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Abstract

The paper presents regulations for evaluating M., — N, interaction curves for reinforced
concrete members subjected to axial force and bending moments in one plane, comparing two
simplified methods. An example for application of interaction curves in designing columns was
presented. The latter part of the paper consists of two simplified methods of designating second
order effects according to EC2 — nominal curvature method, nominal stiffness method. The
comparison of them was made with M, — N, interaction curves.
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Streszczenie

W artykule przedstawiono zasady wykonywania krzywych interakcji M, — N, , dla przekrojow
elementow zelbetowych, obcigzonych sita osiowa i momentem zginajacym w jednej plasz-
czyznie, porownujac dwie metody uproszczone ich opracowywania. Zaprezentowano rowniez
przyktad zastosowania krzywych interakcji do doboru zbrojenia stupéw krepych. W dalszej
czesci pracy zawarto pordwnanie dwoch uproszczonych metod wyznaczania efektow II rzedu
wg EC2 — metody nominalnej krzywizny i metody nominalnej sztywnosci, wykonane przy
pomocy krzywych interakcji M, — N_ .

Stowa kluczowe: stupy zelbetowe, krzywa interakcji, efekty Il rzedu, nominalna sztywnosé,
nominalna krzywizna
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1. Introduction

1.1. The purpose and scope of the article

The following paper presents regulations of determining M, — N, interaction curves,
comparing two different methods [5, 16] (including an easy method suitable for creating
spreadsheets). In the latter part of the article, two simplified methods of evaluating second
order effects according to EC2 [17] were compared — nominal stiffness method (MNS) and
nominal curvature method (MNC).

The article is not intended to assess the accuracy of methods of MNS and MNC, because
such an assessment can be credible only on the basis of experimental results. The aim of
the paper is to indicate the need for comments to EC2 [17], which could be followed when
choosing the method of calculating the second order effects.

The following comparison was made by placing values of second order moments on the
interaction curves. In the analysis column, the slenderness A, A/A, ratio, the reinforcement
ratio and an effective creep coefficient were variable.

The article also presents an example of using interaction curves in designing reinforced
concrete columns.

1.2. Interaction curves

The load-bearing capacity of a cross-section subjected to an axial force and a bending
moment in one plane can be illustrated by an M, — N, interaction curve. An area created
by the curve presents permissible values of pairs of generalised forces. A point (M, N_,)

beyond the interaction curve means an exceeding of the ultimate limit state.

Ed’
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bending without >
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Fig. 1. M, ,— N, , interaction curve with designated cases of concrete cross-section work

Interaction curves for assumed steel and concrete grades, reinforcement ratios and
dimensions ratios, presented as nomograms suitable for designers are published in books
and resources for designers. A set of such nomograms for different shapes of cross-sections
is included for example in [1], and in CEB/FIP Manual on Bending and Compression Design
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of Sections under Axial Action Effects at the Ultimate Limit State [2]. In paper [3] there is
a graph presenting a possible simplification of the M, , — N interaction curve (Fig. 2).

Basic information and examples of nomograms were also included in M. Knauft’s recently
published book [4]. A detailed description of this issue can be found in R. Kliszczewicz paper [5].

M,, — N, interaction curves used and presented in papers and in specialist software
[6,7,8,9,10, 11, 12, 13] are not commonly used in engineering projects. Not much attention
is paid to this issue also in students books and teaching resources. However, interaction curves
and nomograms based on them are popular in other countries [14, 15], for instance, they are
found in a large part of an academic book for designing concrete structures, published by
CVUT in Prague [16].
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Fig. 2. Possible simplification of an M, — N, interaction curve (according to [3])

2. Creating interaction curves with simplified methods

Drawing an interaction curve for reinforced concrete cross-sections is possible not only
with a general method, but also with a so-called partly-simplified method [5]. This one is
significantly easier in calculations, whilst simultaneously maintaining proper accuracy.
Simplification is based on assumptions such as rectangular stress distribution in concrete,
with a compressed zone depth Ax and a value of v/, (A = 0.8; n = 1.0 — values for concrete
grades from C12/15 up to C50/60) or a horizontal line at level f) ., On stress-strain graph
for reinforcing steel. Due to such assumptions, stresses in steel are taken as proportional to
strains, which can be presented in the following way:

* o, ¢ Eifle|<e,
+ o,=/,ife <[e | <10%o

In the current version of EC2 [17], there is no limitation of tensile reinforcement strains to
10%o assuming a horizontal top branch of 6, — € diagram. Such a restriction can be applied,
however, in the design procedures. Justification of such limitation can be found in [9] for example.

To draw an interaction curve, a system of two equations of forces equilibrium in the
cross-section is used (equations for rectangular cross-sections are presented below):
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» sum of longitudinal forces:

n
N =0.8- fig -b-x+ Y0, 4 M
1

» sum of moments on the axis parallel to the neutral axis, crossing the centre of concrete
cross-section:

Mgg =0.8- /iy b-x-(0.5-h=0.4-x)+ Y0, - 4;-(0.5-h-a,) )
1

2.1. Method presented by R. Kliszczewicz [5]

According to this method (marked in the following part of an article as RK) five ranges
of possible column’s strains should be taken into consideration. The parameters of equations
for the M, — N, interaction curves are:

* ¢, in the I range,
» x inranges [I-1V,
* &, inthe V range.

These ranges are given in Table 1 and presented in Fig. 3 and 4. Turns of forces in Fig. 4
were assumed in accordance to turns of acting forces. Attention should be paid to three issues.
Firstly, the RK method allows to consider the reinforcement in the varied location of the
section’s height. Secondly, the effective depth of a cross-section d is treated here as a distance
between the most compressed concrete fibre and the axis of the most distant reinforcement.
Finally, values a,are given as distances from the most compressed concrete fibre, as well.

Table 1

Design ranges of partly-simplified method, according to [3]

Range X Parameters oflequlllbrlum Reinforcing steel strains
equations
0.002—-¢,,)-(3h—"7a,
I x=1 1 o< €. <2%o ( ta)-(3h=7a,) #0.002
0.8 23 4h
1 P x 0.002L7‘;"
=208 7x-3
X—a;
1 74 e<h x 0.0035——
27 X
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Table 1 — continued

7d —a.
v 0<x<-2 x -0.0102 =%
27 x—d
) o
v =0 -10%0<t, £—10%07 £, _(0.010_,.852)0’1__;12
2
As2
MRg
Nrd | Aa
As1
Fig. 3. Design ranges of partly-simplified method, according to [5]
RANGE | RANGE I RANGE Il RANGE IV RANGE V
fc fc fc fcd g N
As2 Fs2 As2 Fs As2 Fsa As2 F2 As2 Fs2
MRdfb MRd/> § MRd,,; @ MRd/) MRdfp
NRd\: Asi Fs Nra\ 1 As Fs|Nra\ | Asi P Nra\_ A s Nra\_ [ Asi Fsi
Ast Fs1 Ast Es Ast Fsi Ast Fst Ast Fst

Fig. 4. Schemes for calculating load-bearing capacity for each range in RK method [5]

Inranges from I to IV, stress-strain distribution in compressed concrete zone is rectangular.
In V range there is no compressed zone at all.

In all ranges, M, and N, values are calculated from equations (1) and (2); in the fifth
range, an influence of concrete is omitted due to lack of compressed zone.

Ranges I and II apply to compression with very small eccentricity, when the neutral axis
is placed beyond the cross-section. Stresses in concrete are equal to f . Reinforcement in
ranges [ and IT is compressed on the whole depth and stresses in steel can access value of f .

Range [: x= % i E%o<801< 2%o

In range I, the whole cross-section is compressed. We assume that strains in reinforcement
are proportional to ¢  strains of the less compressed edge of concrete and that they are equal to:

002—¢,,)-(3h~Tq,
8Si:(ooo 8621 (3h=74) 1 ooa.
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h
RangeIl: h<x<—
0.8

Stress distribution in the compressed zone (of depth 0.8x) does not cover the whole cross-
section. An assumption is made that strains for each reinforcing bar are proportional to strains
€,= 2%o of concrete in the distance of from the more compressed edge of concrete cross-

. Tx—Ta;
section and are equal to: g; =0.002 ———.

Tx—-3h
7d

Range lII: —<x<h
27

Stress distribution in the compressed concrete zone of depth equal to 0.8x does not cover
the whole cross-section; there are three possibilities of neutral axis location:

. 3 . . L
— neutral axis located between d and 7 h (d <x < h) —reinforcement in the cross-section is
not subjected to tension (the tension zone reaches no further than to the bottom reinforce-
ment axis);

— compression zone depth is lower than effective depth of the cross-section

_700d < x<d | — bottom reinforcement is subjected to tension, but its strains are
700+ £,y

lower than € and stresses do not reach the value of fv y

. 7d 700d
— neutral axis located from — < x < ————
27 700 + fyd

limit value of £ = —10%o;

; reinforcement in the tensile zone can reach

X—a;

In whole range 111, for each of neutral axis locations, we assume € = 0.0035

Range [V:0<x < E
27

X

A, reinforcement reaches limit strains & = —10%o, while strains of the most compressed
concrete fibre range from 0 to 3.5%o;
. . . xX—a;
Strains in steel €, are calculated as proportional to limit values: €; =—0.010 L.
A [

Range V: x =0 and —10%0<€g,, < -10%02—2

This range applies to tension with a small eccentricity, when there is no compression zone
in concrete. Strains in steel are then calculated according to the equation:
a, —a,
g; =€, —(0.010+e,)——=.
—a,
R. Kliszczewicz [5] presents two ways of evaluating interaction curves using these ranges
and equations mentioned above.
First method:
In the aim of creating the right branch of the graph, an optimal number of parameters from
described ranges is assumed, then stresses and strains in the reinforcement are calculated.
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It allows for the determining of pairs of N, and M, , using equations (1) and (2). The left side
of the graph is obtained in case of symmetrical cross-section by reflecting the right branch
of the graph towards the vertical axis of a coordinate system. In the case of non-symmetrical
reinforcement, a theoretical 180 degrees rotation of the cross-section should be made and
calculations have to be repeated.

Second method:

The right branch of the interaction curve is built by calculating the maximal and minimal
values of longitudinal force N, for I range assuming €, = 2%o, for V' &,= —10%o and
dividing the obtained range into parts (depending on necessary accuracy). In this way, a set
of coordinates of the graph is created.

Furthermore, N, values are calculated for extremes of ranges and for designated N,
calculation of respective M, , values is made using iteration. This is how pairs of (M, N,)
forces creating the right branch of the graph can be obtained. The left part is created as in the
first method.

According to the authors of this article, while setting parameter values for which M, ,— N, pairs
are calculated (especially when the division of range N, —N_ . is not very dense), a special

Rdmax Rdi
point should not be omitted — the point relating to maximal moment (x =& .. -d, & = fy JE).

2.2. Method presented by J. Prochazka, A. Kohoutkova, J. Vaskowa [16]

In the paper of J. Prochdzka, A. Kohoutkova, J. Vaskowa [16], which is an academic book,
a simpler method of creating interaction curves is presented. For the purposes of simplification,
in the following part of this article, this method is described as PKV, from surnames of authors
of the book [16]. Several specific strains are taken into consideration instead of ranges of strains
— therefore, it is enough to calculate only 10 pairs of M, — N, , values. Accuracy of this method
is satisfactory in accordance with its simplicity and quickness. In the PK'V method, a rectangular
cross-section of stresses in concrete is assumed, with the compression zone depth equal to 0.8x,
constant value of stresses equal to f , and a horizontal top branch of stress-strain distribution
on reinforcing steel equal to /. The PKV method only takes into account the reinforcement
arranged at the top and bottom edge of the cross section. An example of the interaction curve
obtained with the PK'V method is shown in Fig. 5.

In Fig. 5, point A represents the load-bearing capacity of a cross-section subjected to axial
compression with strains equal to 2%eo. It is respective to extreme value of the first range in
RK method. This way the maximal N, capacity for compression is designated.

Point B corresponds to a situation in which the depth of compression zone x is equal to
an effective depth of the cross-section, d, which implicates zero strains in steel reinforcement
A,,. Strains in reinforcement 4, are assumed as 3,5%o. This case responds to the third range
from the RK method.

Point C represents capacity of a cross-section in which the depth of the compression zone
is equal to x,, =&, -d, which for the rectangular stress distribution in compressed concrete

1 = . = o > = .
gives x .= & ... -d. Checks should be made as to whether x|, =&  d>x ,=& .,
€ €
. . cu.3 —_ “cu3d .
where & | is equivalent for Elim-= ,and Chal1 = - If so, it can be assumed
) €3 +8yd cu.3 _eyd

that both A  and A , reinforcement is completely used, which means that 6, = 6, = f . With
s S ¥



100

4000
----- PKV
A
3000 .
’ ‘ N IS
’ (N
- . ~
’ N
’ ~
B - B
2000 » \\
— ’
=Z_‘. 4 ‘\
g ) '
= c 4 e C
1000 \
N ’ 4
A .
- N -
A ’
o  MrafkNm] 7
0 ] ] ~ 1 1 P ~ 1 1
-3p0 -200 -100 E"‘ K4 E 100 200 300
Sle
F
-1000 -

Fig. 5. An example of interaction curve according to PKV method [16]

such assumption, a maximum value of M_ , is obtained. This case responds to the third range
from the RK method.

Point D shows the capacity of a bended cross-section without axial force, it is a case
which belongs to the fourth range. In the PKV method, an influence of compressed 4,
reinforcement is omitted.

Point E represents the capacity of a cross-section subjected to eccentric tension with
a small eccentricity, the compression zone is omitted.

Point F shows the capacity of a cross-section subjected to axial tension. The bending
moment is equal to zero. Reinforcements A | and A, are completely exploited. It is an
example corresponding to an extreme value of a fifth range, from which we obtain maximal
value of N, for tension.

Points B*, C', D", E" in case of symmetrical reinforcement can be designated by reflection
towards the vertical axis. In cases when the reinforcement is not symmetrical, the cross-
section should be theoretically rotated by 180 degrees and these points should be calculated
with similar assumptions, treating reinforcement 4 , as 4, and so on.

3. The comparison of M, — N_ interaction curves
(according to RK and PKV methods)

The following part of the article consists of a comparison of interaction curves obtained
from two described methods, RK and PKV, with assumptions:
— rectangular column cross-section with dimensions 30 x 40 cm,
— C30/37 concrete grade
— RB500W steel,
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— 3.0 cm cover,

— main reinforcement diameter: ¢ 20 mm,

— stirrups diameter: ¢, 6 mm,

— reinforcement ratio: 1.0% 1 3.1%,

— symmetrical reinforcement, placed only at the top and bottom edge of the section.

Comparing these graphs (Fig. 6), it can be noted that the differences in results obtained
from PKV methods in relation to those from the RK method are on the safe side. The
advantages of the PKV method are its simplicity and the ability to perform calculations
efficiently, such as in a spreadsheet.

If input data change and the reinforcement ratio is higher, e.g. p = 3.1%
(4,=A4,= 18,85 cm?), then point D of the PKV curve will not cover the curve from the RK
method (Fig. 7). It is due to the fact that in the PKV method, compressed reinforcement is
omitted while designating point D. The differences between these two methods in point D
(moment value for zero axial force) will increase with an increasing reinforcement ratio or
steel grade and with decreasing concrete strength.

Calculations for the PK'V method can be simplified by omitting point E, because the curve
for tension is close to linear.

M,, — N, interaction curves presented in the above figures were verified with curves
obtained from computer software [10].

4000 6000
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1 #4153 41880 4 (153; 418) o D (238, ) 2 |
) N MRg [kNm] ) g
0 ! rP (91: 0] — ot D(SIH (liI ! -4 -28Q, 9 0
o 20 4&;}927?‘l 0 {,49?(2273) 200 300 i '+ (-126: -89 =
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Fig. 6. M, — N, interaction curves according Fig. 7. M, — N, ,interaction curves according
to RK [5] and PKV [16] methods, with to RK [5] and PKV [16] methods, with
p=1.0% p=3.1%

4. An example of using interaction curves to design thick reinforced concrete columns

To choice reinforcement for 47 columns of a vessel support structure interaction curves
created with RK method were used. Dimensions of the cross-sections of the designed columns
were equal to 50 x 50 cm and could be analysed without considering second order effects.
Columns were subjected to longitudinal forces and bending moments in both directions (skew
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bending). The assumptions were made that there would be only four types of reinforcement
(table 2) and that each type of reinforcement would be symmetrical and equivalent in both
planes.
M, ,— N, interaction curves were evaluated for these types of reinforcement. They take
into account the whole reinforcement (not only concentrated on opposite sides, but also a part
of it which is distributed parallel to the plane of bending).

Assumed types of vessel support structure reinforcement

Ta

ble 2

Column reinforcement Reinforcement in both planes Description in Fig. 8.
12 016 A,=A4,=4616 4016
12 ¢25 A, =A4,= 4025 4 $25
16 ¢25 A,=A,= 5025 525
16 028 A,=A,= 5028 528

MEd

M

Rd

N,, interaction curves for planes xy; xz; with points corresponding to pairs of
— N, forces (representing the results of static calculations) are presented in Fig. 8.

A preliminary increase of forces and moments by 50 percent has been made while putting
M_,— N, points onto interaction curves. Due to such an attitude, a designed reinforcement
fulfils the EC2 [17] simplified criteria for skew bending:
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Fig. 8. M ,— N, , interaction curves in xy, xz planes. Preliminary choice of reinforcement for vessel

support structure
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The power a has been assumed according to EC2 depending on the relation N_ /N, .

After preliminary choice of reinforcement for skew bending according to interaction
curves, the capacity of columns was checked. As a result, values fulfilling the normative
conditions were obtained for all analysed columns.

Itis important to include the reinforcement located along the section’s height. A comparison
of interaction curves which take into account only bars on opposite sides of the cross-section
(dashed lines) with those taking into account all bars along the height of the section (solid
lines) is shown in Fig. 9.
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Fig. 9. The M, ,— N, , interaction curves in xy and xz planes which take into account only the
reinforcement located by the top and bottom edges (dashed line) and which take the whole
reinforcement in the cross-section into account (solid line)

5. Second order effects on M, o~ Naa interaction curves

The following part of the article presents M, ,— N interaction curves which take into
consideration the reduction of capacity of columns due to second order effects. A comparison
of an influence of chosen factors on the values of second order effects calculated with two
simplified methods given by EC2 — nominal stiffness method (MNS) and nominal curvature
method (MNC) was made.

5.1. Assumptions for analysis

Three cross-sections were analysed (as in Fig. 10), with the following data:
* rectangular column cross-section with dimensions 40 x 50 cm,
e (C30/37 concrete grade
* RB500W steel,
e yc=14,
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° v,= 115,

¢ 3.0 cm cover,

* main reinforcement diameter: ¢ =20 mm,
* stirrups diameter: ¢, = 6 mm,

» symmetrical reinforcement as in Fig. 12.

2 @20 4 @20 6 @20
2 a 2
3 p = 0.63% 3 p=1.25% g p=1.89%
2 @20 4 @20 6 @20
40 40 40

Fig. 10. Analysed cross-sections of columns

In the analysis, the following variable parameters were assumed, with values as follows:

¢ column slenderness: A = 21; 35; 49,

s M, ratio=0.5; 1.0; 2.0,

» reinforcement ratio p = 0.63%; 1.25%; 1.89%,
* effective creep coefficient ¢ = 0; 1.5.

In the MNS method, two assumptions were made — coefficient depending on first order
moments distribution ¢, = 8 (first order moment is constant, , = 1), and coefficient depending
on reinforcement ratio K = 1.0. K was calculated according to the formula 5.22 from EC2
[17]. In the MNC method, a distribution of total curvature was assumed to be sinusoidal,
similarly for the second order effects. This approximation is on the safe side. For such
curvature, a distribution of a coefficient ¢ is equal to n*~ 10. The n value for which the
maximum limit value of a moment is achieved, was assumed as n, = 0.4.

5.2. Second order effects on M, — N, interaction curves. Variable slenderness A

Fig. 11a and b (below) present interaction curves with second order effects for columns
with different slenderness. Second order effects were calculated with MNS and MNC for
three different A values, with assumed first order eccentricity e, = 0.07 m (thus, for the values
of moments m, resultant from this eccentricity and from values of longitudinal forces).

The values of second order effects, obtained from the MNC method are presented in the
whole range of loadings (similar to results considered in the engineer design of columns
according to EC2), assuming stresses in steel equal to j; -

The following graphs (Fig. 11) present m, values for first order impacts with imperfections
and m values relevant for second order effects for n = 0.6. There is an increase of m, with
an increase of slenderness A. For the analysed columns, values of second order effects from
MNS and MNC differ significantly and this difference depends on the n level.

Fig. 12a and b present second order effects obtained from MNS and MNC for three
different values of slenderness and corresponding imperfections measured from relevant
lines. For the chosen value of n = 0.6, values of m, ~(moments from imperfections),
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m, (second order moments), m__ . (moments caused by loadings) were shown. Values of m,,
were calculated not for assumed first order eccentricity as in the previous example, but for the
highest possible values of m_. in relevance to capacity on a level of n.

The area between the interaction curve and a second order effects line for exact A value is
an area of possible values of m_ . . By comparing the interaction curves for two methods, it
can be concluded that this area is significantly smaller for MNS than from MNC.
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Fig. 11a, b. M, — N, interaction curves with second order effects for columns with different
slenderness. Comparison of second order effects from MNS and MNC. Reinforcement ratio
p = 0,63%, effective creep coefficient ¢ . = 0

Discontinuity of the graph obtained for A = 49 (Fig. 12a) with use of MNS, is caused by
normative restriction of the value of k, coefficient, which is used to consider the cracking and
creep influence on the nominal stiffness of slender compressed concrete members.

12 1.2
MNS A=21 MNC A=21
— MNSA=35 ————— MNC =35
MNS A=49 e MNC =49
e \‘ imp. A=21 - | imp. A=21
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08 4+ / 08 4+
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Mstatic £ Mim mj| Mstatic
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N/bhfcy

n=|

n:

T T T T T T
0.08 0.12 0.16 0.2 0.08 0.12 0.16 0.2
m=M/bh2fcq m=M/bh2fcy

Fig. 12a,b. M, — N, interaction curves with second order effects (measured from imperfection line)

for columns with different slenderness. Possible areas of m . values calculated with MNS and MNC.
Reinforcement ratio p = 0.63%, effective creep coefficient ¢ .= 0
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To simplify using interaction curves with areas of possible values of m_ . , second order effects
can be measured from interaction curves as in Fig. 13a and b. The shadowed area represents
possible first order moments for different forces n and slenderness A; m =m_ . +m,_ .

Similar to former graphs, m ; moments were calculated for the blggest poss1ble values of
m, due to capacity on the exact level of n.

Values of m, and m,, designated for n = 0.6 apply to slenderness A = 49.

Comparing Fig. 13a and b, it can be noticed that an area of possible m, values for the MNS
method is significantly smaller than for MNC, this rule applies for each slenderness value.

1.2 1.2
MNS A=21 e— MNC A=21 ‘
MNS A=35 e MNC A=35
MNS A=49 s \INC A=49
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3 3
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0.4 0.4
0 T T T 0 T T T T
0 0.04 0.08 0.12 0.16 0.2 0 0.04 0.08 0.12 0.16 0.2

m=M/bh2feg m=M/bh2feg

Fig. 13a, b. M, — N, interaction curves with second order effects (measured from interaction curves)
for columns with different slenderness. Comparison of areas of possible m, values according to MNS
and MNC methods. Reinforcement ratio p = 0.63%, effective creep coefficient ¢ .= 0

5.3. Second order effects on M, — N, interaction curves — variable ratio of M\,

M,, — N, interaction curves below (Fig. 14a, b) present second order effects calculated
with MNS and MNC for a variable value of A and for three different slenderness ratios AMA,
which equal 0.5; 1.0; 2.0, (with an assumed I order eccentricity ;= 0.07 m). For chosen value
of n=0.6 values of m and m, were shown; for slenderness ratio A/A,, = 2.

We can distinguish slight impact of slenderness lower than A, and a significant influence
of slenderness exceeding the limit value A, on second order effects m,,.

For bigger values of M/A,_, differences between second order effects calculated with MNS
and MNC are more distinct.

Furthermore, for values of n < n, second order effects from MNS are lower than from

MNC, whereas for n > n,_, the situation is opposite
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Fig. 14a,b. M, — N, , interaction curves with second order effects calculated with MNS and MNC
for columns with different slenderness /A, ratios. Reinforcement ratio p = 0.63%, effective creep
coefficient ¢ =0

eff

5.4. Second order effects on M, — N, interaction curves — variable reinforcement ratio p

The following M, , — N, interaction curves (Fig. 15a, b) present second order effects
calculated with MNS and MNC for three different reinforcement ratios p = 0.63; 1.25; 1.89
(with an assumed first order eccentricity equal to ;= 0.07 m).

For the chosen value of n = 0.8, values of m, and m, relevant for reinforcement ratio
p =1.89% were presented.

In graphs considering MNS an influence of reinforcement ratio on second order effects
m, is clear; however graph for MNC claims that values of second order effects m are not
dependent on reinforcement ratio.

16 , - 16 T
| order effects 1 order effects
MNS p=0,63% MNC p=0,63%
MNS p=1.25% g MNC p=1,25%
MNS p=1,89% MNC p=1,89%
: . [ ' _:\ |
5 508 m |
: : / \
L L
04 4 04 / /
0 T T T 0 T T T
0 01 02 03 0 0.1 02 03
m=M/bh2fey m=M/bh2feg

Fig. 15a, b. M, — N, interaction curves with second order effects calculated with MNS and MNC for
various reinforcement ratio. Column slenderness A = 35, effective creep coefficient ¢ .= 0
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5.5. Second order effects on M, — N, interaction curves — variable creep coefficient

12 . 12 4
I order effects 1 order effects
\ MNS g.eff=0 MNC g.eff=0
MNS g.eff=1,5 MNC geff=1,5
0.8 1 0.8 4~ -
3 - - 2 m
s | 11.0 5 |
& <
[ 1
2 &
04 1 . = - 04 4 : -f
m
I 1/ S, 1115,
0 T / T T 0 T |/ T T T
0 0.04 0.08 0.12 0.16 0.2 0 0.04 0.08 0.12 0.16 0.2
m=M/bh2feg m=M/bh2feg

Fig. 16a, b. M, — N, interaction curves with second order effects calculated with MNS and MNC for

various creep coefficient ¢ .. Column slenderness A = 35, reinforcement ratio p = 0.63%

Fig. 16a and b, present second order effects calculated with MNS and MNC on M, — N, ,
interaction curves for creep coefficients equal to ¢ .= 0 and ¢ = 1.5 (with an assumed first
order eccentricity equal to e, = 0.07 m). For the chosen value of n = 0.6, values of m, and m,|
relevant for creep coefficient ¢ . = 0 were presented. In analysed cases for n > n, | the impact
of creep on second order effects m, calculated with MNS is higher than on second order
effects from MNC.

6. Conclusions

The first part of the paper presents two methods of evaluating M, — N, interaction curves
for members subjected to axial force and bending moment in one plane (partly-simplified
RK and PKV methods) [5, 16]. It was proven that despite the different assumptions in
methods PKV and RK, results obtained from both methods are similar. There was also an
example of applying the interaction curves to the choice of the reinforcement in vessel
support structure.

The second part of the paper considers the reduction in M, — N, interaction curves
due to second order effects. Interaction curves were designated with RK method. Second
order effects were calculated with methods of nominal stiffness and nominal curvature,
according to EC2, for various values of slenderness, /A, ratio, reinforcement ratio p and
creep coefficient ¢ .

The usefulness of M, — N, interaction curves not only for designing and checking
the capacity of columns, but also for analysis, such as the one carried out in this article —
comparing second order effects evaluated with different methods, was indicated in the article.
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On the basis of the conducted analysis:

— it was proved that second order effects calculated with MNS and MNC differ significantly,
their comparison was presented on M, ,— N, interaction curves

— it was claimed that differences between second order effects from MNS and MNC depend
on the value of n = N_ /bhf ,

— it was noticed that for the analysed column, the area of possible m_ . values for second
order effects from MNS is considerably lower than from MNC

— an increase of m value with an increase of ratio of slenderness to its limit value A/A, in
MNS and MNC and its dependence on n/n,_ ratio was presented

— the differences between an impact of reinforcement ratio on second order effects were
shown; this influence is distinct in MNS and inconsiderable in MNC confusing sentence —
we usually expect to see differences between something and something else.

— it was presented that the influence of creep on second order effects in MNC is lower than
in MNS.

The comparisons of second order effects calculated by MNS and MNC methods presented
in the paper, are aimed at depicting the situation encountered by the designer applying the
rules of Eurocode 2 [17] and to indicate the need for comments to this standard (standard czy
code? Tu sama nie jestem pewna, raczej code — od Eurocode chociazby), which could help
to choose the right method.
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