is subjected to tension, but its strains are 

lower than εyd and stresses do not reach the value of fyd

–– neutral axis located from
7
27

700
700

d x d
f yd

≤ <
+

; reinforcement in the tensile zone can reach 

limit value of εs = –10‰;

In whole range III, for each of neutral axis locations, we assume εsi
ix a

x
=

−
0 0035. .

Range IV: 0 7
27

≤ ≤x d

As1 reinforcement reaches limit strains εs = –10‰, while strains of the most compressed 
concrete fibre range from 0 to 3.5‰; 

Strains in steel εsi are calculated as proportional to limit values: εsi
ix a

x d
= −

−
−

0 010. .

Range V:  

This range applies to tension with a small eccentricity, when there is no compression zone 
in concrete. Strains in steel are then calculated according to the equation:

	 ε ε εsi s s
ia a
d a

= − +( ) −
−2 2

2

2
0 010. .

R. Kliszczewicz [5] presents two ways of evaluating interaction curves using these ranges 
and equations mentioned above.

First method: 
In the aim of creating the right branch of the graph, an optimal number of parameters from 

described ranges is assumed, then stresses and strains in the reinforcement are calculated.  
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It allows for the determining of pairs of NRd and MRd using equations (1) and (2). The left side 
of the graph is obtained in case of symmetrical cross-section by reflecting the right branch 
of the graph towards the vertical axis of a coordinate system. In the case of non-symmetrical 
reinforcement, a  theoretical 180 degrees rotation of the cross-section should be made and 
calculations have to be repeated.

Second method:
The right branch of the interaction curve is built by calculating the maximal and minimal 

values of longitudinal force NRd, for I range assuming εc1  =  2‰, for V εs2  =  –10‰ and 
dividing the obtained range into parts (depending on necessary accuracy). In this way, a set 
of coordinates of the graph is created.

Furthermore, NRd values are calculated for extremes of ranges and for designated NRd 
calculation of respective MRd values is made using iteration. This is how pairs of (MRd, NRd) 
forces creating the right branch of the graph can be obtained. The left part is created as in the 
first method.

According to the authors of this article, while setting parameter values for which MRd –  NRd pairs 
are calculated (especially when the division of range NRdmax – NRdmin is not very dense), a special 
point should not be omitted – the point relating to maximal moment (x = ξeff.lim∙d, εs1 = fyd∙Es).

2.2. Method presented by J. Procházka, A. Kohoutkova, J. Vaškowa [16]

In the paper of J. Procházka, A. Kohoutkova, J. Vaškowa [16], which is an academic book, 
a simpler method of creating interaction curves is presented. For the purposes of simplification, 
in the following part of this article, this method is described as PKV, from surnames of authors 
of the book [16]. Several specific strains are taken into consideration instead of ranges of strains 
– therefore, it is enough to calculate only 10 pairs of MRd – NRd values. Accuracy of this method 
is satisfactory in accordance with its simplicity and quickness. In the PKV method, a rectangular 
cross-section of stresses in concrete is assumed, with the compression zone depth equal to 0.8x, 
constant value of stresses equal to fcd, and a horizontal top branch of stress-strain distribution 
on reinforcing steel equal to fyd. The PKV method only takes into account the reinforcement 
arranged at the top and bottom edge of the cross section. An example of the interaction curve 
obtained with the PKV method is shown in Fig. 5.

In Fig. 5, point A represents the load-bearing capacity of a cross-section subjected to axial 
compression with strains equal to 2‰. It is respective to extreme value of the first range in 
RK method. This way the maximal NRd capacity for compression is designated.

Point B corresponds to a situation in which the depth of compression zone x is equal to 
an effective depth of the cross-section, d, which implicates zero strains in steel reinforcement 
As1. Strains in reinforcement As2 are assumed as 3,5‰. This case responds to the third range 
from the RK method.

Point C represents capacity of a cross-section in which the depth of the compression zone 
is equal to xlim = ξlim∙d, which for the rectangular stress distribution in compressed concrete 
gives xeff.lim = ξeff.lim∙d. Checks should be made as to whether xbal.1 = ξbal.1∙d ≥ xbal.2 = ξbal.2∙a2, 

where ξbal.1 is equivalent for ξ
ε

ε εlim
.

.
= +

cu

cu yd

3

3
, and ξ

ε
ε εbal.1 = −

cu

cu yd

.

.
.3

3
 If so, it can be assumed 

that both As1 and As2 reinforcement is completely used, which means that σs1 = σs2 = fyd. With 
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such assumption, a maximum value of MRd is obtained. This case responds to the third range 
from the RK method.

Point D shows the capacity of a bended cross-section without axial force, it is a  case 
which belongs to the fourth range. In the PKV method, an influence of compressed As2 
reinforcement is omitted.

Point E represents the capacity of a  cross-section subjected to eccentric tension with 
a small eccentricity, the compression zone is omitted.

Point F shows the capacity of a  cross-section subjected to axial tension. The bending 
moment is equal to zero. Reinforcements As1 and As2 are completely exploited. It is an 
example corresponding to an extreme value of a fifth range, from which we obtain maximal 
value of NRd for tension.

Points B`, C`, D`, E` in case of symmetrical reinforcement can be designated by reflection 
towards the vertical axis. In cases when the reinforcement is not symmetrical, the cross-
section should be theoretically rotated by 180 degrees and these points should be calculated 
with similar assumptions, treating reinforcement As2 as As1 and so on.

3. The comparison of MRd – NRd interaction curves  
(according to RK and PKV methods)

The following part of the article consists of a comparison of interaction curves obtained 
from two described methods, RK and PKV, with assumptions:
–– rectangular column cross-section with dimensions 30 × 40 cm,
–– C30/37 concrete grade
–– RB500W steel,

Fig. 5. An example of interaction curve according to PKV method [16]
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–– 3.0 cm cover,
–– main reinforcement diameter: φ 20 mm,
–– stirrups diameter: φs 6 mm,
–– reinforcement ratio: 1.0% i 3.1%,
–– symmetrical reinforcement, placed only at the top and bottom edge of the section.

Comparing these graphs (Fig. 6), it can be noted that the differences in results obtained 
from PKV methods in relation to those from the RK method are on the safe side. The 
advantages of the PKV method are its simplicity and the ability to perform calculations 
efficiently, such as in a spreadsheet.

If input data change and the reinforcement ratio is higher, e.g. ρ  =  3.1% 
(As1 = As2 = 18,85 cm2), then point D of the PKV curve will not cover the curve from the RK 
method (Fig. 7). It is due to the fact that in the PKV method, compressed reinforcement is 
omitted while designating point D. The differences between these two methods in point D 
(moment value for zero axial force) will increase with an increasing reinforcement ratio or 
steel grade and with decreasing concrete strength.

Calculations for the PKV method can be simplified by omitting point E, because the curve 
for tension is close to linear.

MRd – NRd interaction curves presented in the above figures were verified with curves 
obtained from computer software [10].

Fig. 6. MRd – NRd interaction curves according 
to RK [5] and PKV [16] methods, with 

ρ = 1.0%

Fig. 7. MRd – NRd interaction curves according 
to RK [5] and PKV [16] methods, with 

ρ = 3.1%

4. An example of using interaction curves to design thick reinforced concrete columns 

To choice reinforcement for 47 columns of a vessel support structure interaction curves 
created with RK method were used. Dimensions of the cross-sections of the designed columns 
were equal to 50 × 50 cm and could be analysed without considering second order effects. 
Columns were subjected to longitudinal forces and bending moments in both directions (skew 
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bending). The assumptions were made that there would be only four types of reinforcement 
(table 2) and that each type of reinforcement would be symmetrical and equivalent in both 
planes.

MRd – NRd interaction curves were evaluated for these types of reinforcement. They take 
into account the whole reinforcement (not only concentrated on opposite sides, but also a part 
of it which is distributed parallel to the plane of bending).

T a b l e  2 

Assumed types of vessel support structure reinforcement

Column reinforcement Reinforcement in both planes Description in Fig. 8.

12 φ16 As1 = As2 = 4φ16 4 φ16

12 φ25 As1 = As2 = 4φ25 4 φ25

16 φ25 As1 = As2 = 5φ25 5 φ25

16 φ28 As1 = As2 = 5φ28 5 φ28

MRd – NRd interaction curves for planes xy; xz; with points corresponding to pairs of  
MEd  – NEd forces (representing the results of static calculations) are presented in Fig. 8. 
A preliminary increase of forces and moments by 50 percent has been made while putting 
MEd – NEd points onto interaction curves. Due to such an attitude, a designed reinforcement 
fulfils the EC2 [17] simplified criteria for skew bending:

	 M
M

M
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Ed
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Ed
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z

z
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a

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


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

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Fig. 8. MRd – NRd interaction curves in xy, xz planes. Preliminary choice of reinforcement for vessel 
support structure
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The power a has been assumed according to EC2 depending on the relation NEd /NRd. 
After preliminary choice of reinforcement for skew bending according to interaction 

curves, the capacity of columns was checked. As a  result, values fulfilling the normative 
conditions were obtained for all analysed columns. 

It is important to include the reinforcement located along the section’s height. A comparison 
of interaction curves which take into account only bars on opposite sides of the cross-section 
(dashed lines) with those taking into account all bars along the height of the section (solid 
lines) is shown in Fig. 9.

Fig. 9. The MRd – NRd interaction curves in xy and xz planes which take into account only the 
reinforcement located by the top and bottom edges (dashed line) and which take the whole 

reinforcement in the cross-section into account (solid line)

5. Second order effects on MRd – NRd interaction curves

The following part of the article presents MRd – NRd interaction curves which take into 
consideration the reduction of capacity of columns due to second order effects. A comparison 
of an influence of chosen factors on the values of second order effects calculated with two 
simplified methods given by EC2 – nominal stiffness method (MNS) and nominal curvature 
method (MNC) was made. 

5.1. Assumptions for analysis

Three cross-sections were analysed (as in Fig. 10), with the following data:
•	 rectangular column cross-section with dimensions 40 × 50 cm,
•	 C30/37 concrete grade
•	 RB500W steel,
•	 γc = 1.4,
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•	 γs = 1.15,
•	 3.0 cm cover,
•	 main reinforcement diameter: φ = 20 mm,
•	 stirrups diameter: φs = 6 mm,
•	 symmetrical reinforcement as in Fig. 12.

Fig. 10. Analysed cross-sections of columns

In the analysis, the following variable parameters were assumed, with values as follows:
•	 column slenderness: λ = 21; 35; 49,
•	 λ/λlim ratio= 0.5; 1.0; 2.0,
•	 reinforcement ratio ρ = 0.63%; 1.25%; 1.89%,
•	 effective creep coefficient φeff = 0; 1.5.

In the MNS method, two assumptions were made – coefficient depending on first order 
moments distribution c0 = 8 (first order moment is constant, rm = 1), and coefficient depending 
on reinforcement ratio Ks = 1.0. Kc was calculated according to the formula 5.22 from EC2 
[17]. In the MNC method, a distribution of total curvature was assumed to be sinusoidal, 
similarly for the second order effects. This approximation is on the safe side. For such 
curvature, a  distribution of a  coefficient c is equal to π2 ≈ 10. The n value for which the 
maximum limit value of a moment is achieved, was assumed as nbal = 0.4.

5.2. Second order effects on MRd – NRd interaction curves. Variable slenderness λ

Fig. 11a and b (below) present interaction curves with second order effects for columns 
with different slenderness. Second order effects were calculated with MNS and MNC for 
three different λ values, with assumed first order eccentricity e0 = 0.07 m (thus, for the values 
of moments mI resultant from this eccentricity and from values of longitudinal forces).

The values of second order effects, obtained from the MNC method are presented in the 
whole range of loadings (similar to results considered in the engineer design of columns 
according to EC2), assuming stresses in steel equal to fyd.

The following graphs (Fig. 11) present mI values for first order impacts with imperfections 
and mII values relevant for second order effects for n = 0.6. There is an increase of mII with 
an increase of slenderness λ. For the analysed columns, values of second order effects from 
MNS and MNC differ significantly and this difference depends on the n level.

Fig. 12a and b present second order effects obtained from MNS and MNC for three 
different values of slenderness and corresponding imperfections measured from relevant 
lines. For the chosen value of n = 0.6, values of mimp (moments from imperfections),  
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mII (second order moments), mstatic (moments caused by loadings) were shown. Values of mII 
were calculated not for assumed first order eccentricity as in the previous example, but for the 
highest possible values of mstatic in relevance to capacity on a level of n.

The area between the interaction curve and a second order effects line for exact λ value is 
an area of possible values of mstatic. By comparing the interaction curves for two methods, it 
can be concluded that this area is significantly smaller for MNS than from MNC.

Fig. 11a, b. MRd – NRd interaction curves with second order effects for columns with different 
slenderness. Comparison of second order effects from MNS and MNC. Reinforcement ratio 

ρ = 0,63%, effective creep coefficient φeff = 0

Discontinuity of the graph obtained for λ = 49 (Fig. 12a) with use of MNS, is caused by 
normative restriction of the value of k2 coefficient, which is used to consider the cracking and 
creep influence on the nominal stiffness of slender compressed concrete members. 

Fig. 12a, b. MRd – NRd interaction curves with second order effects (measured from imperfection line) 
for columns with different slenderness. Possible areas of mstatic values calculated with MNS and MNC. 

Reinforcement ratio ρ = 0.63%, effective creep coefficient φeff = 0
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To simplify using interaction curves with areas of possible values of mstatic, second order effects 
can be measured from interaction curves as in Fig. 13a and b. The shadowed area represents 
possible first order moments for different forces n and slenderness λ; mI = mstatic + mimp.

Similar to former graphs, mII moments were calculated for the biggest possible values of 
mI due to capacity on the exact level of n.

Values of mI and mII designated for n = 0.6 apply to slenderness λ = 49.
Comparing Fig. 13a and b, it can be noticed that an area of possible mI values for the MNS 

method is significantly smaller than for MNC, this rule applies for each slenderness value. 

Fig. 13a, b. MRd – NRd interaction curves with second order effects (measured from interaction curves) 
for columns with different slenderness. Comparison of areas of possible mI values according to MNS 

and MNC methods. Reinforcement ratio ρ = 0.63%, effective creep coefficient φeff = 0

5.3. Second order effects on MRd – NRd interaction curves – variable ratio of λ/λlim

MRd – NRd interaction curves below (Fig. 14a, b) present second order effects calculated 
with MNS and MNC for a variable value of λ and for three different slenderness ratios λ/λlim, 
which equal 0.5; 1.0; 2.0, (with an assumed I order eccentricity e0 = 0.07 m). For chosen value 
of n = 0.6 values of mI and mII were shown; for slenderness ratio λ/λlim = 2. 

We can distinguish slight impact of slenderness lower than λlim and a significant influence 
of slenderness exceeding the limit value λlim on second order effects mII.

For bigger values of λ/λlim, differences between second order effects calculated with MNS 
and MNC are more distinct.

Furthermore, for values of n < nbal second order effects from MNS are lower than from 
MNC, whereas for n > nbal the situation is opposite 
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Fig. 14a, b. MRd – NRd interaction curves with second order effects calculated with MNS and MNC 
for columns with different slenderness λ/λlim ratios. Reinforcement ratio ρ = 0.63%, effective creep 

coefficient φeff = 0

5.4. Second order effects on MRd – NRd interaction curves – variable reinforcement ratio ρ

The following MRd – NRd interaction curves (Fig. 15a, b) present second order effects 
calculated with MNS and MNC for three different reinforcement ratios ρ = 0.63; 1.25; 1.89 
(with an assumed first order eccentricity equal to e0 = 0.07 m).

For the chosen value of n = 0.8, values of mI and mII relevant for reinforcement ratio 
ρ = 1.89% were presented.

In graphs considering MNS an influence of reinforcement ratio on second order effects 
mII is clear; however graph for MNC claims that values of second order effects mII are not 
dependent on reinforcement ratio. 

Fig. 15a, b. MRd – NRd interaction curves with second order effects calculated with MNS and MNC for 
various reinforcement ratio. Column slenderness λ = 35, effective creep coefficient φeff = 0
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5.5. Second order effects on MRd – NRd interaction curves – variable creep coefficient

Fig. 16a, b. MRd – NRd interaction curves with second order effects calculated with MNS and MNC for 
various creep coefficient φeff. Column slenderness λ = 35, reinforcement ratio ρ = 0.63%

Fig. 16a and b, present second order effects calculated with MNS and MNC on MRd – NRd 
interaction curves for creep coefficients equal to φeff = 0 and φeff = 1.5 (with an assumed first 
order eccentricity equal to e0 = 0.07 m). For the chosen value of n = 0.6, values of mI and mII 
relevant for creep coefficient φeff = 0 were presented. In analysed cases for n > nbal the impact 
of creep on second order effects mII calculated with MNS is higher than on second order 
effects from MNC.

6. Conclusions

The first part of the paper presents two methods of evaluating MRd – NRd interaction curves 
for members subjected to axial force and bending moment in one plane (partly-simplified 
RK and PKV methods) [5, 16]. It was proven that despite the different assumptions in 
methods PKV and RK, results obtained from both methods are similar. There was also an 
example of applying the interaction curves to the choice of the reinforcement in vessel 
support structure.

The second part of the paper considers the reduction in MRd – NRd interaction curves 
due to second order effects. Interaction curves were designated with RK method. Second 
order effects were calculated with methods of nominal stiffness and nominal curvature, 
according to EC2, for various values of slenderness, λ/λlim ratio, reinforcement ratio ρ and 
creep coefficient φeff.

The usefulness of MRd – NRd interaction curves not only for designing and checking 
the capacity of columns, but also for analysis, such as the one carried out in this article – 
comparing second order effects evaluated with different methods, was indicated in the article.
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On the basis of the conducted analysis:
–– it was proved that second order effects calculated with MNS and MNC differ significantly, 

their comparison was presented on MRd – NRd interaction curves
–– it was claimed that differences between second order effects from MNS and MNC depend 

on the value of n = NEd/bhfcd,
–– it was noticed that for the analysed column, the area of possible mstatic values for second 

order effects from MNS is considerably lower than from MNC
–– an increase of mII value with an increase of ratio of slenderness to its limit value λ/λlim in 

MNS and MNC and its dependence on n/nbal ratio was presented
–– the differences between an impact of reinforcement ratio on second order effects were 

shown; this influence is distinct in MNS and inconsiderable in MNC confusing sentence – 
we usually expect to see differences between something and something else.

–– it was presented that the influence of creep on second order effects in MNC is lower than 
in MNS.
The comparisons of second order effects calculated by MNS and MNC methods presented 

in the paper, are aimed at depicting the situation encountered by the designer applying the 
rules of Eurocode 2 [17] and to indicate the need for comments to this standard (standard czy 
code? Tu sama nie jestem pewna, raczej code – od Eurocode chociażby), which could help 
to choose the right method.
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