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Abs t r a c t

In recent years, there has been a growing interest in modeling cyclostationary time series. The
survey of Gardner and others [5] is quoting over 1500 different recently published papers that
are dedicated to this topic. Data that can be reasonable modeled with such time series is often
incomplete. To our knowledge, no systematic research has been conducted on that problem.
This paper attempts to fill this gap. In this paper we propose to use EM algorithms to extend
estimation for situation when some observations are missing.
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S t r e s z c z e n i e

W ostatnim czasie wzrasta zainteresowanie modelowaniem cyklostacjonarnych szeregów czaso-
wych. W pracy Gardner i inni [5] cytowane jest ponad 1500 publikacji poświęconych temu
zagadnieniu. Jednakże dane, dla których model cyklostacjonarny jest zasadny, są często
niekompletne. Zgodnie z naszą wiedzą nie było do tej pory systematycznego omówienia tego
problemu. Celem niniejszego artykułu jest uzupełnienie tej luki. W artykule proponujemy
wykorzystanie algorytmu EM w celu estymacji parametrów modelu w sytuacji brakujących
obserwacji.

Słowa kluczowe: (prawie) okresowe szeregi czasowe, sygnały cyklostacjonarne, algorytm EM,
brakujące obserwacje
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1. Cyclostationary time series

The starting point of this research is the analysis of nonstationary time series. Let
us assume that a time series {yt, t ∈ N} where N represents the integers, is observed.
The cyclostationarity of {yt, t ∈ N} means repeatable behavior of the first and second
order characteristic of such a time series. Let us denote the mean µY (t) = E (yt) and
the autocovariance function BY (t, τ) = Cov (yt, yt+τ ). The time series will be called
cyclostationary or periodically correlated if the mean µY (t) and the autocovariance
function BY (t, τ) are periodic functions of t (see [9]). A classical statistical inference for
analysis of such time series was presented in paper [4] among others. In our research,
we will focus on second-order properties of the time series {yt, t ∈ N}. Therefore, we
assume that the time series under study is zero-mean.

The aim of this paper is to provide statistical inference procedures in situations
where complete observation of the cyclostationary time series is impossible. Missing
data analysis of cyclostationary time series frequently arises in the context of economic
time series, mechanical signals and also ocean signals [12]. So far no systematic
research has been presented in the case of missing data for periodically correlated
time series. This work attempts to fill this gap using likelihood based inference and
EM algorithms. This paper is divided into six sections. Section 2 presents state of
the art results of likelihood-based inference for cyclostationary time series. Section 3
presents inferential methods in the case of missing data. Section 4 describes the EM
algorithm in our cyclostationary model with missing data. The original results of this
paper are presented in Section 2 where the full likelihood approach in cyclostationary
model is presented. In Section 4, the original results are concerned with conditional
distributions of our model, thus enabling applications of EM algorithm. In Section 5
the original results of this paper are illustrated with the help of a simulation study.
Finally, Section 6 describes further directions of our research.

2. Likelihood-based inference for cyclostationary time series

A special class of cyclostationary time series (amplitude-modulated time series) is
studied. Such time series can be represented as:

yt = xt · ct, (2.1)

where
{xt} −a stationary time series (e.g. Gaussian AR(p)) ,
ct −a (deterministic) periodic function.
In model (2.1) it is assumed that:
(AS1) The deterministic sequence ct 6= 0 ∀t to prevent from deterministic zeros.
(AS2) {xt} is a zero-mean stationary Gaussian sequence with a bounded and

continuous spectral density.
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We consider {xt}to be a Gaussian autoregressive process of order p, AR (p), given

by

xt −
p∑
i=1

ϕixt−i = εt (2.2)

where
{εt} −a sequence of independent Gaussian zero-mean random variables with

finite variance σ2.
The deterministic sequence ct is assumed to be a known, periodic function of a

finite dimensional unknown vector λ. The periodic function ct with k periodicities
can be expressed in the following way:

ct = exp

 k∑
j=1

(λ1j cosωjt+ λ2j sinωjt)

 , (2.3)

We assume that k is known. We assume furthermore that all frequencies are of
the form ωi ∈ (0, π], i = 1, . . . , k : ωi = 2πr/P for some r = 1, . . . , (P − 1)/2, where
P is a known period and also that λ2

1j + λ2
2j > 0 for j = 1, . . . , k .

Following approach presented in [7] to ensure the identifiability of the model
parameters, λ and the sequence {ct}Tt=1 are assumed to be linked via a one-to-one
transformation, and it is assumed that there is no scale ambiguity in yt.

Let θ = (ϕ, λ, σ2)T be the vector of all unknown parameters and suppose that
we have T = n+ p observations from the model. The full likelihood for a vector of
observations y = (y1, . . . , yT )T corresponding to the model (2.1) is represented as:

L (y, θ) =
1

(2π)
T/2
· det (RY )

−1/2 · exp

{
−1

2
yTR−1

Y y

}
, (2.4)

where

RY = CTRXC
T
T ,

RX −the covariance matrix of AR(p) process,
CT −the T × Tdiagonal matrix whose diagonal vector is (c1, . . . , cT ) and ct =

ci+mP = ci.
Using [13] the inverse of the covariance matrix of an autoregressive process can be

represented as follows

R−1
X =

1

σ2

(
IT +

p∑
i=1

ϕ2
iEi −

p∑
i=1

ϕiFi +

p−1∑
h=1

p−h∑
i=1

ϕiϕi+hGi,i+h

)
, (2.5)

where
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IT −the identity matrix of the order T ,
Ei −the identity with the first and last i ones set to zero,
Fi −the matrix which has ones along the upper and lower ith minor diagonals

and zeros elsewhere,
Gi,i+h = EhFiEh,thereby equaling Fi except the top and bottom h ones along the

ith minor diagonals are replaced by zeros.
The sums in formula above are defined as zero if the upper limit of the summation

is zero.
On the other hand, consider a vector of observationsy = (yT , . . . , y1)T . From the

model (2.1) it is obtained that

y = C · x, (2.6)

where
C −an T × T diagonal matrix with diagonal vector c = (cT , . . . , c1),
x = (xT , . . . , x1)T−a vector of observations from AR(p) model.
Under the assumptions above, we have the following

Theorem 2.1.
Assume that (AS1) and (AS2) hold and that the time series {yt} follows model

(2.1). Then, the log-likelihood function for the complete sample has the form

l (y; θ) = log fy (y; θ) = − log (|detC|) + log fx
(
C−1y; θ

)
= − log (|detC|)− T

2 log (2π)− T
2 log

(
σ2
)

+ 1
2 log

∣∣V −1
p

∣∣− 1
2σ2

(
Cpyp

)T
V −1
p (Cpyp)

−
T∑

t=p+1

1
2σ2

(
yt
ct
−

p∑
i=1

yt−i

ct−i

)2

,

(2.7)
where

θ = (ϕ, λ, σ2)T −the vector of all unknown parameters

Proof.
The starting point is the observation that

fy (y) = |detC|−1
fx
(
C−1y

)
. (2.8)

Using that fact and properties of AR(p) process (see [8]) the joint density for the
complete data set can be written as

fy (y; θ) = |detC|−1·fxp,...,x1

(
yp
cp
, . . . ,

y1

c1

)
·

T∏
t=p+1

fxt|xt−1,...,xt−p

(
yt
ct

∣∣∣∣yt−1

ct−1
, . . . ,

yt−p
ct−p

)
.

(2.9)
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The density of the first p observations fxp,...,x1

(·) is of a N(0, σ2Vp) variable:

fxp,...,x1

(
yp
cp
, . . . ,

y1

c1
; θ

)
= (2π)

−p/2 (
σ−2

)p/2 ∣∣V −1
p

∣∣1/2 exp

[
− 1

2σ2

(
C−1
p yp

)T
V −1
p

(
C−1
p yp

)]
,

(2.10)
where yp = (yp, . . . , y1)T and Cp is a p × p diagonal matrix with diagonal vector
(cp, . . . , c1) and V −1

p is the inverse covariance matrix given by [3] .

vij (p) = vji (p) =

i−1∑
k=0

ϕkϕk+j−i −
p+i−j∑

k=p+1−j
ϕkϕk+j−i

 (2.11)

for 1, , i, , j, , p, where ϕ0 = −1 .
For the remaining observations in the sample the prediction-error decomposition

can be used as in AR(p) case. Conditional on the first t− 1 observations, the density
of tth observation fxt|xt−1,...,xt−p

(·) is

fxt|xt−1,...,xt−p

(
yt
ct

∣∣∣∣yt−1

ct−1
, . . . ,

yt−p
ct−p

)
=

1√
2πσ

exp

− 1

2σ2

(
yt
ct
−

p∑
i=1

ϕi
yt−i
ct−i

)2


(2.12)
The log-likelihood function for the sample has the form

l (y; θ) = log fy (y; θ) == − log (|detC|) + log fx
(
C−1y; θ

)
=

= − log (|detC|)− T
2 log (2π)− T

2 log
(
σ2
)

+ 1
2 log

∣∣V −1
p

∣∣− 1
2σ2 (Cpyp)

T
V −1
p (Cpyp)

−
T∑

t=p+1

1
2σ2

(
yt
ct
−

p∑
i=1

yt−i

ct−i

)2

,

(2.13)
This completes the proof of Theorem 2.1.

We have the following result

Corrollary 2.2. Let us consider the model yt = ctxt, where {xt} is AR(1) process.
For the AR(1) process V −1

p is a scalar whose value is found by taking i = j = p = 1:

V −1
1 =

(
1− ϕ2

)
. (2.14)

Thus σ2V1 = σ2
(
1− ϕ2

)
which indeed reproduces the formula for the unconditional

variance of the AR(1) process.
The exact likelihood for the vector of observations y from the above model is given

as
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l (y; θ) = − log (|detC|)− T
2 log (2π)− T

2 log
(
σ2
)

+ 1
2 log

∣∣(1− ϕ2
)∣∣

− 1
2σ2

y21
c21

(
1− ϕ2

)
−

T∑
t=2

1
2σ2

(
yt
ct
− ϕyt−1

ct−1

)2

.
(2.15)

It is possible to give an exact formula for the ML estimate of σ2 conditional on ϕ and
λ. There is no analytical form of the ML estimates of ϕ and λ even conditionally on the
other parameters. Because of this the maximization of the exact log likelihood function
must be accomplished numerically. It is a high dimensional nonlinear optimization
problem. It is worth mentionning that parameters of the deterministic and stochastic
parts of this model are linked via a nonlinear relationship.

3.Missing Data Mechanisms and Inference

Data that may reasonably be modeled by cyclostationary time series are often incom-
plete for a number of reasons, e.g. the interruption of measurements due to instrument
failure or extreme natural phenomena, the accidental loss of data or erroneous mea-
surements, among others ([12]). Similar problems are encountered in vibroacoustic
and economic time series.

Missing data present some potentially serious problems in drawing inferences from
time series. The degree to which conclusions under such circumstances are affected,
depends on the mechanism by which the data is missing. Missing data mechanisms
can be divided into roughly three categories (see [10] and [11]): missing completely at
random (MCAR), missing at random (MAR) and missing not at random (MNAR).

For the purpose of formal description of missingness mechanism let us define the
complete data y = (yt), where observation yt comes from the data generating process
Pθ parameterized by the unknown vector of parameters θ for t = 1, . . . , T . Let us also
define the missing-data indicator vector m = (mt), where a random variable mt

mt =

{
1, if yt is missing
0, if yt is present , (3.1)

has a distribution Pψ. Let us also assume that θ and Ψ are distinct. Denote the joint
distribution of (y,m) by P (y,m; θ, ψ), where y consists of two parts. The observed
part is denoted by yobs and the missing part by ymis. The missing-data mechanism is
defined by means of conditional distribution of m given y, which isP (m|y).

If data is missing completely at random (MCAR) we have

P (mt = 1|y; θ, ψ) = P (mt = 1|ψ) . (3.2)

When data is missing at random (MAR), we have

P (mt = 1|y; θ, ψ) = P (mt = 1|yobs; θ, ψ) . (3.3)
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When neither MCAR nor MAR hold, we say the data are missing not at random,

abbreviated MNAR. Missingness depends on the unobserved data.
Missing completely at random is easiest to deal with. The missing observations

constitute a random sub-sample of all observations. Estimates of population parameters
are unbiased. Precision of estimates will be affected, particularly if the original sample
size was modest and the numbers of missing observations constitute a substantial
fraction of all observations.

MAR allows likelihood based and Bayesian inference and does not require modeling
of the missingness mechanism. Inference can be based on the observed data likelihood.
When data is MNAR unbiased inference is not possible without further assumptions
and additional information. Finally, MAR and/or MCAR cannot be established on
the basis of observed data alone and require additional information.

Often in cyclostationary data, values are missing, because of instrument failure.
This instrumental failure may or may not depend on the missing values.

Instruments sometimes have a limited range for signal detection. This can cause
data to be missing, because missing values are below or above the detection limits of
the instrument. This is a special type of informative missingness.

The type of missingness mechanism considered in this paper will be MCAR or
MAR. The first missingness mechanism (MCAR) assumes that failure to observe the
data does not depend on the data. The second missingness mechanism (MAR) is more
general than the first: here it is possible that the missingness mechanism depends on
observed data.

Within this research we consider only the case of missing at random (MAR)

4. EM algorithm in likelihood-based inference for cyclostationary time
series with missing observations

The expectation-maximization (EM) algorithm is an iterative procedure for computing
the maximum likelihood estimator for data set which is not complete. [2] showed the
wide applicability of the EM algorithm in statistics. The convergence and performance
of the EM algorithm was proved by [14].

Let y be a complete data vector which consists of ymis missing data and yobs
"observed" data. The EM algorithm is an iterative procedure for computing the
maximum likelihood estimator only on the basis of the observed datayobs. Each
iteration of EM algorithm consists of two steps. If θ(i) denotes the estimated value of
the parameter θ after i iterations, then the two steps in the (i+ 1)th iteration are

E-step: Calculate Q
(
θ|θ(i)

)
= Eθ(i) [l (θ; yobs, ymis) |yobs]

M-step: Maximize Q
(
θ|θ(i)

)
with respect toθ.

Then θ(i+1) is set to the maximizer of Q in the M-step.
For our model, we have two possible realizations of EM algorithm: one on the

basis of conditional likelihood function which leads to modified EM algorithm for
normal linear regression settings and on the basis of full likelihood function which
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is well-known problem of inference for incomplete data within multivariate normal
distribution.

Before description of EM algorithm, let us take a look at properties of considered
model.

Many properties of the cyclostationary model (2.1) follow from the autoregressive
structure of {xt}. It is clear that if {xt} follows the zero-mean Gaussian AR(p) process
then

xt|xt−1, . . . , xt−p ∼ N

 p∑
j=1

ϕixt−i,σ
2

 . (4.1)

When yt = ct · xt, where {xt} is AR(p) process and ct is a deterministic periodic
function then assuming that ct 6= 0 for all t we can write xt = yt/ct.

The following result establishes the form of the conditional distribution, the
conditional expectation and the conditional variance given the past.

Theorem 4.1. Under the assumptions (AS1) and (AS2) and the model equation
(2.1) one obtains

yt|yt−1, . . . , yt−p ∼ N

(
ct

(
p∑
i=1

ϕi
yt−i
ct−i

)
, c2tσ

2

)
, (4.2)

E (yt|yt−1, . . . , yt−p) = ct

(
p∑
i=1

ϕi
yt−i
ct−i

)
, (4.3)

and

V ar (yt|yt−1, . . . , yt−p) = c2tσ
2. (4.4)

Proof is straightforward and will be omitted.

In missing data analysis one frequently confronts the situation of ’filling the gaps’
that is calculating the conditional expectation given the past and future. For that
purpose consider the distribution p(ymis|yobs). Due to AR(p) structure of {xt} one
obtains

xt = ϕ1xt−1 + . . .+ ϕpxt−p + εt, {εt} ∼ N
(
0, σ2

)
(4.5)

taking xt = yt/ct, we have

yt
ct

= ϕ1
yt−1

ct−1
+ . . .+ ϕp

yt−p
ct−p

+ εt. (4.6)
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Denote observed values y = (yi1 , . . . , yir )

T , with 1?i1 < . . . < ir?T . If there are no
missing observations in the first p observations, then the best estimates of the missing
values are found by minimizing

T∑
t=p+1

(
yt
ct
− ϕ1

yt−1

ct−1
− . . .− ϕp

yt−p
ct−p

)2

(4.7)

with respect to the missing values. The minimization of the sum above gives the form
of the conditional expectation.

Theorem 4.2.
Consider the following sequence (yj , yj+1, yj+2) from the process yt = ct ·xt, where

ct is (deterministic) periodic function and {xt} is AR(1) process defined by

xt = ϕxt−1 + εt, εt ∼ N
(
0, σ2

)
. (4.8)

The conditional expectation of yj+1 given yj (past) and yj+2 (future) has the
following form:

E (yj+1|yj , yj+2) = cj+1ϕ

(
yj
cj

+
yj+2

cj+2

)/(
1 + ϕ2

)
. (4.9)

Proof.
The form of the conditional expectation can be obtained as the minimization of

the above sum (
yj+1

cj+1
− ϕyj

cj

)2

+

(
yj+2

cj+2
− ϕyj+1

cj+1

)2

, (4.10)

with respect to yj+1. Setting the derivative of this expression with respect to yj+1

equal to 0 and solving for yj+1 and using properties of conditional expectation.
Suppose y = (y1, . . . , yT )T be the "complete" data vector of which r are observed

and T − r are missing. Denote the "observed" data by yobs = (yi1 , . . . , yir) (called
"incomplete" data) and missing data by ymis = (yj1 , . . . , yjT−r

).
If we work with full likelihood function, we have that y = (yobs, ymis) has a

multivariate normal distribution with mean 0 and covariance matrix RY which depends
on the parameter θ, the log-likelihood of the complete data is given by

l (θ, y) = −T
2

ln (2π)− 1

2
ln det (RY )− 1

2
yTR−1

Y y (4.11)

The E step requires that we compute the expectation of l(θ, y) with respect to the
conditional distribution of y given yobs with θ = θi. Following the approach presented
in [1] let us consider RY (θ) as the block matrix
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RY =

(
Σ11 Σ12

Σ21 Σ22

)
(4.12)

which is conformable with ymis and yobs, the conditional distribution of y given yobs
is multivariate normal with mean

and covariance matrix
(

Σ11|2 (θ) 0
0 0

)
, where ŷmis = Eθ (ymis|yobs) = Σ12Σ−1

22 yobs

and Σ11|2 (θ) = Σ11 − Σ12Σ−1
22 Σ21. It can be shown that

Eθ(i)
((
yTmis, y

T
obs

)T
R−1
Y (θ)

(
yTmis, y

T
obs

)
|yobs

)
= trace

(
Σ11|2

(
θ(i)
)

Σ−1
11|2 (θ)

)
+ŷTR−1

Y (θ) ŷ,

(4.13)
where ŷ = (ŷmis, yobs).

As a consequence

Q
(
θ|θ(i)

)
= l (θ; ŷ)− 1

2
trace

(
Σ11|2

(
θ(i)
)

Σ−1
11|2 (θ)

)
(4.14)

The first term on the right is the log-likelihood based on the complete data, but
with ymis replaced by its "best estimate" ŷmis calculated from the previous iteration.
If the increments θ(i+1) − θ(i) are small, then the second term on the right is nearly
constant (≈ T − r) and can be ignored. To make computation easier we can use the
modified version

Q̃
(
θ|θ(i)

)
= l (θ; ŷ) . (4.15)

With this modification, the steps in the EM algorithm are as follows:
E-step: Calculate Eθ(i) (ymis|yobs) and form Q̃

(
θ|θ(i)

)
.

M-step: Find the maximum likelihood estimator for "complete" data problem, i.e.
maximize l(θ, ŷ).

The best linear predictor of a missing observation yjk from the vector ymis is
E(yjk |yobs), so within E-step we reconstruct "complete" observations in the following
way:

ŷ
(i)
t =

{
yt, ifyt ispresent

E
(
yt|yobs; θ(i)

)
, ifyt ismissing (4.16)

In M-step, we maximize likelihood function of vector ŷ = (ŷ1, . . . , ŷT ) with respect
to θ.
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Tab. 1: Results of ML and EM algorithm-based estimation
Method ϕ̂ σ̂2 λ̂1 λ̂2

ML estimation 0,4976 1,2946 0,4077 0,5387
EM algorithm 0,5599 1,3329 0,3877 0,5523

5. Simulation study

To see how approximation of the EM algorithm works in practice, we restrict our
attention to the class of PC time series of the form

yt = ctxt, (5.1)

where xt = ϕxt−1+?t, {?t} ∼ N(0, σ2) and ct = exp
(
λ1 cos

(
2π
20 t
)

+ λ2 sin
(

2π
20 t
))
.

The following values of parameters were chosen ϕ = 0.5, σ2 = 1, λ1 = 0.4 and
λ2 = 0.5.

Firstly we simulate T = 100 observations from our model and estimate unknown
vector of parameters θ on the basis of complete sample. Then we randomly choose
10% of the data to be missing.

The results are presented in the Table 1.
It can be seen that the approximation of the EM algorithm gives reasonable

estimates of unknown parameters θ in situation when some observations are missing.
The question of convergence, however, needs to be further explored.
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