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Abs t r a c t

This paper presents the appliction of a remeshing algorithm to solution of elastic-plastic torsion
of bars with isotropic strain hardening. The remeshing algorithm uses a grid generator with
mesh size function [7]. The method of grid generation is based on a coupling of the advancing
front method and the Delaunay triangulation. The optimal mesh size for the posed problem is
obtained iteratively. For the consequtive steps of the adaptation algorithm error indicators at
nodes and in elements are used for mesh size modification. The discretized system of nonlinear
algebraic equations is solved by the application of the Newton-Raphson method.
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S t r e s z c z e n i e

Praca przedstawia zastosowanie algorytmu typu remeshing do rozwiązania zagadnienia sprężysto-
plastycznego skręcania prętów pryzmatycznych ze wzmocnieniem. Algorytm typu remeshing
wykorzystuje generator siatek uwzględniający funkcję rozmiaru siatki [7]. Metoda generowa-
nia siatek oparta jest na połączeniu metody postępującego frontu z triangulacją Delaunaya.
Optymalny rozmiar siatki dla postawionego problemu otrzymany jest iteracyjnie. W kolejnych
krokach adaptacji indykatory błędów w węzłach i elementach są wykorzystane do modyfikacji
rozmiaru siatki. Zdyskretyzowany układ nieliniowych równań algebraicznych jest rozwiązywany
poprzez zastosowanie metody Newtona-Raphsona.

Słowa kluczowe: skręcanie, plastyczność, sprężystość, generowanie siatek, adaptacja, triangula-
cja Delaunaya, nieliniowość
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1. Introduction

The purpose of this paper is to apply the adaptive remeshing [7, 8] to the elastic-plastic
torsion of bars with isotropic strain hardening [5]. The problem is posed in a form
of the search for the stationary point of the functional defined on function space of
infinite dimension satisfying homogenous boundary conditions. In the case of twisted
bars, this means that their length is great enough. For the sake of a numerical solution
the infinite space is approximated by finite dimensional space spanned by a given set
of basis functions [2, 11, 12]. The approximated solution to the problem is equal to a
linear combination of the basis functions. The coeffiecients of the linear combination
are found from the set of nonlinear algebraic equations. The latter are obtained from
the stationarity conditions. These equations are then solved using the Newton-Raphson
method.

The grid generation code GRADMESH [6, 7] developed in [7] can be used to
generate the FE model. The generator takes into account the mesh size function
defined in the whole domain. The mesh size function is iteratively modified in order
to give a uniform error distribution. In practice it is rather difficult to obtain uniform
error distribution. As a matter of fact the values of mesh size function are defined
only at the nodes of the current mesh. Values of the mesh size function are calculated
by the linear interpolation in every element. Therefore the modification of the mesh
size function leads to the modification of their values at the nodes in the current mesh.
These values are multiplied by a value from the interval [0, 1]. The values are smaller
for nodes with a greater value of error indicator than for nodes with a smaller value
of the indicator. Having modified values at the nodes of the current mesh, the new
mesh size function is defined in the whole domain. The consecutive mesh is generated
next. For the sake of the consecutive mesh generation the whole information about
the previous mesh must be stored.

In the current paper, two methods of error evaluation are applied. The first adopts
standard methods used in [4, 10, 14] which give values of error estimates in elements.
The error estimation at nodes is more involved. A given node is shared by adjacent
elements, each in turn, carries a different error. One needs to accommodate these
different errors when assigning the final value to the node. The weighted average is
used here. The precise equation is given later (eq. 6.5) but the process is as follows.
The partial error in a given element is multiplied by its area and is divided by the area
of all adjacent elements. Finally, the node error is the sum of partial errors (coming
from all elements surrounding the node).

The error indicator at a given node can be evaluated in a different way, for example,
by considering first derivatives with respect to all variables, these are taken at the
node. In this approach the error indicator is formed summing squares all derivatives.
The final value is obtained by taking the square root of the sum. Detailed expression
is given later (eq. 6.4). Yet another approach which is frequently and widely known is
given by equation [2].
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Once the magnitude of the final error indicator at a given node is established, it

serves as a size indicator for the new, remeshed model.

The above information is used for remeshing, i.e., for the generation of a new grid
of nodes. The grid in the FE model utilizes the advancing front technique (AFT) [9]
in conjunction with the Delaunay approach [6, 7, 9].

The adaptation method based on points enrichment [1, 10, 11] leads to unnecessary
mesh enrichment or bad quality elements [15]. Remeshing on the other hand [8, 14]
seems to be one of the best adaptation techniques, especially in the case of the elastic-
plastic twisting of bars. It almost exactly densifies the mesh only at the yield points.
In short, the method focuses on adaptation (remeshing) of the grid at places where it
is necessary as dictated by local error indicators. It does not alter mesh size where
it is not necessary. It is clear that this approach is effiecient and superior to other
approaches.

2. Problem formulation

In this section, the elastic-plastic torsion of bars with isotropic strain hardening is
formulated. According to [5] the problem leads to the search for the extremum of the
following functional:

I(u) =

∫∫
Ω

[

∫ T

0

sg(s)ds− 2ωu]dΩ, (2.1)

where T is the stress intensity

T =

√(
∂u

∂x

)2

+

(
∂u

∂y

)2

, τ13 =
∂u

∂y
, τ23 = −∂u

∂x

.

The function g defines the dependence between the effective stress and the effective
strain: T = g(Γ)Γ (Fig. 1), where Γ =

√
εijεij , εij is the strain tensor and ω is the

torsion angle (see Ref. [5]).
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T

ΓΓ ∗

Fig. 1: The dependence between the strain intesity of strain, F and stress intesity ,T

After the substitution s =
√
r, the equation (2.1) is:

I(u) =

∫∫
Ω

[∫ T 2

0

g(
√
r)

1

2
dr − 2ωu

]
dΩ. (2.2)

3. Discretization approach and tangent matrix

In this section, a class of problems leading to the search for a stationary point of a
functional of the following form is addressed:

I(u) =

∫∫
Ω

F (u, ux, uy)dΩ, where (3.1)

Ω - is a two-dimensional domain,

F - is a double diffentiable function of several variables F : IRM 7→ IR.

Let us introduce finite element basis {Ui}Ni=1 in the space V 0 of functions satisfying
homogenous boundary conditions. Then, the discretization of the problem leads to
the solution of the following system of nonlinear algebraic equations:

gk(λ1, λ2, . . . , λN ) =
∂I(
∑N
i=1 λiUi)

∂λk
= 0, for k = 1, . . . , N, (3.2)

where λ1, λ2, . . . , λN are coefficients of the linear combination of the approximate
solution.
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The chain formula for the calculations of partial derivatives leads to:

gk(λ1, λ2, . . . , λN ) = (3.3)

=
∂

∂λk

∫∫
Ω

F (x, y,
N∑
i=1

λiUi,
N∑
i=1

λiUi,x,
N∑
i=1

λiUi,y)dΩ = (3.4)

=

∫∫
Ω

DT
FΨkdΩ, and (3.5)

∂gk
∂λj

=

∫∫
Ω

ΨT
kDFFΨjdΩ. (3.6)

In the expressions (3.4), (3.6)

DF =

[
∂F

∂u
,
∂F

∂ux
,
∂F

∂uy

]T
, (3.7)

DFF =


∂2F
∂u∂u ,

∂2F
∂u∂ux

, ∂2F
∂u∂uy

∂2F
∂ux∂u

, ∂2F
∂ux∂ux

, ∂2F
∂ux∂uy

∂2F
∂uy∂u

, ∂2F
∂uy∂ux

, ∂2F
∂uy∂uy

 , (3.8)

and U =

 U1, . . . , UN
U1,x, . . . , UN,x
U1,y, . . . , UN,y

 , (3.9)

The above formulas are valid for arbitrary basis functions (for example, polynomial)
{U1, U2, . . . , UN} defined in Ω.

In the case of FEM one has the following equations:

gj =

∫∫
Ω

DT
Fψj dx dy =

NT∑
e=1

∫∫
Te

DT
Fψj dx dy, (3.10)

D(g1, g2, . . . , gN )

D(λ1, λ2, . . . , λN )
=
[
∂gi
∂λj

]
=
[∑NT

e=1

∫∫
Te
ψTi DFFψj dx dy

]
(3.11)

where ψk is the k-th column of matrix U.
Introduce the following vector:

G(Λ) = [g1(Λ), . . . , gN (Λ)]T , and matrix (3.12)
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JG =
[

∂gi
∂λj

]
. (3.13)

Let the set {ue1, ue2, . . . , uene
} be a set of shape functions of the element with number e,

for e = 1, . . . , NT . The matrix ue is then defined as follows:

ue =

 u1, . . . , une

u1,x, . . . , une,x

u1,y, . . . , une,y

 , (3.14)

where ne is number of the shape functions of e-th element. Introduce the vector ge
and the matrix Ae

ge := DT
Fue, Ae := uTe DFFue. (3.15)

The solution of equation (3.6) will normally determine a numerical approach. The
latter can be applied to a different engineering problem of the same mathematical
class. The only replacement routines would be routines calculating vector DF , matrix
DFF and starting vector Λ for the Newton-Raphson iteration.

For the elastic-plastic torsion of bars, after substitution of the function:

h(r) =
1

2
g(
√

(r)), (3.16)

into equation (2.2) matrices DF and DFF can be evaluated using equations (3.4) and
(3.6). For the current case they are:

DF =

[
−2ω, 2h(T )

∂u

∂x
, 2h(T )

∂u

∂y

]T
, (3.17)

DFF =

 −2, 0, 0
0, 2h(T ) + 4 dhdT (∂u∂x )2, 4 dhdT

∂u
∂x

∂u
∂y

0, 4 dhdT
∂u
∂x

∂u
∂y , 2h(T ) + 4 dhdT (∂u∂y )2

 . (3.18)

4.Application of the Newton-Raphson method to the solution of
nonlinear algebraic equations

For the solution of the system of nonlinear equations, the Newton-Raphson method
is applied. The vector G and matrix JG depend upon Λ. The algorithm of Newton-
Raphson can be divided into the following steps:

1. Set initial vector Λ0, set i=0;

2. Repeat points 3, 4, 5 until ||G(Λi)|| < ε ||Λi||;
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3. Solve the following system of linear equations:

JG(Λi)∆Λi+1 = −G(Λi); (4.1)

4. Λi+1 = Λi + ∆Λi+1;

5. i := i+ 1.

It is assumed that the norm in IRN is defined as:

||x|| = max
i=1,...,N

|xi|, where x = (x1, . . . , xN )T ∈ IRN . (4.2)

The sequence of vectors Λ0,Λ1, . . . tends to the solution. At every iteration step
the Jacobi matrix must be assembled. In the presented examples, usually 10 − 15
iterations were sufficient to obtain the value ||G(Λi)|| of residuum norm of order 10−9.

5. Unstructured grid generation with mesh size function in arbitrary
domains

The generation of a grid with arbitrary size is performed by 2D generator [6, 7].
The main idea of grid generation is based upon the algorithm of the advancing front
technique and generalization of Delaunay triangulation for a wide class of 2D domains.
It is assumed, that the domain is multiconnected with arbitrary numbers of internal
loops. The boundary of the domain may be composed of the following curves:

• a straight line segment,

• an arc of a circle,

• a B-spline curve.

In the case of the advancing front technique combined with Delaunay triangulation,
the point insertion and triangulation can be divided into the following steps:

1. Generation of points on the boundary components of the boundary of the domain,

2. Generation of internal points by the advancing front technique,

3. Delaunay triangulation of the previously obtained set of points,

4. Laplacian smoothing of the obtained mesh.

The algorithm for generation of boundary points depends upon the type of boundary
segment.
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6. Algorithm for remeshing

The whole adaptation algorithm consists of the successive generation of meshes {Tν},
where ν = 0, 1, 2, . . . , which are based on a fresh mesh size function. By using every
mesh of the sequence the problem is solved and, next appropriate error indicators in
every element are calculated. The values of the error indicator are reduced to the
nodes by an averaging method. Having the values of errors at nodes a continuous error
function in the whole domain is constructed by using a piecewise linear interpolation.
Clearly this is a simple plane for each element. Each error function spans three nodes.
When this is extended to all nodes, one obtains the error function for the whole domain.
The error function is appropriately transformed to obtain a multiplier for the mesh
size function. The mesh size function decides how big the newly generated elements
are.

The proposed approach gives ones the possibility to solve the considered problem
on well-conditioned meshes and to obtain optimally graded meshes.

6.1. Remeshing scheme

The algorithm for remeshing can be divided into the following steps:

1. Preparation of the information about the geometry and boundary conditions of
the problem to be solved,

2. Fixing an initial mesh size function,

3. mMesh generation with the mesh size function,

4. Solution of the problem given by equation 3.2 on the generated mesh,

5. Evaluation of error indicator in every element,

6. Calculation of nodal error indicator by using the averaging method,

7. Definition of the new mesh size function by using the errors found at every point,

8. If the error is not small enough, go to the point 3,

9. end of computations.

In the examples given later, it was sufficient to make 3 to 7 steps of adaptation.

6.2. Error indicators

The applied indicators are calculated for every element or directly at the nodes [7, 14].
Let ei for i = 1, . . . , n0 be an error indicator at i-th apex of the grid T0, and P0={ Pi,
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i = 1, . . . , nP } − set of nodes. We define a patch of elements incidental for a given
node Pi as:

Li = {k : Pi ∈ T k} for i = 1, . . . , nP . (6.1)

1. Let Ni be a set of neighbours of i-th element:

Ni = {k : Tk has a common edge with Ti}, (6.2)

then ẽi =

√√√√∑
k∈Ni

(
∂ui
∂nk

− ∂uk
∂nk

)2

, (6.3)

where ui is the restriction of the solution to i-th element and nk is unit normal
to the the edge common of the k-th and the i-th element.

2. In this case, it is suggested to directly introduce the values of error indicator at
every node of the mesh. The following error indicator is being adopted in the
current program. From the numerical analyses it follows that the usage of this
error indicator generates similar meshes to the one firstly defined.

ei =

√√√√ ∑
k∈Li, l∈Li, l 6=k

(
∂ui
∂x
− ∂uk

∂x

)2

+

(
∂ui
∂y
− ∂uk

∂y

)2

, (6.4)

where Li is the set of numbers of elements meeting at i-th node.

6.3. Modification of the mesh size function

The modification of the mesh size function is performed at every adaptation step for
the realization of the next one. The main idea of this part of the algorithm relies on
the multiplication of the values of the mesh size function by an appropriately chosen
function. The chosen function is continuous, linear and has the smallest value at the
node where the value of the error indicator is maximum and the greatest where the
value of the error is minimum. The value increases when the error decreases. To
describe the algorithm of the mesh size function modification, it is necessary to reduce
the values of the error indicators to nodes. For every node Pi the weighted averaged
value of the indicator is defined as follows:

ẽi =

∑
k∈Li

area(Tk)ek∑
k∈Li

area(Tk)
, (6.5)

where
Li = {k : Pi ∈ Tk} and Tk is the k-th element. (6.6)
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In such a manner, a set of values of the error at every nodal point is obtained.

α = min
k=1,2,...,NNOD

ẽk, β = max
k=1,2,...,NNOD

ẽk, (6.7)

where NNOD is the number of nodes. Obviously, α ≤ ẽk ≤ β for k = 1, . . . , NNOD.
The following new values are introduced:

λ − a value indicating the greatest mesh size function reduction,

µ − a value indicating the smallest mesh size function reduction.

Usually λ and µ have positive values and usually are one smaller than 1, additionally
µ < λ. The following transformation is defined

l : [α, β] 7→ [µ, λ] (6.8)

which satisfies the conditions: l(α) = λ and l(β) = µ. By these assumptions it can be
observed that µ ≤ l(x) ≤ λ.

Provided that
Qi = l(ẽi) for i = 1, . . . , NNOD, (6.9)

then one has: mini=1,2,...,NNOD
Qi = µ, maxi=1,2,...,NNOD

Qi = λ.
Introducing the function r : D 7→ IR as follows: r(x) = Π(x), if x ∈ T s, where Π

is an affine mapping of two variables, satisfying the following equalities:

Π(Pi) = Qi for i = 1, 2, 3, (6.10)

where P1, P2, P3 are the vertices of the triangle Ts of the triangulation of Ω, and
appropriately Q1, Q2, Q3 are the values defined by the formula (6.9). The function
r(x) is defined in the whole domain because the triangles {T s}ne

s=1 cover it. The new
mesh size function is defined as follows:

γi+1(x) = γi(x)r(x). (6.11)

As µ ≤ r(x) ≤ λ then µγi(x) ≤ γi+1(x) ≤ λγi(x).
It can be checked that:

∃x, y ∈ Ωsuch, that:µγi(x) = γi+1(x), and γi+1(y) = λγi(y).

It can be shown that

||γi+1 − γi||Ω,max ≤ ||γi||Ω,max max{|1− µ|, |1− λ|} (6.12)

where ||γ||Ω,max := max
x∈Ω
{|γ(x)|}. (6.13)



73
7. Numerical Examples

7.1. Numerical test for squared domain

The size function modification depends on an error indicator and on the coefficients λ,
µ, which determine the value of mesh size reduction. If the values of the coefficients
λ, µ are small then a smaller number of adaptation steps is necessary. How quickly
an adapted grid will be close enough to an optimal mesh, next to the error indicator,
it depends on an initial mesh too. In the problems solved here, it was arbitrarily
assumed that λ = 0.6 and µ = 0.9. The proposed algorithm was benchmarked against
a known problem of elastic-plastic torsion of a bar with a square cross-section, Figures
2 and 3 provides results. The distribution of elements is seen in Fig. 2. The isolines of
the Prandtl-Reuss function are given in Fig. 3. The results given in Figures 2 - 4 were
obtained for the angle of twist, ω = 0.015 rad/m2. The dependence between stress
and strain intensities was (see Fig. 1):

T =

{
8× 105Γ if = Γ ≤ 0, 0025,

1940 + 24× 103Γ otherwise.
(7.1)

Fig. 2: Mesh after 7 adaptation steps
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Fig. 3: Prandtl-Reuss function
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Fig. 4: Stress intensity, T
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7.2. Numerical simulations for L-shaped domain

In nonlinear problems, it is sometimes useful to perform a greater number of adaptation
steps. The success of the method is best illustrated in Figures 5 and 6, where a similar
problem is solved for an L-shaped domain. It is seen here that when starting from a
coarse mesh (Fig. 5) the algorithm quickly converges to a denser mesh (see Fig. 6)
where large variations in stress take place. At the the same time the region where
plastic staining took place there is no need for a dense grid (outer edges). Fig. 7 shows
the Prandtl-Reuss function, and Fig. 4 depicts the stress contours.

It would be rather impossible to obtain the same effect by the methods based on
mesh enrichment [1, 3, 10].

Fig. 5: Initial mesh
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Fig. 6: Final mesh after 7 adaptation steps

    0.000
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Fig. 7: Prandtl-Reuss function
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   79.968

  543.252

 1006.537

 1469.821

 1933.105

 2396.390

 2859.674

 3322.959

 3786.243

 4249.527

 4712.812

Fig. 8: Stress intensity, T

8. Summary and closure

• This paper presents the application of the grid generator with mesh size func-
tion of the adapted solution to the elastic-plastic twisting of bars with strain
hardening.

• The mesh generator based on the Delaunay condition and the advancing front
technique seems very suitable to the class of problems where zones of different
in the domain are to be represented.

• After the discretization, the problem led to the solution of nonlinear systems of
algebraic equations. For the considered problems, the applied Newton-Raphson
method was always convergent giving the residual error of an order 10−10 in
10− 14 iterations.

• The whole algorithm has two loops, the external over adaptation steps and the
internal over the Newton-Raphson iterations.

• The effiecient mesh size function is obtained iteratively and it is linked to the
values of error indicators at nodes.

• The presented method, with its superiority above other known approaches, makes
it a suitable tool for nonlinear model computations.

• An investigation of the anisotropic mesh generation would be interesting.
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