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strength Hypotheses – A Never Ending Story

Hipotezy wytrzymałości  
– niekończąca się opowieść

A b s t r a c t

Up to now there are a lot of discussions concerning criteria of the limit state of a material. The 
classical criteria like the Huber-von Mises-Hencky criterion are mostly used by the engineers. 
With the creation of new materials with non-classical behavior (different limit values at tension 
and compression, compressibility, Poynting-Swift effect, etc.) the classical criteria fail. It will 
be shown how new criteria can be created by some unified approach.

Keywords: generalized strength criteria, equivalent stress invariants, materials with non-
classical behavior

S t r e s z c z e n i e

Liczne dyskusje dotyczące kryteriów osiągania przez materiał stanów granicznych trwają do 
dzisiaj. Najczęściej stosowanymi przez inżynierów są takie klasyczne kryteria, jak kryterium  
Hubera-von Misesa–Hencky’ego. Wraz z powstaniem nowych materiałów, zachowujących się 
w sposób nieklasyczny (różne wartości graniczne po stronie rozciągania i ściskania, ściśliwość, 
efekt Poyntinga-Swifta etc.), dotychczasowe klasyczne kryteria stają się niewystarczające. W ar-
tykule pokazano, jak stworzyć nowe kryteria za pomocą zunifikowanego podejścia.

Słowa kluczowe: uogólnione kryteria wytrzymałościowe, zastępcze niezmienniki naprężenia, 
materiały zachowujące się nieklasycznie
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1. Motivation

In 1982 Michał Życzkowski1 has published his famous monograph Combined Loading in 
the Theory of Plasticity [27]. The main features of this book are the plasticity as a limit state 
of the material behavior, multi-axial loading conditions resulting in the necessity to present 
the material behavior by three-dimensional constitutive equations, the introduction of an 
equivalent stress for comparison purposes with the measurements from tests, the dependence 
of the equivalent stress on stress invariants, etc. This paper is devoted to the question how the 
equivalent stress expressions can be formulated. This item will be discussed with respect to 
the necessity to introduce criteria of the limit states which are based on the equivalent stress 
and further characteristics (parameters) of the material behavior.

2. Introduction

The need of criteria to describe the limit behavior of materials (transition from the elastic 
to the plastic range, loss of stiffness among others) is obvious. As usual one has multi-axial 
material behavior under real loading cases, i.e. a three-dimensional stress and strain state 
must be considered. At the same time mostly single specific properties of the material like the 
yield stress or the ultimate strength are obtained in tests and the question arises how to compare 
the multi-axial behavior expressed for example by the stress tensor σ with the scalar-valued 
material properties.

The introduction of the equivalent stress is a typical engineering approach since there are 
no physical principles like the balance equations in Continuum Mechanics [12, 16, 25] for 
comparison purposes. On the other hand, it should be compared scalar variables from tests 
with the equivalent stress σeq which is a function of the stress tensor and parameters related to 
some characteristics of the material behavior. The equivalent stress must be estimated for any 
arbitrary stress state and compared with a uniaxial state, for example the tension state. Let us 
introduce the material parameter σ+ as a parameter of the limit state established in the tension 
test. In this case the equivalent stress should be related to this material parameter by

σeq < σ+

If σeq is less then σ+ the structure or the structural element can be exploited safe otherwise 
a failure or limit state occurs. In addition, in the engineering practice some safety coefficients 
are introduced. This special item is not in the focus of this paper.

Examples of classical hypotheses, presenting the material behavior at the limit state are 
based on the normal, the shear stresses or the distorsion energy. The following hypotheses 
are mostly presented in textbooks on Strength of Materials or Mechanics of Materials: the 
maximum of the normal stresses, the maximum of the shear stresses and the maximum of the 

1	 Prof. Zyczkowski (1930–2006) was up to the end of his life an active member of the GAMM 
(International Association of Applied Mathematics and Mechanics) and the Editorial Board of the 
ZAMM (Journal of Applied Mathematics and Mechanics), which was founded in 1921 by Richard 
von Mises. He has organized together with his colleague G. Szefer the Annual Conference of the 
GAMM in 1991 in Krakow, which was the first Annual Conference in Poland.
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distorsion energy. They are formulated as criteria containing information on the stress state 
and one material parameter, established, for example, in the tension or the torsion test.

In the case of arbitrary stress states the development of strength criteria should be 
coincide with images about the three-dimensional material behavior. The comparison of 
arbitrary stress states with material properties from one-dimensional tests is not possible, 
if one realizes only one type of tests. In addition, the arbitrary stress state is characterized 
by a  tensor-valued variable, from the tests one gets usually scalar-valued characteristics. 
Since the mathematical type of the variables is different (scalars, second rank tensor), a direct 
comparison is impossible.

The first improvements of one-parameter-criteria, which are based on the use of 
experimental data from one type of tests, known from the 19th century. This development is 
characterized by the formulation of phenomenological criteria including beside the reference 
property σeq additional parameters. Examples are the maximum strain criterion suggested 
by Mariotte, St. Venant among others (with the Poisson’s ratio as an additional parameter), 
the Mohr-Coulomb criterion and the Drucker-Prager criterion. Later criteria with more than 
two parameters were introduced (see, for example, [1] and the references within). These and 
other criteria approximate the given experimental data and extrapolate the experiences in the 
whole range of validity. An ”exact” solution cannot be presented in general since one has often 
a problem with insufficient and/or infinite input information.

3. Classical Formulation – Isotropic Behavior

Let us suggest the following general form of strength criteria

Ф(σ,σeq) = 0

In addition, let us assume isotropic material behavior. In this case σeq is a function of three 
independent invariants of the stress tensor only. In the literature various sets of invariants 
are used [1, 6, 10, 27] among others. For example, in [27] the following invariants are 
discussed:
–	 the basic invariants
	 I1σ = σ··I,     I2σ = σ··σ,      I3σ = (σ·σ)··σ,	 (1)

–	 the principal invariants following from the eigenvalue problem

	 (σ–λ I ) · n =  0,	 (2)

which results the characteristic equation

	 λ3 – Jlσλ
2 + J2σλ – J3σ = 0	 (3)

with the invariants [19]

	 I1σ = trσ =  σ··I
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–	 the cylindrical invariants based on the roots of the characteristic equation λ1 ≥ λ2 ≥ λ3 and which 
can be expressed as follows

Zλ λ λ λ= + +1
3 1 2 3( ),

	 Rλ λ λ λ λ λ λ= − + − + −1
3 1 2
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2 3
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–	 the axiatoric-deviatoric invariants

	 1 2 3
1 1, , ( )
2 3

I I′ ′= ⋅⋅ = ⋅⋅ = ⋅ ⋅ ⋅s sI I s s s s sσ σ 	 (6)

–	 representation based on Lode’s [18] and Novozhilov’s [20, 21] approaches – instead of 

3sI'  the stress angle θ is applied

	 3
3/2

2

3 3cos3
2 ( )

I
I
′

θ =
′

	 (7)

In Eqs (1)–(7) the following notations are used: I is the second rank unit tensor, 1
3

= − ⋅⋅s I Iσ σ  
is the stress deviator, Zλ, Rλ and ωλ are coordinates of a cylindrical coordinate system.

The presented sets achieve acceptance in the theory of plasticity and in strength of 
materials. Some of them allows an easy split into incompressible and compressible material 
behavior. In addition, for some invariants a straightforward geometric interpretation can be 
obtained. It should be noted that the advantages of phenomeno-logical criteria formulated with 
the help of the introduced invariants are that they result a simple and complete description of 
experimental data, that they can be improved or corrected by experiences and that in the case 
of new materials they can be applied successfully.

4. Extension to Compressible Material Behavior

In the theory of plasticity mostly incompressible material behavior is assumed and the 
suggested criteria of the limit state can be used. This assumption is based on experimental 
observations for many materials. In [22] is stated that the volumetric (hydrostatic) part of 
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the stress tensor is responsible for the elastic behavior only and the remaining (deviatoric) 
part for both the elastic and the inelastic behavior. In this case the modeling of the isotropic 
incompressible behavior is based on neglecting of the first invariant Ilσ, and one gets the 
following criteria

	 2 3( , , ) 0S s eqI IΦ σ =
or
	 2( , , ) 0S eqIΦ θ σ =

From experimental observations’ point of view such an idealization cannot be accepted 
in many cases. It is an acceptable concept especially if I1σ ≤ 0. On the other hand for some 
applications one needs extensions to compressible behavior. One possible extension of 
incompressible models are suggested in [14, 15, 23]
– 	 by a linear transform

	 1 1

11
eq

eq

I σσ − γ
σ →

− γ–	 by a quadratic transform

	 1 1 2 12

1 21 1
eq eq

eq

I Iσ σσ − γ σ − γ
σ →

− γ − γ–	 and a cubic transform

	
1 1 2 1 3 13

1 2 31 1 1
eq eq eq

eq

I I Iσ σ σσ − γ σ − γ σ − γ
σ →

− γ − γ − γ

Another extension to compressible behavior is introduced in [1] with the help of the basic 
invariants (1)
–	 the linear invariant
	 1 1 1( ) ,I σσ = µσ

– 	 the quadratic invariant
	 2 2

2 2 1 3 2( ) ,I Iσ σσ = µ +µσ
–	 and the cubic invariant
	 3 3

3 4 1 5 1 2 6 3( ) ,I I I Iσ σ σ σσ = µ +µ +µσ

The μi, i = 1, ..., 6 are material parameters. The combination result in an equivalent stress as 
follows
	 1 2 3eqσ = ασ +βσ + γσ 	 (8)

which is sensitive to the compressibility and several non-classical effects (see [1, 3] among 
others). The coefficients α, β and γ are introduced as weight coefficients. The basic idea of 
representation (8) is used also in other applications, for example in [17] for creep mechanics 
problems. It is helpful to have the von Mises criterion as a special case that means β is usually 
equal to 1.
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5. Characteristics of the Material

The material behavior is characterized at the limit state by one or several parameters. They 
should be estimated from tests. But it is well known from the material testing that only a few 
basic tests exist: tension test, compression test, torsion test and hydrostatic compression test. 
All other test are for the characterization of the multi-axiallity of the material behavior. For 
better comparison of tests let us introduce the following parameter ratios based on [3, 4, 26]

–	 uniaxial compression – uniaxial tension ratio. 
	 Let us assume that the stress state is given by

	 d + −σ = − σ = σpp pp

	 and p is the unit vector characterizing the loading direction at uniaxial tension and 
compression. In this case one can introduce the ratio

	 /d − += σ σ

	 σ – is the limit value at compression.

–	 torsion – uniaxial tension ratio. 
	 Let us assume that the stress state is given by

	 *( ) 3 ( )k +− σ + = τ +pm mp pm mpσ

	 and m is a orthogonal to p unit vector. The following parameter can be suggested

	 *3 /k += τ σ
	 τ* is the limit value at torsion.
–	 biaxial compression – uniaxial tension ratio. Let us assume that the stress state is given by

	 D bD( ) ( )b +σ = − σ + = σ +pp mm pp mm

	N ow one obtains the parameter
	 D bD /b += σ σ

	 σBD is the limit value at biaxial compression.
–	 hydrostatic tension – uniaxial tension ratio

	 hyd hyd hyd hyd/ , /a a+ + + − − += σ σ = σ σ

	S uch type of parameters can be applied if the compressibility is taken into account.

–	 The Poisson’s ratio in the inelastic case and other ratios should be presented separately. 
The plastic Poisson’s ratio
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∂Φ ∂Φν = −
∂σ ∂σ

follows from the normality rule with σII = σIII = 0. One distinguishes the Poisson’s ratio at ten-

sion pl
+ν  with σI = σeq and at compression pl

−ν  with σI = –dσeq. The parameter allows to restrict 
the model parameters.

By analogy to the Poisson’s ratio the elongation – contraction ratio for a torsion bar can 
be established

	
11 12

∂Φ ∂Φχ =
∂σ ∂σ

with 12 3eqkσ = σ  and 11 22 33 13 23 0σ = σ = σ = σ = σ = . With the help of this ratio similar 
to the Poynting-effect, the Poynting-Swift-effect and the Kelvin-effect [3, 8] effects can be 
characterized by further properties.

For Ф(I2s, I3s, σeq) (incompressible case) the range of χ is 
1 1;
6 6

 χ∈ −  
. The alculations in 

the case of compressible material behavior the range follows from very complex calculations.
Let us assume again the special cases of Vonmises-type material behavior. In this case one 

gets the material behavior ratios presented in Table 1 for two variants of criteria. Note that the 
ratios d and k are applied in [1]. They coincide in both approaches.

T a b l e  1

Material behavior ratios for two limit criteria

von Mises Normal Stress Hypothesis
d = 1 D → ∞

K = 1 3k =

b
d
 = 1 bD → ∞

hyd hyd,a a+ − → ∞

pl pl 1 / 2v v− += =

hyd hyd1,a = a+ − → ∞

pl pl, 0v v− +→ ∞ =
χ = 0 χ = 0

6. Requirements to Strength Criteria

The correctness of any hypothesis can be verified by experimental data. On the other hand, 
there are not enough accurate data at combined stress states. For example, the scattering of 
the data allows a satisfying fit of different models by the same experimental data set. From 
this it follows that the uniqueness of the choice of a criterion cannot be established: there are 
no sufficient conditions for the choice.
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Let us introduce at first some necessary conditions presented in the literature:
–	 convexity
	 This requirement is not necessary for all failure criteria.
–	 trigonal or hexagonal symmetry of the limit surface in the π-plane
	 The rotational symmetry can be obtained for models with smooth surfaces as an interim 

solution;
–	 bounds of plastic Poisson’s ratio at tension pl ] –1,1 / 2];v+ ∈
–	 bounds of plastic Poisson’s ratio at compression pl ] –1,1 / 2]v+ ∈  for materials
	 with restricted hydrostatic compression, otherwise if hyda− → ∞  it follows vpl ≥ 1/2;
–	 bounds of the hydrostatic tension hyd pl]1 / 3;1 / (1 2 )]a v+ +∈ −

	 This value can be bounded additionally

	 hyd
pl11 pl12

1 1,
1 23 (1 2 )

a
vv

+
++

 
 =

− − 

The upper bound follow from the Drucker-Prager criterion, the lower bound from rotational 
symmetric ellipsoid with the power n = 12

	
6 12

122 12
eq 12

12

(3 ) , 0
1
sI a I a

a
σ+ = σ ≥

+

Assuming the lowest bound hyd 1 / 3a+ =  yields from the plane 2 eqI σ = σ

	 1 eqI σ = σ

Since one has not enough necessary and sufficient conditions one introduces plausibil­
ity conditions following from engineering understanding: the adequate description of the 
experimental data, the reliability and trustworthiness of the predictions, the simple and 
confident application, the understandability of the models, a clear geometrical background, 
a physical basis (not only abstract mathematical formulation), the account of the medial stress, 
a minimal number of parameters, dimensionless parameters, continuous differentiability 
even for the limit surfaces, continuous differentiability in the hydrostatic nodes (”rounded 
apex” after Franklin), and the models should contain well-known hypotheses as special cases. 
Additional requirements are: the explicit resolution with respect of σeq, the wide as possible 
range of convex shapes (π-plane) → singular edges, no change of the shape (π-plane) for 
intersections I1σ = const., no formulation of model surfaces with partial surfaces, which result 
in singular meridians (only models with planes or smooth surfaces can be used), the dependence 
of the models for Φ of all three invariants, only rational functions of the invariants I1σ and I3s 
should be introduced, and the maximum of the stress power cannot be higher than 12.
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7. Conclusions

Considering the big number of models suggested, up to now there are no physical statements 
for the shape of the surface Φ. From this it follows that the models can be only formulated 
empirically. There are many proposals considering the convexity of the limit surface. It can 
be shown that range of convex incompressible models is bounded. In [15] the incompressible 
models are presented in the k – d diagram. Assuming that three parameters from the tension, 
compression and torsion tests are enough to represent the convex forms of incompressible 
material behavior it can be shown the bounds for such models. The convexity follows from 
Drucker’s postulate [11]. But there are a lot of experimental observations demonstrating non-
convex forms of material behavior.

8. Outlook

The formulation and investigation of limit criteria will be in the focus of the scientific 
community in the future. The reason is that one has new materials and application fields. The 
limit surface approach is not related to the microstructure, but it is a simple engineering way 
to solve problems related to the strength prediction or material behavior modeling. It will be 
discussed in the nearest future:
–	 how one can get a better experimental data set for making an adequate model choice;
–	 are there any formulation principles based on the mathematical structure of the criteria or 

symmetry considerations allowing the enough accurate generalized criterion, and last but 
not least;

–	 can be the microstructure taken into account.
Since one has a partly significant scattering of the experimental data rules for the mate-

rial parameters estimates must be established. One possible approach are convexity studies for 
the limit surface. The investigation of the convexity bounds for simple criteria with one or 
two parameters can be performed as it is shown in [5, 24]. It can be shown that for advanced 
criteria only numerical investigations result in knowledge-based bounds [9].

The mathematical structure of generalized criteria is discussed, for example, in [1, 13]. 
One possible generalized criterion is given by Eq. (8), another possibility is given as a qua-
dratic equation
	 ( )2eq eq 2 0, Inn n

n nS S nσ + σ + = ∈
or a cubic one
	 ( ) ( )3 2

eq eq 2 eq 3s 0, Inm n m
m m mS S mσ + σ + σ + = ∈

The integrity base S, i G In  is a set of scalar functions of the axiatoric-deviatoric invariants 
(6) [7]

1 1 1 ,S a I σ=
2

2 2 1 2 2 ,sS a I b Iσ= +
3

3 3 1 3 3 2 1 2 ,s sS a I c I d I Iσ σ= + +


3 2 2 4 3
6 6 1 6 2 6 3 6 1 2 6 1 2 6 1 3 6 1 2 36 s s s s s s sS a I b I c I d I I e I I f I I g I I Iσ σ σ σ σ= + + + + + +

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with the parameters ai, bi, ci, . . .. It can be shown that this representation contains a lot of classical and 
non-classical limit criteria for incompressible and compressible materials [13]. Both the quadratic 
and the cubic equation can be solved analytically with respect to σeq. In addition, each term of the 
integrity base is differentiable with respect to the stress tensor σ. But considering the great number of 
parameters the question of applicability arises.

With respect to new material models based on the Cosserat continuum [2] further developments 
should be directed to the question of suitable equivalent stress hypotheses in this case.

The paper is partly based on the discussions with my colleaque Dr.-Ing. Vladimir Kolupaev (German 
Institute of Plasctics, Darmstadt).
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