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The aim of the paper is stochastic approach for LCA/LCI probabilistic conception with uncorrelated input/output data in steel 
process chain with six processes (including Coke Plant, Iron Blast Furnace, Sintering Plant, BOF, Continuous Steel Casting and 
Hot Rolling Mill) applied to the ArcelorMittal Steel Poland (AMSP) S.A. in Krakow, Poland, case study. Uncertainty assessment 
in LCI based on a Monte Carlo simulation with the Excel spreadsheet and CrystalBall® (CB) software was used to develop 
scenarios for uncertainty inputs. The economic and social criteria and indicators will not be further discussed in this paper. 
The framework of the study was originally carried out for 2005 data. Uncertainty of these parameters reflects directly on the 
outcome of LCA method. The LCI study was conducted in accordance with all requirements of the International Standards ISO 
14040:2006. The use of stochastic model helps to characterize the uncertainties better, rather than pure analytical mathematical 
approach. In this case study only the following substances have been taken in account: hard coal, blast furnace gas, coke oven 
gas, lubricant oil, cadmium (Cd), carbon monoxide (CO), carbon dioxide (CO2), nitrogen dioxide (NO2), hydrochloric acid (HCl), 
sulfur dioxide (SO2) and lead (Pb).

Keywords: Life Cycles Assessment (LCA), Life Cycle Inventory (LCI), Stochastic approach, Monte Carlo simulation, Crystal Ball®

S t r e s z c z e n i e

Celem artykułu jest przedstawienie stochastycznej analizy drugiego etapu oceny cyklu życia (LCA), jakim jest analiza 
inwentarzowa (LCI), dotyczącej procesu produkcji stali w kombinacie metalurgicznym ArcelorMittal Steel Poland S.A, 
w Krakowie. Kombinat obejmuje: koksownię, wielkie piece, aglomerownię, stalownie konwertorową (BOF), ciągłe odlewanie 
stali oraz walcownię gorącą. Kryteria ekonomiczne i socjalne nie są przedmiotem analizy w prezentowanym artykule. Analiza 
LCI w warunkach niepewności została przeprowadzona z zastosowaniem programu CrystalBall® (CB), współpracującym 
z arkuszem kalkulacyjnym Excel, w oparciu o symulację Monte Carlo. Dane wzięte do analizy dotyczą roku 2005. Analiza 
LCI została przeprowadzona zgodnie z normą ISO 14040:2006. Do analizy wybrano takie wielkości, jak: węgiel kamienny, gaz 
wielkopiecowy, gaz koksowniczy, oleje, kadm (Cr), tlenek węgla (CO), dwutlenek węgla (CO2), dwutlenek azotu (NO2), kwas 
solny (HCl), dwutlenek siarki (SO2) oraz ołów (Pb).

Słowa kluczowe: Ocena cyklu życia (LCA), Analiza inwentarzowa (LCI), analiza stochastyczna, symulacja Monte Carlo, 
Crystal ball®
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1.  Introduction to AMSP Power Plant in Krakow, Poland

AMSP consists of four plants located in Dabrowa, Krakow, Sosnowiec and Swietochlowice. 
It boasts a full production system – from pig iron to final, highly processed steel products 
– producing around 6.5 million tons of crude steel annually. Today, AMSP is the only truly 
global steel maker - with operations in the USA, Canada, Mexico, Trinidad, France, Germany, 
the Czech Republic, Poland, Romania, Bosnia, Macedonia, Kazakhstan, Algeria and South 
Africa [2]. The overview of the AMSP is given in Figure 1.

Fig. 1. General view of the ArcelorMittal Steel Poland in Krakow

Rys. 1. Schemat ogólny cyklu produkcyjnego stali w AMP w Krakowie

2.  Goal, Scope, Terminology and Definitions

Goal definition and scoping is perhaps the most important component in LCA because the 
study is carried out according to the statements made in this phase, which defines the purpose 
of the study, the expected product of the study, system boundaries, functional unit (FU) 
and assumptions [3]. Although many analytic models for managing inventories exist, the 
complexity of many practical situations often requires simulation [4]. MC simulation with 
the CB analysis tool, spreadsheet add-in software, is a practical methodology for determining 
the uncertainty of LCI parameters.
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The goals of this study were to:
–– develop a stochastic approach for a Life Cycle Assessment (LCA) technique limited to 

a Life Cycle Inventory (LCI) study for the AMSP steel process chain from Coke Plant 
and Sinter Plant to Hot Rolling Mill with scope to facilitate the range of emerging impact 
assessment methods in future studies,

–– produce national and regional LCI data for energy generating industry,
–– promote the development of LCI and /or LCA research and application in Poland.

The study comprises the inventory corresponding to all the process stages including the 
Coke Plant, Iron Blast Furnace, Sintering Plant, BOF, Continuous Steel Casting and Hot 
Rolling Mill. The complete inventory was integrated by main environmental loads (inputs, 
outputs): energy and raw materials consumed, waste produced, and emissions to air, water 
and soil [5].

The functional unit in this study, the central concept in LCA, is defined as “steel process 
chain [which] includes all activities linked with steel production from Coke Plant and Sinter 
Plant to Hot Rolling Mill in 2005”. System boundaries of this study were presented in Fig. 
2. It does not include the manufacture of downstream products, their use, end of life. For the 
AMSP power plant, mining and transportation of raw coal, crude oil and natural gas were not 
included. Key characteristics for the AMSP are shown in Tab. 1 [1].

Fig. 2. System boundaries of the study

Rys. 2. Granice analizowanego procesu produkcji stali
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3.  Uncertainty Assessment in LCI

In the Commission Decision of 18 July 2007 establishing guidelines for the monitoring 
and reporting of greenhouse gas emissions pursuant to the Directive 2003/87/EC of the 
European Parliament and of the Council, uncertainty means: “a parameter, associated 
with the result of the determination of a quantity, that characterizes the dispersion of the 
values that could reasonably be attributed to the particular quantity, including the effects 
of systematic as well as of random factors and expressed in per cent and describes a 
confidence interval around the mean value comprising 95% of inferred values taking into 
account any asymmetry of the distribution of values” [6]. Usually the overall uncertainty 
of the LCI is dominated by a few major uncertainties. Likewise, the overall uncertainty of 
a specific process is typically dominated by one source of uncertainty and other sources 
of uncertainty may be ignored [7]. Information about uncertainty in the LCI results cannot 
be fully captured within the LCI database, because a significant share of this uncertainty 
arises in practice, based on relationship between the data [8]. When the main determining 
parameters of an uncertainty is known, it can be eliminated or at least reduced to the 
uncertainty by modelling.
Three types of process modelling can be identified in LCA studies [9]:
–– black box models of processes. This is the mostly used type in LCA because this is the 

easiest way of process modelling.
–– models of processes with linear functional relations. In this concept linear relations 

(functions) between each input and output as well as between the different inputs are 
defined.

–– models of processes with non-linear and linear functional relations. In this concept linear 
or non-linear relations (functions) between each input and output as well as between the 
different inputs are defined.

In Eco-indicator 99 [10] three fundamentally different types of uncertainty were presented: 
–– operational, or data uncertainties – the squared geometric standard deviation expressed 

the variation between the best estimate and the upper and lower confidence limits (97.5% 
and 2.5%). The uncertainties are intended for use in software tools that apply Monte Carlo 
analysis

–– fundamental, or model uncertainties – many modelling choices are often rather subjective,
–– uncertainty due to the incompleteness of the model.

The overall uncertainty of the assessment includes [11]:
–– uncertainty of models and parameters,
–– uncertainty of the indicators interpretation. 

4.  The benefit of MC simulation

The uncertainty stems from partial ignorance or lack of perfect knowledge. Based 
on the experiences regarding uncertainty in LCA/LCI studies, it seems that LCI must be 
performed from a probabilistic point of view, rather than by considering deterministic 
aspects. Among the probabilistic tools, in order to include the above aspects the use of MC 
analysis has been increasing in recent years, and is one of the most widespread stochastic 
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model uncertainty analyses. This effect has been widely studied (e.g. [12, 13]). The MC 
simulation uses these distributions, referred to as “assumptions”, to automate the complex 
“what-if” process and generate realistic random values. The benefits of a simulation 
modelling approach are:
1)	an understanding of the probability of specific outcomes,
2)	the ability to pinpoint and test the driving variables within a model,
3)	a far more flexible model,
4)	clear summary charts and reports [14].

One of the problems associated with traditional spreadsheet models is that for variables 
that are uncertain. Without the aid of simulation, a spreadsheet model would only reveal 
a single outcome. Spreadsheet uncertainty analysis uses a spreadsheet model and simulation 
to analyze the effect of varying inputs or outputs of the modelled system automatically. With 
CB, a commercially available software, we have the ability to replace each uncertain variable 
with a probability distribution, a function that represents a range of values and the likelihood 
of occurrence beyond that range.

The MC sampling was done using an Excel® spreadsheet modified to develop scenarios 
for inputs given the probability distributions, means values, etc. and CB, a software package 
offered by Decisionnering, generating random numbers for a probability distribution beyond 
the entire range of possible values, based on the assumption variables. For this reason, a large 
number of trials are required to obtain accurate results for the true shape of the distribution 
results and probabilities for those results. The MC analysis-simulation is the only acceptable 
approach for U.S. Environmental Protection Agency (EPA) risk assessments [15]. CB contains 
12 distribution types [6].

4.1.  Data Sources Choosing Input Distributions

The data collection for the core of the AMSP power plant generating processes has been 
performed rigorously, with appropriate checks on consistency and completeness. The data 
used in the study are obtained from the following sources:
–– site-specific measured or calculated data [1],
–– LCA study carried out on behalf of the AGH-University of Science and Technology’s 

Management Department by the Polish Academy of Arts and Sciences in Krakow [5],
–– value based on literature information,
–– AMSP Environmental Impact Report [1],
–– data obtained from other sources e.g. personal communication (AMSP Environmental 

Department director).
For some variables, there may be enough empirical information to fit parametric 

distributions or even specify empirical histograms. For other variables, the available data 
may be very limited or completely absent. Sometimes it is reasonable to let experts define 
the shapes of the input distribution subjectively, but this is not always a workable strategy 
and often leads to more controversy [16]. Use of default (i.e. arbitrary) input distributions is 
sometimes suggested, but this approach can be criticized easily [17-18].

The probability distributions for the hard coal, blast furnace gas, coke oven gas and 
natural gas were considered to be normal with coefficient of variation (CV) of 0.10 
according to the [18, 19]. The probability distributions for the lubricant oil were considered 
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to be normal with CV of 0.1, according to the estimations published by Weidema and 
Wesnaes [20]. The proper determination of the log-normal probability distributions in 
the case of SO2 (emissions), CO (emissions), NO2 (emissions), Cr, Cd, Ni and HCl data 
with a geometric standard deviation (σg) between 1.5 and 2.2 is possible according to 
the estimations published by Sonnemann et al. [14] based on Rabl and Spadaro [21] and 
STQ [22], as well as the data taken from Kulczycka, Henclik study [5]. It was possible 
to simulate the following parameters emitted in air (e.g. lack of information regarding 
geometric standard deviation, σg): Cu, Mn, S and Pb, because according to the criteria 
proposed by Sonnemann et al. [14] that “heavy metals is a sum parameter in the form of Pb 
equivalents of following heavy metals: As, B, Cr, Cu, Hg, Mn, Mo, Ni Pb and Sb”, the log-
normal probability distributions with a geometric standard deviation (σg) equal 2.5, were 
selected from STQ [22]. The geometric standard deviations consideration as well as normal 
standard deviations were done due to the lack of Polish data applied to the concentrations 
in emissions of the AMSP steel processes. In the study presented by Sonnemann et al. 
[14] related to the uncertainty assessment by Monte Carlo simulation for LCI applied to 
waste incinerator in Tarragona, the data were obtained from the ETH database [19]. These 
data have been collected from a Swiss perspective on a European scale. The probability 
distributions for other elements of Site-Specific Data had to be derived from the CB 
analysis experimental results. The confidence level is specified as 95%.

Meier [18] proposed to assume classes of normal probability distributions with the 
following CVs:
–– for data obtained by stochiometric determination, a CV of 2% needs to be considered,
–– for actual emission measurements or data computable in well-known process simulation, 

a CV of 10% is expected,
–– for well-defined substances or summed parameters, a CV of 20% can be assumed,
–– for data taken from specific compounds by an elaborated analytical method, a CV of 30% 

is expected. 
According to [23], and [26] several reports in risk assessment and impact pathway 

analysis have shown that the log-normal distribution seems to be a more realistic 
approximation for the variability in fate and effect factors than the normal distribution. 
The 50th percentile of a log-normal distribution is related to the mean of its corresponding 
normal distribution. The log-normal distribution is calculated assuming that logarithm of 
the variable has a normal distribution. The geometric mean, μg, and the geometric standard 
deviation, σg, of the sample is very practical and correspond to the mean and coefficient 
of variation for the normal distribution. Moreover, they provide multiplicative confidence 
intervals such as:

The complete inventory was integrated by main environmental loads (inputs, outputs): 
energy and raw materials consumed, waste produced, and emissions into the air for the year 
2005 with their distribution type and deviations are presented in [5]. 

In this case study only the following substances have been taken in account: hard coal, 
blast furnace gas, coke oven gas, lubricant oil, cadmium (Cd), carbon monoxide (CO), 

g[ / , ] for confidence interval (level) of 68%.g g gm σ m ⋅σ
2 2[ / , ] for confidence interval of 95% [14].g g g gm σ m ⋅σ
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carbon dioxide (CO2), nitrogen dioxide (NO2), hydrochloric acid (HCl), sulfur dioxide 
(SO2) and lead (Pb).

Figures 3-5 show the results of 10000 replications of the CB screenshot (define assumption 
dialogue box for normal and log-normal distributions as well as the final provision) related 
to the data given in [5]. 

Fig. 3. Steel process chain includes all activities linked with steel production from Coke Plant and 
Sinter Plant to Hot Rolling Mill in 2005

Rys. 3. Rozkłady prawdopodobieństwa oraz wyniki symulacji MC (histogramy) przeprowadzone dla róż-
nych produktów przyporządkowanych procesowi produkcji stali (koksownia-walcownia gorąca) w 2005
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Fig. 4. (continued) Steel process chain includes all activities linked with steel production from Coke 
Plant and Sinter Plant to Hot Rolling Mill in 2005

Rys. 4. (cd.) Rozkłady prawdopodobieństwa oraz wyniki symulacji MC (histogramy) przeprowadzone dla 
różnych produktów przyporządkowanych procesowi produkcji stali (koksownia-walcownia gorąca) w 2005
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Fig. 5. (continued) Steel process chain includes all activities linked with steel production from Coke 
Plant and Sinter Plant to Hot Rolling Mill in 2005

Rys. 5. (cd.) Rozkłady prawdopodobieństwa oraz wyniki symulacji MC (histogramy) przeprowadzone dla 
różnych produktów przyporządkowanych procesowi produkcji stali (koksownia-walcownia gorąca) w 2005
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4.2.  Discussions

Several LCA studies have been proposed in the literature to present and to compare 
many techniques to compute uncertainty propagation. Simulation models are generally 
easier to understand than many analytical approaches [4]. Usually the overall uncertainty 
of an LCI is dominated by a few major uncertainties [24]. One of the most interesting 
experiences is that reported by Rabl and Spadaro [21]. They evaluated the uncertainty and 
variability of damage and costs of air pollution by means of analytical statistical methods. 
Monte Carlo Simulation in LCA approach used for airborne emissions of biomass-based 
ethanol products from different feedstock planting areas in China is presented in [27], as 
well as Monte Carlo Simulation on the uncertainties in transportation distance and moisture 
content is studied in [28]. For the uncertainty analysis of LCI, Hanssen and Asbjornsen [19] 
used statistical analysis. Ros [30] proved the fuzzy logic, and Maurice et al. [31] as well 
as Meier [18] decided in favour of the stochastic methods [14]. Benetto et al. [32] have 
presented the possibility theory approach in uncertainty analysis. The uncertainty analysis 
in ecological risk assessment is found in the 24th Pellston Workshopon on Uncertainty 
Analysis in Ecological Risk Assessment [33], and discussion about the uncertainty and 
error calculation in LCA is presented in 14th SETAC Europe Annual Meeting [34]. An 
adaptation of the procedure for the uncertainty and variability assessment in the LCI has 
been presented in [14]. LCI of GHG emission for electricity power plants in Thailand using 
the LCIA was developed in [35].

5.  Conclusions

The aim of the study is the use of a stochastic assessment by Monte Carlo Simulation 
for LCI applied to steel process chain: the AMSP in Krakow, Poland, case study and to 
promote the use of uncertainty estimation as routine in environmental science. Uncertainty 
analysis in the LCA methodology has received increasing attention over the last years. The 
functional unit in this study, the central concept in LCA, is defined as “steel process chain 
[which] includes all activities linked with steel production from Coke Plant and Sinter 
Plant to Hot Rolling Mill in 2005”. The economic and social criteria and indicators have 
not been further discussed in this paper.

LCA/LCI data are full of uncertain numbers. The benefits of Monte Carlo Simulation 
save time and resources. CB eliminates the need to run, test, and present multiple 
spreadsheets. With the CB analysis we can show the benefit of investing more on 
a monthly basis. 

The use of stochastic model helps to characterize the uncertainties better than the pure 
analytical mathematical approach. The created inventories using the probabilistic approach 
facilitate the environmental damage estimations for industrial process chains with complex 
number of industrial processes (e.g. steel production). Consequently, the Monte Carlo 
analysis is a powerful method for quantifying parameter uncertainty in LCA studies. For 
example, in this study the most likely SO2 emission values ranged between 411.40 Mg and 
2,033.03 Mg. The certainty level is 95%. The quantity of the SO2 emissions used in the 
model calculation was 916.64 Mg.
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6.  Outlook 

The research described in this paper can also serve as the basis for future work. The data 
obtained from the Monte Carlo Simulation, presented in Figures 3-5, will be used in the next 
step of the LCA analysis, in the Life Cycle Impact Assessment (LCIA). A potential direction 
for the future research is the integrated LCA and risk assessment for industrial processes, 
based on the probabilistic and statistical modelling for decision making under risk analysis 
as this technique accounts for uncertainties in the assumptions. The baselines presented in 
this study use deterministic input values. In a deterministic model, all data are known, or 
assumed to be known, with certainty. In a probabilistic model, some data are described by 
probabilistic distributions. Simulation models are generally easier to understand than many 
analytical approaches. 
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