
* Jan Kucwaj (jkucwaj@pk.edu.pl), Institute of Computer Science, Cracow  University of Technology.

TECHNICAL TRANSACTIONS
FUNDAMENTAL SCIENCES

1-NP/2016

CZASOPISMO TECHNICZNE
NAUKI PODSTAWOWE

JAN KUCWAJ*

COMPUTATIONAL EXPERIMENTS OF A REMESHING 
ALGORITHM BASED ON MESH GENERATOR

NUMERYCZNA EFEKTYWNOŚĆ ALGORYTMU 
OPARTEGO NA GENERATORZE SIATEK

A b s t r a c t

The main goal of the presented paper are numerical experiments of the convergence of the 
adaptation algorithm [4] developed by the author based on remeshing, which form the proof 
of the concept for the presented algorithm. The main feature of the considered algorithm is an 
application of the mesh generator to the adaptation with a mesh size function [5]. The proposed 
method uses a sequence of meshes obtained by successive modification of the mesh size 
function. The rate of the convergence is obtained numerically considering a known solution. 
The analysis of the unknown solution was restricted to the assessment of some properties 
of the strict solution.
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S t r e s z c z e n i e

Głównym celem artykułu są numeryczne eksperymenty zbieżności algorytmu adaptacji [4] roz-
wijanego przez autora opartego na „remeshingu”, które potwierdzają koncepcję prezentowane-
go algorytmu. Główną cechą analizowanego algorytmu jest zastosowanie generatora siatek [5] 
z zadaną funkcją rozmiaru siatki. Rozwijana metoda wykorzystuje ciąg siatek pokrywających 
obszar otrzymanych z odpowiednio modyfikowaną funkcją rozmiaru siatki. Otrzymane tempo 
numerycznej zbieżności zostało uzyskane na znanym rozwiązaniu. Analiza nieznanego rozwią-
zania została sprowadzona do oceny znanych własności danego rozwiązania, które mogą być 
obserwowane na rozwiązaniach przybliżonych
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1. Introduction

The paper concerns numerical speed of the convergence of the adaptive algorithm 
based on a grid generator with a mesh size function [6, 7]. The rate of convergence will be 
calculated by a description of the dependence between the number of degrees of freedom 
and norm of error defined as the difference between a strict solution and an approximate 
solution for a given mesh, provided that the strict solution is known. In case of an unknown 
solution some properties of the solution are known and their fulfilment can be assessed.

For the sake of the numerical solution the infinite space is approximated by a finite 
dimensional space spanned by a given set of basis functions [7, 11] of the finite element 
method [10] generated by linear shape functions [10], the approximated solution to the 
problem is equal to a linear combination of the basis functions. The coefficients of the linear 
combination are found from the nonlinear algebraic system of equations. The system is led 
out from stationarity conditions. The system of nonlinear algebraic equations is solved by 
using the Newton-Raphson method. In consecutive remeshing (this means separate finite 
element problems) steps of the adaptation algorithm the values of the mesh size function 
taken at the nodes are so modified that at the points with greatest values of an error indicator 
[2, 5] the values of mesh size function are the most diminished. Having the values of the 
mesh size function at nodes the new mesh size function is defined by the linear interpolation. 
The process is performed till the error indicator attains the assumed value. The error indicator 
is found at every node as an approximated residual by the finite difference method for the 
appropriate local formulation.

The presented numerical analysis of the convergence suggests better than linear 
dependence between number of degrees of freedom and error norm for derivatives. In further 
development it is planned to generalize the method to apply anisotropic meshes. The proposed 
method was applied to both problems, in which the solution is known and unknown. 
The obtained results were consistent with physical interpretations [4].

The adapted mesh for an example problem, where the strict solution is known, is presented. 
It can be observed that the rapid change of the size function corresponds to the great gradient 
of the solution. Additionally, it can be said that the final t mesh depends on both the solution 
and the assumed error indicator. As an example problem the Poisson equation was taken with 
known solution and elastic-plastic problem of twisting of bars with hardening, where some 
physical properties of the solution to the problem are known.

2. Example problem

2.1. The Poisson equation

The boundary value problem for the Poisson equation is formulated as follows:
 Du f x y= ( , ), ,in Ω  (1)

 u = ∂0, .in Ω  (2)
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This equation is used for error indicator calculation:

 e u P f x yi h i= −D ( ) ( , ) at i-th node (3)

where D  is the finite difference approximation of D. In this case of the Poisson equation. 
This problem is equivalent to search for the stationary point of the following functional:

 I u u x y u x y dx y( ) ( , ) ( , )) .= +∫ 2 2 Ω
Ω

 (4)

2.2. The elastic-plastic twisting of bars with hardening

In this section the elastic-plastic problem of twisting of bars with hardening is formulated. 
According to [3] the problem can be led to search for the extremum of the following functional:

 I u sg s ds u d
T

( ) ( ) ,= −



∫∫∫ 2

0
ω Ω

Ω

 (5)

where T is the stress intensity:
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The function g defines the dependence between the effective stress and the effective 

strain: T g= ( )Γ Γ  (Fig. 1), where Γ = ε ε εij ij ij,  is the strain tensor and ω is the angle 
of the torsion.

After the substitution s r= ,  it is obtained:
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Fig. 1. The dependence between the strain and stress intensity
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In both problems the current function u varies in the Sobolev space
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In both problems the current function u varies in the Sobolev [3] space.
For the sake of the approximation the finite dimensional space of functions is defined:
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where T T i Ni T= ={ : , , }1  is a set of non-intersecting triangles covering the domain. 
For the finite element approximation the approximate solution is defined as finite linear 
combination of basis functions [10] of the space V 

0. The unknown coefficients of the linear 
combination are found by solving the nonlinear system of algebraic equations, obtained 
from the stationarity condition [6].

3. The unstructured grid generation with mesh size function in arbitrary domains

Grid generation with arbitrary mesh size function is performed using a 2-D generator 
[5, 6]. The main idea of grid generation is based upon the algorithm of the advancing front 
technique and a generalization of the Delaunay triangulation [5, 8] for wide class of 2 ‒ D 
domains. It is assumed that the domain is multiconnected with an arbitrary number of internal 
loops. The boundary of the domain may be composed of the following curves:
– A straight line segment,
– An arc of circle,
– A B-spline curve.

In case of the advancing front technique combined with the Delaunay triangulation 
the point insertion and triangulation can be divided into the following steps:
1. Point generation on the boundary,
2. Internal point generation by the advancing front technique,
3. Delaunay triangulation of the previously obtained set of points,
4. The Laplacian smoothing of the obtained mesh.

The algorithm for boundary point generation depends upon the type of boundary 
segment: [5].

4. Algorithm of remeshing

The whole algorithm of the adaptation is realized in the successive generation of 
a sequence of meshes {Tν}, where ν = 0,1,2,… with a modified mesh size function. By 
using every mesh of the sequence the approximate solution to the problem is obtained and 
then appropriate error indicators at each node are calculated. Having values of errors at 
nodes a continuous error function in the whole domain is constructed by using piecewise 
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linear interpolation at all elements. The error function is appropriately transformed to obtain 
a multiplier for mesh size function.

The proposed approach gives the possibility to solve the considered problem on well- 
-conditioned meshes and to obtain optimal graded meshes.

4.1. Remeshing scheme

The algorithm of remeshing [4, 13] can be divided into the following steps:
1. Preparation of the information about the geometry and boundary conditions of the problem 

to be solved,
2. Arrangement of an initial mesh size function,
3. Mesh generation with mesh size function,
4. Solution to the considered on the generated mesh,
5. Evaluation of error indicator at each node,
6. Definition of the new mesh size function by using the errors found at every point of the 

computational grid,
7. If the error not small enough go to the point 3,
8. End of computations.

In the examples solved by the author it was sufficient to make from 5 to 9 steps of 
adaptation.

4.2. Error indicators

The applied error indicators are calculated directly for every node, not in elements like 
in [6, 9].

Let ei for i = 1,…,nP be an error indicator at i-the apex of the mesh Tν ,  and 
� …P P i ni Pν = ={ , , , }1  set of nodes. We define a patch of elements for every node Pi as:

 L k P T i ni i P= ∈ ={ , } for , ,
_

1  (7)

where  TP is the k-th element of the mesh.
1. The first proposed error indicator is biased on the discretized form of the equation (1). 

At every node partial derivatives  are found  according to the following recipe:
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where uh
k  is the restriction of the solution uh to the k-th element is a linear combination 
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where u Nh j
k=  is a shape function of the k-th element. Formula 9 is applied at nodal 

points. The derivatives 
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of second order derivatives at nodes in the similar way by using the recurrent 

formula:
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In the similar way it is possible to calculate the derivatives of arbitrary order and put 
them into formula 2 to obtain the value of the error indicator at i-th node.

2. In this case it is suggested to evaluate directly derivatives values of error indicator at every 
node in the following way:

 T
u
x

u
x

u
y

u
y

i k i k

k L l L l ki i

=
∂
∂

−
∂
∂







 +

∂
∂

−
∂
∂











∈ ∈
∑

2 2

, ,

.
¹

 (11)

where Li is the set of elements meeting at i-th node.

4.3. Error indicators

The modification of the mesh size function is performed at every adaptation step for the 
realization of the next one. The main idea of this part of the algorithm relies on a multiplication 
of the values of the mesh size function by an appropriately chosen function. The chosen 
function should be continuous, linear and should have the smallest value at the node where 
the value of the error indicator is maximal and the greatest where the value of the error is 
maximal. It should increase when the error decreases.

The error indicators ek  are calculated at each node of the current mesh, then the minimal 
and maximal values of the error are found:
 α α= =

= =
min , max ,

, , , , , ,k N k k N k
NOD NOD

e e
1 2 1 2… …

� �  (12)

where NNOD is the number of nodes. Certainly, α β£ £� …e k Nk NODfor = 1 2, , , .

The following values are introduced:
λ	 ‒ a value indicating the greatest mesh size reduction.
µ ‒ a value indicating the greatest mesh size reduction.
The values of λ and µ usually should be greater than 0.5, which means that the mesh size 

does not change too rapidly, which would have an influence on mesh quality in the vicinity, 
where there are big errors. Usually it is assumed that	λ varies  from 0.5 to 0.6 and µ from 
0.8 to 1.0.

The following affine transformation is defined:
 l : [ , ] [ , ],α β µ λ→  (13)
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which satisfies the conditions l l( ) ( ) .α λ α µ= =and  By these assumptions it can be 

observed that µ λ α β£ £l x x( ) , [ , ].∀ ∈
Provided that

 Q l e i Ni i NOD= ∀ =( ) , , , ,� …£ λ 1  (14)

then we have
 min , max .

, , , , , ,i N i i N i
NOD NOD

Q Q
= =

= =
1 2 1 2 

µ λ  

Introducing the function r D: ,→R  as follows: r x x x Ts( ) ( ), if ,= ∈Π  where Π is an 
affine mapping of two variables satisfying the following equalities:
 Π( ) , for , , ,P Q ii i= = 1 2 3  (15)

where P1, P2, P3 are the vertices of the triangle Ts of the triangulation of Ω, and appropriately 
Q1, Q2, Q3 are the values defined by the formula (14). The function r(x) is defined in the 

whole domain because the triangles { }
_
Ts s

NT
=1  cover it. The new mesh size function is defined 

as follows:
 γ γi ix x r x+ =1( ) ( ) ( ).  (16)

As µ λ£ £r x( )  then µγ γ λγi i ix x x( ) ( ) ( ).£ £+1

It can be checked that: ∃ ∈x y, Ω  such that:

 µγ γ γ λγi i i ix x x x( ) ( ) and ( ) ( ).= =+ +1 1  (17)

It can be shown, that γ γ γ λ µi i i+ − − −{ }1 1 1Ω Ω,max ,max max , ,£  where

 γ γΩ Ω,max max ( ) .= { }
∈x

x  (18)

5. Numerical examples

The manner of size function modification depends on the error indicator and on the 
coefficients λ, µ, which determine the details of the mesh size function modification. 
If the values of the coefficients λ, µ, are small then fewer adaptation steps is necessary. 
How quickly an adapted grid will be close enough to an optimal mesh, besides of error 
indicator function, depends on the initial mesh too. For the solved problems it was assumed 
that λ = 0.6 and λ	= 0.8, which caused performing greater number of adaptation steps, what 
may lead to a better solution. In the plasticity theory problems it can observed (figures 5, 6), 
that the adapted mesh densities at the border between elastic and plastic zones and the adapted 
mesh (Fig. 5) coincide with the sand heap analogy [3]. It would be rather impossible to obtain 
the effect by the methods based on mesh enrichment [1, 9].
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For the sake of numerical rate of the convergence of the proposed method for the 
problem defined in 4 the function f was defined in the way that the solution to the problem 

is the function [13]: u x y x x y y a x y( , ) ( ) ( ) arctan ,= − −
+

−
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and ξ = 0.8. The figure 2 presents the dependence between number of nodes and norms 
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The figure 3 presents the adaptive mesh.
It can seen that the mesh for the example problem 1 and its strict solution 5 coincide.

Fig. 2. The convergence curves for u, ux, uy for problem 1 with respect to the norms

Fig. 3. Strict solution for the problem 1
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Fig. 4. Adapted mesh for the problem 1

Fig. 5. Final mesh after 7 adaptation steps for problems 6

Fig. 6. Adapted mesh for the problem 6
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6. Summary

– New error indicators based on generalized finite difference method were introduced 
applied to the proposed adaptive remeshing.

– The numerical rate of the convergence was calculated by using the known strict solution.
– The optimal mesh size function is obtained iteratively and depends on values of error 

indicators at nodes.
– The generator based on Delaunay condition and advancing front technique seems very 

suitable to the class of problems where different zones of the domain are to be appointed.
– For further investigations the anisotropic mesh generation algorithm will be developed 

an appropriate anisotropic adaptation algorithms as well too.
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