TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE

FUNDAMENTAL SCIENCES

NAUKI PODSTAWOWE

2-NP/2014

MARIUSZ JUŻYNIEC*

THE EXISTENCE OF A WEAK SOLUTION OF THE SEMILINEAR FIRST-ORDER DIFFERENTIAL EQUATION IN A BANACH SPACE

ISTNIENIE SŁABEGO ROZWIĄZANIA SEMILINIOWEGO RÓWNANIA RÓŻNICZKOWEGO PIERWSZEGO RZĘDU W PRZESTRZENI BANACHA

Abstract

This paper is devoted to the investigation of the existence and uniqueness of a suitably defined weak solution of the abstract semilinear value problem $\dot{u}(t) = Au(t) + f(t, u(t)), \quad u(0) = x$ with $x \in X$, where X is a Banach space. We are concerned with two types of solutions: weak and mild. Under the assumption that A is the generator of a strongly continuous semigroup of linear, bounded operators, we also establish sufficient conditions such that if u is a weak (mild) solution of the initial value problem, then u is a mild (weak) solution of that problem.

 $Keywords:\ operator,\ semigroup,\ weak\ solution$

Streszczenie

Celem pracy jest przedstawienie twierdzenia o jednoznaczności i istnieniu słabego rozwiązania abstrakcyjnego semiliniowego równania różniczkowego $\dot{u}(t) = Au(t) + f(t, u(t)), u(0) = x$, gdzie $x \in X$, w przestrzeni Banacha X. W pracy rozważane są dwa typy rozwiązań: weak oraz mild. Przy założeniu, że operator A jest generatorem silnie ciągłej półgrupy operatorów liniowych i ograniczonych, podane zostały również warunki wystarczające na to aby rozwiązanie weak (mild) było rozwiązaniem mild (weak) tego zagadnienia.

 $Słowa\ kluczowe:\ operator,\ p\'ołgrupa,\ słabe\ rozwiązanie$

^{*}Institute of Mathematics, Cracow University of Technology, Poland; juzyniec@pk.edu.pl

1. Introduction

For a real or complex Banach space X, X^* will denote its dual space. Let $\langle \cdot, \cdot \rangle$ be the duality pairing between X and its dual space X^* . For an operator A, D(A) and A^* will denote its domain and the adjoint, respectively. We consider the abstract first-order initial value problem

$$\frac{d}{dt}u(t) = Au(t) + f(t, u(t)) \quad \text{for} \quad t \in (0, T],$$
(1.1)

$$u(0) = x, \tag{1.2}$$

where A is a densely defined, closed linear operator on the Banach space X, $x \in X$ and $f : [0,T] \times X \to X$.

DEFINITION 1. A function $u \in C([0,T];X)$ is a weak solution of (1) on [0,T] if for every $v \in D(A^*)$, the function $[0,T] \ni t \to \langle u(t), v \rangle$ is absolutely continuous on [0,T] and

$$\frac{d}{dt}\langle u(t), v \rangle = \langle u(t), A^*v \rangle + \langle f(t, u(t)), v \rangle \ a.e. \ on \ [0, T].$$
(1.3)

2. Preliminaries

Let A be a densely defined linear operator on a real or complex Banach space X, let T > 0 and let $g \in L^1(0,T;X)$. It is well known (see [1]) that

Theorem 2. If A is the generator of a strongly continuous semigroup of bounded linear operators $\{S(t)\}_{t>0}$ on X, and if $x \in X$, then the first order linear equation

$$\dot{w}(t) = Aw(t) + g(t), \ t \in (0, T],$$
(2.1)

has a unique weak solution (see Definition 3) satisfying w(0) = x, and in this case, w is given by

$$w(t) = S(t)x + \int_0^t S(t-s)g(s)ds, \quad t \in [0,T].$$
(2.2)

DEFINITION 3. A function $w \in C([0,T]; X)$ is a weak solution of (2.1) on [0,T]if for every $v \in D(A^*)$, the function $\langle w(t), v \rangle$ is absolutely continuous on [0,T]and

$$\frac{d}{dt}\langle w(t), v \rangle = \langle w(t), A^*v \rangle + \langle g(t), v \rangle \ a.e. \ on \ [0, T].$$
(2.3)

When $x \in X$ is arbitrary, then unless $\{S(t)\}_{t\geq 0}$ and f have special properties, w given by (2.2) will not, in general, belong to D(A) for $t \in (0, T]$, so that (2.1) does not even make sense.

3. Existence and uniqueness of a weak solution of the problem (1)—(2)

We start with the following

Theorem 4. Let A be the infinitesimal generator of a C_0 semigroup $\{S(t)\}_{t\geq 0}$ of bounded linear operators on $X, u \in C([0,T]; X)$ and $f(\cdot, u(\cdot)) \in L^1(0,T; X)$. If u is a weak solution of the equation (1) and u(0) = x, then u is a solution of the integral equation

$$u(t) = S(t)x + \int_0^t S(t-s)f(s,u(s))ds, \quad t \in [0,T].$$
(3.1)

A continuous solution u of the integral equation (3.1) will be called a mild solution if the initial value problem (1)-(2).

Proof. Let u be a weak solution of (1) satisfying u(0) = x. This implies that for any $v \in D(A^*)$

$$\frac{d}{dt}\langle u(t), v \rangle = \langle u(t), A^*v \rangle + \langle f(t, u(t)), v \rangle \ a.e. \ \text{on} \ [0, T].$$
(3.2)

Let us put g(t) := f(t, u(t)) and $w(t) := S(t)x + \int_0^t S(t-s)g(s)ds$ for $t \in [0, T]$. Cleary, by Theorem 2, w is a unique weak solution of the problem

$$\begin{cases} \dot{w}(t) = Aw(t) + g(t), \ t \in (0, T], \\ w(0) = x. \end{cases}$$
(3.3)

By Definition 3,

$$\frac{d}{dt}\langle w(t), v \rangle = \langle w(t), A^*v \rangle + \langle g(t), v \rangle \ a.e. \ \text{on} \ [0, T].$$
(3.4)

Hence, by (3.2), the function u satisfies (3.4). By the uniqueness of the weak solution of the initial value problem (3.3)

$$u = w$$
,

 \mathbf{SO}

$$u(t) = w(t) = S(t)x + \int_0^t S(t-s)g(s)ds = S(t)x + \int_0^t S(t-s)f(s,u(s))ds$$

The proof of Theorem 4 is complete. \Box

The integral equation (3.1) does not necessarily admit a solution of any kind. However, if it has a continuous solution, then that function is a weak solution of the problem (1)-(2). 62

Theorem 5. Let A be the infinitesimal generator of a C_0 semigroup $\{S(t)\}_{t\geq 0}$ of bounded linear operators on $X, u \in C([0,T]; X)$ and $f(\cdot, u(\cdot)) \in L^1(0,T; X)$. If u is a solution of the integral equation (3.1), then u is a weak solution of the equation (1).

Proof. By Theorem 2 the initial value problem

$$\begin{cases} \dot{w}(t) = Aw(t) + f(t, u(t)), \ t \in (0, T], \\ w(0) = x \end{cases}$$
(3.5)

has exactly one weak solution given by $w(t) := S(t)x + \int_0^t S(t-s)f(s,u(s))ds$ for $t \in [0,T]$. By the assumption

$$u(t) = S(t)x + \int_0^t S(t-s)f(s,u(s))ds$$

for $t \in [0, T]$, so w = u and u is the weak solution of (3.5). This completes the proof.

The main result of this paper is the following theorem

Theorem 6. Let $f : [0,T] \times X \to X$ be continuous in t on [0,T] and uniformly Lipschitz continuous on X. If A is the infinitesimal generator of a C_0 semigroup $\{S(t)\}_{t\geq 0}$ of bounded linear operators on X, then there exists for each $x \in X$ a unique weak solution u of (1) satisfying u(0) = x.

Proof. By Theorem 6.1.2 [4] (page 184) (see [2], p. 77, [3], p. 87) the integral equation (3.1) has a unique solution $u \in C([0, T]; X)$. From this, by Theorem 5, u is a weak solution of the equation (1) and u(0) = x. The uniqueness of u is a consequence of Theorem 4.

The proof is complete. \Box

References

- Ball J.M., Strongly continuous semigroups, weak solutions, and the variation of constant formula, Proc. Amer. Math. Soc., 1977, 370–373.
- [2] Hundertmark D., Meyries M., Machinek L., Schnaubelt R., Operator Semigroups and Dispersive Equations, 16th Internet Seminar on Evolution Equations, 2013.
- [3] Goldstein J., Semigroups of Linear Operators and Applications, Oxford U. Press, New York 1985.
- [4] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983.