TECHNICAL TRANSACTIONS FUNDAMENTAL SCIENCES

GRAPHS WITH EVERY PATH OF LENGTH k IN A HAMILTONIAN CYCLE

GRAFY Z DOWOLNĄ ŚCIEŻKĄ DモUGOŚCI k ZAWARTĄ W PEWNYM CYKLU HAMILTONOWSKIM

Abstract

In this paper we prove that if G is a $(k+2)$-connected graph on $n \geqslant 3$ vertices satisfying $\mathrm{P}(n+k)$:

$$
\mathrm{d}_{G}(x, y)=2 \Rightarrow \max \{\mathrm{~d}(x), \mathrm{d}(y)\} \geqslant \frac{n+k}{2}
$$

for each pair of vertices x and y in G, then any path $S \subset G$ of length k is contained in a hamiltonian cycle of G.

Keywords: cycle, graph, hamiltonian cycle, matching, path

Streszczenie

W pracy udowodniono, że $\mathrm{W}(k+2)$-spójnym grafie G o $n \geqslant 3$ wierzchołkach, który spełnia warunek $\mathrm{P}(n+k)$:

$$
\mathrm{d}(x, y)=2 \Rightarrow \max \{\mathrm{~d}(x), \mathrm{d}(y)\} \geqslant \frac{n+k}{2}
$$

dla dowolnej pary wierzchołków x i y, każda ścieżka $S \subset G$ długości k jest zawrta w pewnym cyklu hamiltonowskim grafu G.

Stowa kluczowe: cykl, cykl hamiltonowski, graf, skojarzenie, ścieżka

[^0]
1. Introduction

We consider only finite graphs without loops and multiple edges. By V or $\mathrm{V}(G)$ we denote the vertex set of the graph G and respectively by E or $\mathrm{E}(G)$, the edge set of G. $\operatorname{By~}_{x}(G)$ or $\mathrm{d}(x)$, we denote the degree of a vertex x in the graph G and by $\mathrm{d}(x, y)$ or $\mathrm{d}_{G}(x, y)$, the distance between x and y in G.

Definition 1.1 (cf [10]). Let $k, s_{1}, \ldots s_{\ell}$ be positive integers. We call S a path system of length k, if the connected components of S are paths:

$$
\begin{array}{cc}
P^{1}: & x_{0}^{1} x_{1}^{1} \ldots x_{s_{1}}^{1}, \\
& \vdots \\
P^{l}: & x_{0}^{\ell} x_{1}^{l} \ldots x_{s_{\ell}}^{\ell}
\end{array}
$$

and $\sum_{i=1}^{\ell} s_{i}=k$.
Let S be a path system of length k and let $x \in \mathrm{~V}(S)$. We shall call x an internal vertex if x is an internal vertex (cf [3]) in one of the paths P^{1}, \ldots, P^{ℓ}.

If q denotes the number of internal vertices in a path system S of length k then $0 \leqslant q \leqslant k-1$. If $q=0$, then S is $a k$-matching (i.e. a set of k independent edges).

Let H be a subgraph of G. By $G \backslash H$ we denote the graph obtained from G by the deletion of the edges of H.

Definition 1.2. The graph F is said to be an H-edge cut-set of G if $F \subset \mathrm{E}(H)$ and $G \backslash F$ is not connected.

Definition 1.3. The graph F is said to be a minimal H-edge cut-set of G if F is an H-edge cut-set of G which has no proper subset being an edge cut-set of G.

Definition 1.4 (cf [7]). Let G be a graph on $n \geqslant 3$ vertices and $k \geqslant 0$. G is k-edgehamiltonian if for every path system P of length at most k there exists a hamiltonian cycle of G containing P.

Let G be a graph and $H \subset G$ a subgraph of G. For a vertex $x \in \mathrm{~V}(G)$, we define the set $N_{H}(x)=\{y \in \mathrm{~V}(H): x y \in \mathrm{E}(G)\}$. Let H and D be two subgraphs of G. $\mathrm{E}(D, H)=\{x y \in \mathrm{E}(G): x \in \mathrm{~V}(D)$ and $y \in \mathrm{~V}(H)\}$. For a set of vertices A of a graph G, we define the graph $G(A)$ as the subgraph induced in G by A. In the proof, we will only use oriented cycles and paths. Let C be a cycle and $x \in V(C)$, then x^{-}is the predecessor of x and x^{+}is its successor.

Definition 1.5 (cf [2]). Let W be a property defined for all graphs of order n and let k be a non-negative integer. The property W is said to be k-stable if whenever $G+x y$ has property W and $\mathrm{d}(x)+\mathrm{d}(y) \geqslant k$ then G itself has property W.
J.A. Bondy and V. Chvátal [2] proved the following theorem, which we shall need in the proof of our main result:

Theorem 1.1. Let n and k be positive integers with $k \leqslant n-3$. Then the property of being k-edge-hamiltonian is $(n+k)$-stable.

In 1960, O. Ore [9] proved the following:
Theorem 1.2. Let G be a graph on $n \geqslant 3$ vertices. If for all nonadjacent vertices $x, y \in \mathrm{~V}(G)$ we have

$$
\mathrm{d}(x)+\mathrm{d}(y) \geqslant n
$$

then G is hamiltonian.
Geng-Hua Fan [4] has shown:
Theorem 1.3. Let G be a 2-connected graph on $n \geqslant 3$ vertices. If G satisfies

$$
\mathrm{P}(n): \quad \mathrm{d}(x, y)=2 \Rightarrow \max \{\mathrm{~d}(x), \mathrm{d}(y)\} \geqslant \frac{n}{2}
$$

for each pair of vertices x and y in G, then G is hamiltonian.
The condition for degree sum in Theorem 1.2 is called an Ore condition or an Ore type condition for graph G and the condition $\mathrm{P}(k)$ is called a Fan condition or a Fan type condition for graph G.

Later, many Fan type theorems and Ore type theorems are shown.
Now we shall present Las Vergnas [8] condition $\mathcal{L}_{n, s}$.
Definition 1.6. Let G be graph on $n \geqslant 2$ vertices and let s be an integer such that $0 \leqslant s \leqslant n$. G satisfies Las Vergnas condition $\mathcal{L}_{n, s}$ if there is an arrangement x_{1}, \ldots, x_{n} of vertices of G such that for all i, j if

$$
\begin{gathered}
1 \leqslant i<j \leqslant n, i+j \geqslant n-s, x_{i} x_{j} \notin \mathrm{E}(G), \\
\mathrm{d}\left(x_{i}\right) \leqslant i+s \text { and } \mathrm{d}\left(x_{j}\right) \leqslant j+s-1
\end{gathered}
$$

then $\mathrm{d}\left(x_{i}\right)+\mathrm{d}\left(x_{j}\right) \geqslant n+s$.
Las Vergnas [8] proved the following theorem:
Theorem 1.4. Let G be a graph on $n \geqslant 3$ vertices and let $0 \leqslant s \leqslant n-1$. If G satisfies $\mathcal{L}_{n, s}$ then G is s-edge hamiltonian.

Note that condition $\mathcal{L}_{n, s}$ is weaker than Ore condition.
Later Skupień and Wojda proved that the condition $\mathcal{L}_{n, s}$ is sufficient for a graph to have a stronger property (for details see [10]). Wojda [11] proved the following Ore type theorem:

Theorem 1.5. Let G be a graph on $n \geqslant 3$ vertices, such that for every pair of nonadjacent vertices x and y

$$
\mathrm{d}(x)+\mathrm{d}(y)>\frac{4 n-4}{3}
$$

Then every matching of G lies in a hamiltonian cycle.
In 1996, G. Gancarzewicz and A. P. Wojda proved the following Fan type theorem:
Theorem 1.6. Let G be a 3-connected graph of order $n \geqslant 3$ and let M be a k-matching in G. If G satisfies $\mathrm{P}(n+k)$:

$$
\mathrm{d}(x, y)=2 \Rightarrow \max \{\mathrm{~d}(x), \mathrm{d}(y)\} \geqslant \frac{n+k}{2}
$$

for each pair of vertices x and y in G, then M lies in a hamiltonian cycle of G or G has a minimal odd M-edge cut-set.

In this paper we find a Fan type condition under which every path of length k in a graph G lies in a hamiltonian cycle.

For notation and terminology not defined above a good reference should be [3].

2. Result

Theorem 2.1. Let G be a graph on $n \geqslant 3$ vertices and let S be a path of length k in G. If the graph G is l-connected, where $l=\min \{k+2, n-1\}$ and satisfies $\mathrm{P}(n+k)$:

$$
\begin{equation*}
\mathrm{d}(x, y)=2 \Rightarrow \max \{\mathrm{~d}(x), \mathrm{d}(y)\} \geqslant \frac{n+k}{2} \tag{2.1}
\end{equation*}
$$

for each pair of vertices x and $y \in \mathrm{~V}(G)$, then S lies in a hamiltonian cycle of G.
Note that $1 \leqslant k \leqslant n-1$ and since an $(n-1)$-connected graph of order n is a complete graph K_{n}, which is obviously k-edge hamiltonian for any k the result is interesting when $k<n-3$.

For $k=1$, the path S is a 1 -matching and we have a special case of Theorem 1.6 (the graph is 3 -connected, so in this case we can not have a minimal S-edge cut set).

Unfortunately, in Theorem 2.1 we can not decrease the connectivity of graph G. We can consider a vertex x and a complete graph $K_{m}, m \geqslant 3$. In the complete graph K_{m} we choose a path $S: s_{1} \ldots s_{k+1}$ of length $k=m-2$. There is only one vertex $y \in K_{m}$ not contained in S.

Let G be a graph of order $n=m+1$ obtained from two complete graphs $K_{1}=\{x\}$ and K_{m} by adding edges $x s_{i}$, for $i \in\{1, \ldots, k+1\}$ The path S is a path of length k contained in G which is not contained in any hamiltonian cycle of the $(k+1)$-connected graph G, see Figure (1).

Fig. 1: A $(k+1)$-connected graph G with no hamiltonian cycle through the path S : $s_{1} \ldots s_{k+1}$.

Note that we can replace the vertex x by a complete graph $K_{\ell}, \ell \geqslant k+1$. Let $\left\{x_{1}, \ldots, x_{k+1}\right\} \subset \mathrm{V}\left(K_{\ell}\right)$ and let G be a graph of order $n=m+l$ obtained from two complete graphs K_{ℓ} and K_{m} by adding edges $x_{i} s_{i}$, for $i \in\{1, \ldots, k+1\}$ The path S is a path of length k contained in G which is not contained in any hamiltonian cycle of the $(k+1)$-connected graph G, see Figure (2).

3. Proof

Proof of Theorem 2.1:

Take G and S as in the assumptions of Theorem 2.1.
Consider the nonempty set

$$
A=\left\{x \in V(G): \mathrm{d}_{x}(G) \geqslant \frac{n+k}{2}\right\}
$$

Note that if x and y are nonadjacent vertices of A, then the graph obtained from G by the addition of the edge $x y$ also satisfies the assumptions of the theorem. Therefore, and by Theorem 1.1 we may assume that:

$$
\begin{equation*}
x y \in E(G) \quad \text { for any } \quad x, y \in A \quad \text { and } x \neq y \tag{3.1}
\end{equation*}
$$

By (3.1), A induces a complete subgraph $G(A)$ of the graph G.
In fact, since the property of being k-edge-hamiltonian is $(n+k)$-stable, we can replace G with its $(n+k)$-closure.

Let G_{A} be a graph obtained from G by deletion of vertices of the graph $G(A)$ (i.e. vertices from the set A).

Now take D, a connected component of the graph G_{A}.

Fig. 2: A $(k+1)$-connected graph G with no hamiltonian cycle through the path S : $s_{1} \ldots s_{k+1}$.

Suppose that there exist two nonadjacent vertices in D. Since D is connected, we have two vertices x and y in D such that $\mathrm{d}_{G}(x, y)=2$ and by the assumption that G satisfies $\mathrm{P}(n+k)$, we have $x \in A$ or $y \in A$, which is a contradiction.

We have proved that every component of G_{A} is a complete graph $K_{\iota}, \iota \in I$, joined with $G(A)$ by at least $k+2$ edges.

Claim 3.1. If $K_{\iota_{0}}, K_{\iota_{1}} \in\left\{K_{\iota}\right\}_{\iota \in I}$ are such that $\iota_{0} \neq \iota_{1}$, then:

$$
\begin{equation*}
N\left(K_{\iota_{0}}\right) \cap N\left(K_{\iota_{1}}\right)=\emptyset \tag{3.2}
\end{equation*}
$$

Proof of Claim 3.1:

Suppose that $N\left(K_{\iota_{0}}\right) \cap N\left(K_{\iota_{1}}\right) \neq \emptyset$. Then we have a vertex $y \in K_{\iota_{0}}$ and a vertex $y^{\prime} \in K_{\iota_{1}}$ such that $\mathrm{d}_{G}\left(y, y^{\prime}\right)=2$ and by $\mathrm{P}(n+k)$ either $y \in A$ or $y^{\prime} \in A$. This contradicts the fact that $K_{\iota_{0}}$ and $K_{\iota_{1}}$ are two connected components of G_{A}.

We have shown that the graph G consists of a complete graph $G(A)$ and of a family of complete components $\left\{K_{\iota}\right\}_{\iota \in I}$, of G_{A}, which do not have common neighbors in $G(A)$.

Since G is $(k+2)$-connected, we have the following:
Claim 3.2. Every component $\left\{K_{\iota}\right\}_{\iota \in I}$, is joined with $G(A)$ by at least three edges such that end vertices of these edges are not internal vertices of the path S.

We label vertices of path $S: s_{1} s_{2} \ldots s_{k} s_{k+1}$.

Graph G consists of complete graph $G(A)$ and disjoined complete graphs $\left\{K_{\iota}\right\}_{\iota \in I}$, joined with $G(A)$ by at least three edges such that end vertices of these edges are not internal vertices of path S.

Firstly we consider the case when path S is contained in one complete graph (i.e. $G(A)$ or one graph $\left.K_{\iota_{0}} \in\left\{K_{\iota}\right\}_{\iota \in I}\right)$. In this case, by Claim3.2 we have a hamiltonian cycle through S.

Now we assume that S is not contained in the complete graph $G(A)$ or one graph $K_{\iota_{0}} \in\left\{K_{\iota}\right\}_{\iota \in I}$ and we can now define a cycle $C \subset G$ containing the path S and all vertices of $G(A)$.

We shall consider four cases:

1. Both end vertices of S are in $G(A)$ i.e. $s_{1}, s_{k+1} \in G(A)$.
2. Both end vertices of S are in the same component K_{ι} of G_{A} i.e. $s_{1}, s_{k+1} \in K_{\iota}$.
3. End vertices of S are in different components of G_{A} i.e. $s_{1} \in K_{\iota_{1}}, s_{k+1} \in K_{\iota_{2}}$, $K_{\iota_{1}}, K_{\iota_{2}} \in\left\{K_{\iota}\right\}_{\iota \in I}$ are such that $\iota_{1} \neq \iota_{2}$.
4. One end vertex of S is in $G(A)$ and the other end vertex is in a component K_{ι} of G_{A}. In this case, we can assume without loss of generality that $s_{1} \in G(A)$ and $s_{k+1} \in K_{\iota}$.

If $C \subset G$ is a cycle in G, then by $G_{V} \backslash C$ we denote a graph obtained from G by deletion of vertices of cycle C.

Case 1: Both end vertices of S are in $G(A)$ i.e. $s_{1}, s_{k+1} \in G(A)$.

Note that even in this case, path S may pass through some components K_{ι} creating a kind of ears of the complete graph $G(A)$, on every incident graph K_{ι}. We can find an example of such ears on Figure (3).

Since $G(A)$ is a complete graph we have a cycle C containing the path S and all vertices of $G(A)$ performing the following conditions:

Fig. 3: Example of ears of the graph $G(A)$.

- C contains all edges of $\mathrm{E}(S) \cap \mathrm{E}(G(A))$ and all vertices of A.
- If $K_{\iota_{0}}$ and $K_{\iota_{1}}$ are two different components of $G_{V \backslash C}$ then $N\left(K_{\iota_{0}}\right) \cap N\left(K_{\iota_{1}}\right)=\emptyset$.
- Let $x \notin V(C), y \in V(C)$ and $x y \in E(G)$ then:
if y is not an internal vertex of S, then $y \in A$,
if y^{-}is not an internal vertex of S, then $y^{-} \in A$, if y^{+}is not an internal vertex of S, then $y^{+} \in A$.

Properties (3.3-3.5) will allow us to extend C to a hamiltonian cycle. Note that this cycle C may not be contained in $G(A)$.

Subcase 1.1: Extending the cycle C through components K_{ι} incident with ears

Since graph G is $(k+2)$-connected, we have at least $k+2$ edges joining K_{ι} with $G(A)$, so at least one of these edges say $u c_{i}, u \in \mathrm{~V}\left(K_{\iota}\right), c_{i} \in \mathrm{~V}(G(A)) \backslash S$, is not incident with S. If a component K_{ι} is incident with an ear, at least one interior vertex of path S is contained in this ear, and we have an additional edge say $u^{\prime} c_{j}, u^{\prime} \in \mathrm{V}\left(K_{\iota}\right)$, $c_{j} \in \mathrm{~V}(G(A)) \backslash S$, not incident with S joining K_{ι} with $G(A)$. Using these two edges $u c_{i}$ and $u^{\prime} c_{j}$, we can extend the cycle C through the remaining vertices of K_{ι}.

Without loss of generality, we can assume that on cycle C, the vertices are ordered in the following way: $s_{1} \ldots s_{k+1} c_{k+2} \ldots c_{i} \ldots c_{j} \ldots s_{1}$.

\Longleftrightarrow edge from the path S.
Fig. 4: Extension of the cycle C through component K_{ι} incident with an ear.

We can replace cycle C, by the following cycle C^{\prime}

$$
C^{\prime}: \quad s_{1} \ldots s_{k+1} s_{k+1}^{+} \ldots c_{i} P\left(u, u^{\prime}\right) c_{j} c_{j}^{-} \ldots c_{i}^{+} c_{j}^{+} \ldots s_{1}
$$

where $P\left(u, u^{\prime}\right) \subset K_{\iota}$ is a path joining u with u^{\prime} containing all vertices of $K_{\iota} \backslash S$. Note that this cycle C^{\prime} satisfies conditions (3.3-3.5). We can find an example of the cycle C^{\prime} on Figure 4.

Case 2: Both end vertices of S are in the same component K_{ι} of G_{A} i.e. $s_{1}, s_{k+1} \in K_{\iota}$.

Since the graph G is $(k+2)$-connected, we have at least $k+2$ edges joining K_{ι} with $G(A)$. In this case, at least two edges from the path $S: s_{i} s_{i+1}$ and $s_{j} s_{j+1}$ are joining K_{ι} with $G(A)$, so at least two independent edges $u v, u^{\prime} v^{\prime}, u, u^{\prime} \in \mathrm{V}\left(K_{\iota}\right), v$, $v^{\prime} \in \mathrm{V}(G(A))$, not incident with S joining K_{ι} with $G(A)$.

Consider the following path:

$$
P: \quad v^{2} s_{1} \ldots s_{k} P\left(s_{k+1}, u^{\prime}\right) v^{\prime}
$$

where $P\left(s_{k+1}, u^{\prime}\right) \subset K_{\iota}$ is a path joining s_{k+1} with u^{\prime} containing all vertices of $K_{\iota} \backslash\{\mathrm{V}(S) \cup\{u\}\}$. We can find an example of the path P on Figure 5.

The graph $G(A)$ is complete, so we can extend P to a cycle C containing all vertices of $G(A)$ and satisfying ($3.3-3.5$).

Note that as in Case 1 the path S may pass through some components K_{i} creating the kind of ears of the complete graph $G(A)$. Using the same argument as in the

Fig. 5: Path P containing S with both end vertices in $G(A)$.

Subcase 1.1 we can extend the cycle C through components K_{i} incident with ears preserving the properties (3.3-3.5).

Case 3: End vertices of S are in different components of G_{A} i.e. $s_{1} \in K_{\iota_{1}}$, $s_{k+1} \in K_{\iota_{2}}, K_{\iota_{1}}, K_{\iota_{2}} \in\left\{K_{\iota}\right\}_{\iota \in I}$ are such that $\iota_{1} \neq \iota_{2}$.

Again, since graph G is $(k+2)$-connected we have at least $k+2$ edges joining every component K_{i} with $G(A)$. In this case, for $i=\iota_{1}$ and $i=\iota_{2}$ at least one edge from the path S is joining K_{i} with $G(A)$, so we have at least two independent edges $u v, u \in \mathrm{~V}\left(K_{\iota_{1}}\right), v \in \mathrm{~V}(G(A)), u^{\prime} v^{\prime}, u^{\prime} \in \mathrm{V}\left(K_{\iota_{2}}\right), v^{\prime} \in \mathrm{V}(G(A))$, not incident with S joining respectively $K_{\iota_{1}}$ and $K_{\iota_{2}}$ with $G(A)$.

Consider the following path:

$$
P: \quad v P_{1}\left(u, s_{1}\right) s_{2} \ldots s_{k} P_{2}\left(s_{k+1}, u^{\prime}\right) v^{\prime}
$$

where $P_{1}\left(u, s_{1}\right) \subset K_{\iota_{1}}$ is a path joining u with s_{1} containing all vertices of $K_{\iota_{1}} \backslash\{\mathrm{~V}(S) \cup\{u\}\}$ and $P_{2}\left(s_{k+1}, u^{\prime}\right) \subset K_{\iota_{2}}$ is a path joining s_{k+1} with u^{\prime} containing all vertices of $K_{\iota_{2}} \backslash\left\{\mathrm{~V}(S) \cup\left\{u^{\prime}\right\}\right\}$. See Figure 6 .

The graph $G(A)$ is complete so we can extend P to a cycle C containing all vertices of $G(A)$ and satisfying (3.3-3.5).

Note that as in Case 1 path S may pass through several components K_{i} creating the kind of ears of the complete graph $G(A)$. Using the same argument as in Subcase

Fig. 6: Path P containing S with both end vertices in $G(A)$.
1.1, we can extend cycle C through components K_{i} incident with ears preserving the properties (3.3-3.5).

Case 4: One end vertex of s is in $G(A)$ and the other end vertex is in a component K_{ι} of G_{A}. In this case, we can assume without loss of generality, that $s_{1} \in G(A)$ and $s_{k+1} \in K_{\iota}$.

Since graph G is $(k+2)$-connected, we have at least $k+2$ edges joining the component K_{ι} with $G(A)$. In this case, at least one edge from the path S is joining K_{ι} with $G(A)$, so we have at least one edge $u v, u \in \mathrm{~V}\left(K_{\iota}\right), v \in \mathrm{~V}(G(A))$, not incident with S joining K_{ι} with $G(A)$.

Consider the following path:

$$
P: \quad s_{1} s_{2} \ldots s_{k} P\left(s_{k+1}, u\right) v
$$

where $P\left(s_{k+1}, u\right) \subset K_{\iota_{0}}$ is a path joining s_{k+1} with u containing all vertices of $K_{\iota} \backslash\{\mathrm{V}(S) \cup\{u\}\}$, see Figure 7 .

Both v and s_{1} are in $G(A)$ and the graph $G(A)$ is complete, so we can extend P to a cycle C containing all vertices of $G(A)$ and satisfying (3.3-3.5).

Note that as in Case 1, path S may pass through several components K_{i} creating the kind of ears of the complete graph $G(A)$. Using the same argument as in Subcase

Fig. 7: Path P containing S with both end vertices in $G(A)$.
1.1, we can extend the cycle C through components K_{i} incident with ears preserving the properties (3.3-3.5).

In all cases we have defined a cycle C containing S and now we shall extend this cycle to a hamiltonian cycle.

Extending the cycle C to a hamiltonian cycle

We have already a cycle C satisfying conditions $(3.3-3.5)$ and containing the path S, all vertices of $G(A)$, all vertices from components K_{ι} containing vertices of the path S.

Consider component K_{ι} not included in cycle C. This component does not contain any edge from S and since the graph G is $(k+2)$-connected we have at least $k+2$ edges joining K_{ι} with $G(A)$, so at least one of these edges say $u c_{i}, u \in \mathrm{~V}\left(K_{\iota}\right), c_{i} \in \mathrm{~V}(G(A))$, is not incident with S and at least one edge say $u^{\prime} c_{j}, u^{\prime} \in \mathrm{V}\left(K_{\iota}\right), c_{j} \in \mathrm{~V}(G(A)) \backslash$, not incident with internal vertices of S, joining K_{ι} with $G(A)$. In the worst case $c_{j}=s_{1}$ or $c_{j}=s_{k+1}$.

Using these two edges $u c_{i}$ and $u^{\prime} c_{j}$, we can extend cycle C through the remaining vertices of K_{ι}.

We consider the case $c_{j}=s_{1}$ and without loss of generality we can, assume that on cycle C, the vertices are ordered in the following way:
$s_{1} \ldots s_{k+1} c_{k+2} \ldots c_{i} \ldots s_{1}$.

Fig. 8: Extension of cycle C through a component K_{ι} not incident with S.

Note that since $u c_{i}$ is not incident with S we have $c_{i}^{-} c_{i}, c_{i} c_{i}^{+} \notin \mathrm{E}(S)$ and we can replace cycle C with the following cycle C^{\prime}

$$
C^{\prime}: \quad u^{\prime} s_{1} \ldots s_{k+1} s_{k+1}^{+} \ldots c_{i}^{-} s_{1}^{-} \ldots c_{i}^{+} c_{i} P\left(u, u^{\prime}\right),
$$

where $P\left(u, u^{\prime}\right) \subset K_{\iota}$ is a path joining u with u^{\prime} containing all vertices of K_{ι}, see Figure 8.

Note that this cycle C^{\prime} satisfies conditions (3.3-3.5), $\mathrm{V}(C) \subset \mathrm{V}\left(C^{\prime}\right)$ and $\mathrm{E}(S) \subset \mathrm{E}\left(C^{\prime}\right)$.

The case $c_{j}=s_{k+1}$ is similar.

Applying this argument for all other components K_{ι} we can extend C to a hamiltonian cycle containing the path S and the proof is complete.

References

[1] A. Benhocine and A.P. Wojda, The Geng-Hua Fan conditions for pancyclic or hamiltonian-connected graphs, J. Combin. Theory Ser. B 42, 1985, 167-180.
[2] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15, 1976, 111-135.
[3] J.A. Bondy and U.S.R. Murty, Graph theory with applications, The Macmillan Press LTD London 1976.
[4] G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory Ser. B 37, 1984, 221—227.
[5] G. Gancarzewicz and A.P. Wojda, Graphs with every k-matching in a hamiltonian cycle, Discrete Math. 213, 2000, 141 - 151.
[6] R. Häggkvist, On F-hamiltonian graphs in Graph Theory and Related Topics, ed. J.A. Bondy and U.S.R. Murty, Academic Press N.Y. 1979, 219-231.
[7] H.V. Kronk, Variations of a theorem of Pósa in The Many Facets of Graph Theory, ed. G. Chartrand and S.F. Kapoor, Lect. Notes Math. 110, Springer Verlag 1969, 193-197.
[8] M. Las Vergnas, Sur une propriété des arbres maximaux dans un graphe, C. R. Axad. Sci. Paris, Sér. A, 272, 1971, 1297-1300.
[9] O. Ore, Note on hamiltonian circuits, Amer. Math. Monthly 67, 1960, 55.
[10] Z. Skupień and A.P. Wojda, On highly hamiltonian graphs, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 22, 1974, 463-471.
[11] A.P. Wojda, Hamiltonian cycles through matchings, Demonstratio Mathematica XXI 2, 1983, 547—553.

[^0]: *Institute of Mathematics, Cracow University of Technology; ggancarzewicz@gmail.com

