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Abstract

The aim of the paper is stochastic approach for LCA/LCI probabilistic conception with uncorrelated input/output data in steel
process chain with six processes (including Coke Plant, Iron Blast Furnace, Sintering Plant, BOF, Continuous Steel Casting and
Hot Rolling Mill) applied to the ArcelorMittal Steel Poland (AMSP) S.A. in Krakow, Poland, case study. Uncertainty assessment
in LCI based on a Monte Carlo simulation with the Excel spreadsheet and CrystalBall® (CB) software was used to develop
scenarios for uncertainty inputs. The economic and social criteria and indicators will not be further discussed in this paper.
The framework of the study was originally carried out for 2005 data. Uncertainty of these parameters reflects directly on the
outcome of LCA method. The LCI study was conducted in accordance with all requirements of the International Standards ISO
14040:2006. The use of stochastic model helps to characterize the uncertainties better, rather than pure analytical mathematical
approach. In this case study only the following substances have been taken in account: hard coal, blast furnace gas, coke oven
gas, lubricant oil, cadmium (Cd), carbon monoxide (CO), carbon dioxide (CO,), nitrogen dioxide (NO,), hydrochloric acid (HCI),

sulfur dioxide (SO,) and lead (Pb).
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Streszczenie

Celem artykutu jest przedstawienie stochastycznej analizy drugiego etapu oceny cyklu zycia (LCA), jakim jest analiza
inwentarzowa (LCI), dotyczacej procesu produkcji stali w kombinacie metalurgicznym ArcelorMittal Steel Poland S.A,
w Krakowie. Kombinat obejmuje: koksownig, wielkie piece, aglomerownig, stalownie konwertorowa (BOF), ciaglte odlewanie
stali oraz walcownig goraca. Kryteria ekonomiczne i socjalne nie sg przedmiotem analizy w prezentowanym artykule. Analiza
LCI w warunkach niepewno$ci zostata przeprowadzona z zastosowaniem programu CrystalBall® (CB), wspolpracujacym
z arkuszem kalkulacyjnym Excel, w oparciu o symulacj¢ Monte Carlo. Dane wzigte do analizy dotycza roku 2005. Analiza
LCI zostata przeprowadzona zgodnie z norma ISO 14040:2006. Do analizy wybrano takie wielkoci, jak: wegiel kamienny, gaz
wielkopiecowy, gaz koksowniczy, oleje, kadm (Cr), tlenek wegla (CO), dwutlenek wegla (CO,), dwutlenek azotu (NO,), kwas

solny (HCI), dwutlenek siarki (8O,) oraz otéw (Pb).

Stowa kluczowe: Ocena cyklu zycia (LCA), Analiza inwentarzowa (LCI), analiza stochastyczna, symulacja Monte Carlo,

Crystal ball®
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1. Introduction to AMSP Power Plant in Krakow, Poland

AMSP consists of four plants located in Dabrowa, Krakow, Sosnowiec and Swietochlowice.
It boasts a full production system — from pig iron to final, highly processed steel products
— producing around 6.5 million tons of crude steel annually. Today, AMSP is the only truly
global steel maker - with operations in the USA, Canada, Mexico, Trinidad, France, Germany,
the Czech Republic, Poland, Romania, Bosnia, Macedonia, Kazakhstan, Algeria and South
Africa [2]. The overview of the AMSP is given in Figure 1.

Coke Plant Steel Plant

1300kt/a 1000 kt/a \O/

Ve w
700 000 Mg/y Mixer
(4) 3x75 m? a 2x1200t 1
01 Dry Coke L <
5 . = _— = —
I 650000Mg/y  Sinter Plant L7 2 S
— f 2 100 kt/a v=1760m*  v=1540 m* e
d=9.75m aaoim 2min/a 3x(145 t/a)
Coke Plant 1375 kt/a o Fliace o Conzllggsktcla:ler
2 300 kt/a zation Steel Plant 2 600 kt/a
Hot Rolling Mill NEW Hot Rolling Mill 2 400 kt/a
= o Py
e wr i et e S et e,
col sheets il Gl b i b~ A B
th.: 2-6 mm th.: 2-12 mm
i i Thickness of the strips rolled 1,2-25,4 mm
Wwid.:730-1500 mm wid.:730-1500 mm OlhicERollin2INIIRZRCOKYE Strip Width 700-2100 mm
weig.: 8t leng.:2000-6000 mm Coil weight 3Bt
Cold Rolling Mill Hot Dip .
Galvanizing Line - ov
. = 150 kt/a 1\ L)
O G ) E. okio [ WelaYe )
Picling Line Rolling Mill HNX Temper Mill Electrogalvanizing Slitting
700 (1 200) kt/a 850 (1 100) kt/a Furnace 700 kt/a el Il ) Line - 160 kt/a Unit
Cold Rolling Mill 850 (1 100) kt/a 670 kt/a 600 kt/a
Pipe Mill Pipe Mill 165 kt/a Hot Dip Galvanized Pipes 30 kt/a

4 (3
= [ 021,3 - 2114,3 mm

el
fRTRINNTGE ] N
e = s
4%_"_& @ Lo 141714603 mm "‘ém ereres  Line2:¢48,3-4168,3mm

Power Plant Railway Convey Plant

Fig. 1. General view of the ArcelorMittal Steel Poland in Krakow

Rys. 1. Schemat ogélny cyklu produkeyjnego stali w AMP w Krakowie

2. Goal, Scope, Terminology and Definitions

Goal definition and scoping is perhaps the most important component in LCA because the
study is carried out according to the statements made in this phase, which defines the purpose
of the study, the expected product of the study, system boundaries, functional unit (FU)
and assumptions [3]. Although many analytic models for managing inventories exist, the
complexity of many practical situations often requires simulation [4]. MC simulation with
the CB analysis tool, spreadsheet add-in software, is a practical methodology for determining
the uncertainty of LCI parameters.
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The goals of this study were to:

— develop a stochastic approach for a Life Cycle Assessment (LCA) technique limited to
a Life Cycle Inventory (LCI) study for the AMSP steel process chain from Coke Plant
and Sinter Plant to Hot Rolling Mill with scope to facilitate the range of emerging impact
assessment methods in future studies,

— produce national and regional LCI data for energy generating industry,

— promote the development of LCI and /or LCA research and application in Poland.

The study comprises the inventory corresponding to all the process stages including the
Coke Plant, Iron Blast Furnace, Sintering Plant, BOF, Continuous Steel Casting and Hot
Rolling Mill. The complete inventory was integrated by main environmental loads (inputs,
outputs): energy and raw materials consumed, waste produced, and emissions to air, water
and soil [5].

The functional unit in this study, the central concept in LCA, is defined as “steel process
chain [which] includes all activities linked with steel production from Coke Plant and Sinter
Plant to Hot Rolling Mill in 2005”. System boundaries of this study were presented in Fig.
2. It does not include the manufacture of downstream products, their use, end of life. For the
AMSP power plant, mining and transportation of raw coal, crude oil and natural gas were not
included. Key characteristics for the AMSP are shown in Tab. 1 [1].
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RESOURCES Ingots
etc.
Ore Coke
Coke oven gas Plant
Blast furnace gas
Hard coal ‘
Crude oil
Water Fu,:'::: - - . Cc:nsltlll:';us Hot::lllln -
HCl
Lime
Sinter material
etc.
Sinter
Plant

Waste, waste water, air emissions

Fig. 2. System boundaries of the study

Rys. 2. Granice analizowanego procesu produkc;ji stali
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3. Uncertainty Assessment in LCI

In the Commission Decision of 18 July 2007 establishing guidelines for the monitoring
and reporting of greenhouse gas emissions pursuant to the Directive 2003/87/EC of the
European Parliament and of the Council, uncertainty means: “a parameter, associated
with the result of the determination of a quantity, that characterizes the dispersion of the
values that could reasonably be attributed to the particular quantity, including the effects
of systematic as well as of random factors and expressed in per cent and describes a
confidence interval around the mean value comprising 95% of inferred values taking into
account any asymmetry of the distribution of values” [6]. Usually the overall uncertainty
of the LCI is dominated by a few major uncertainties. Likewise, the overall uncertainty of
a specific process is typically dominated by one source of uncertainty and other sources
of uncertainty may be ignored [7]. Information about uncertainty in the LCI results cannot
be fully captured within the LCI database, because a significant share of this uncertainty
arises in practice, based on relationship between the data [8]. When the main determining
parameters of an uncertainty is known, it can be eliminated or at least reduced to the
uncertainty by modelling.

Three types of process modelling can be identified in LCA studies [9]:

— black box models of processes. This is the mostly used type in LCA because this is the
easiest way of process modelling.

— models of processes with linear functional relations. In this concept linear relations
(functions) between each input and output as well as between the different inputs are
defined.

— models of processes with non-linear and linear functional relations. In this concept linear
or non-linear relations (functions) between each input and output as well as between the
different inputs are defined.

In Eco-indicator 99 [10] three fundamentally different types of uncertainty were presented:

— operational, or data uncertainties — the squared geometric standard deviation expressed
the variation between the best estimate and the upper and lower confidence limits (97.5%
and 2.5%). The uncertainties are intended for use in software tools that apply Monte Carlo
analysis

— fundamental, or model uncertainties — many modelling choices are often rather subjective,

— uncertainty due to the incompleteness of the model.

The overall uncertainty of the assessment includes [11]:

— uncertainty of models and parameters,

— uncertainty of the indicators interpretation.

4. The benefit of MC simulation

The uncertainty stems from partial ignorance or lack of perfect knowledge. Based
on the experiences regarding uncertainty in LCA/LCI studies, it seems that LCI must be
performed from a probabilistic point of view, rather than by considering deterministic
aspects. Among the probabilistic tools, in order to include the above aspects the use of MC
analysis has been increasing in recent years, and is one of the most widespread stochastic
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model uncertainty analyses. This effect has been widely studied (e.g. [12, 13]). The MC
simulation uses these distributions, referred to as “assumptions”, to automate the complex
“what-if” process and generate realistic random values. The benefits of a simulation
modelling approach are:

1) an understanding of the probability of specific outcomes,

2) the ability to pinpoint and test the driving variables within a model,

3) a far more flexible model,

4) clear summary charts and reports [14].

One of the problems associated with traditional spreadsheet models is that for variables
that are uncertain. Without the aid of simulation, a spreadsheet model would only reveal
a single outcome. Spreadsheet uncertainty analysis uses a spreadsheet model and simulation
to analyze the effect of varying inputs or outputs of the modelled system automatically. With
CB, a commercially available software, we have the ability to replace each uncertain variable
with a probability distribution, a function that represents a range of values and the likelihood
of occurrence beyond that range.

The MC sampling was done using an Excel® spreadsheet modified to develop scenarios
for inputs given the probability distributions, means values, etc. and CB, a software package
offered by Decisionnering, generating random numbers for a probability distribution beyond
the entire range of possible values, based on the assumption variables. For this reason, a large
number of trials are required to obtain accurate results for the true shape of the distribution
results and probabilities for those results. The MC analysis-simulation is the only acceptable
approach for U.S. Environmental Protection Agency (EPA) risk assessments [15]. CB contains
12 distribution types [6].

4.1. Data Sources Choosing Input Distributions

The data collection for the core of the AMSP power plant generating processes has been
performed rigorously, with appropriate checks on consistency and completeness. The data
used in the study are obtained from the following sources:

— site-specific measured or calculated data [1],

— LCA study carried out on behalf of the AGH-University of Science and Technology’s
Management Department by the Polish Academy of Arts and Sciences in Krakow [5],

— value based on literature information,

— AMSP Environmental Impact Report [1],

— data obtained from other sources e.g. personal communication (AMSP Environmental
Department director).

For some variables, there may be enough empirical information to fit parametric
distributions or even specify empirical histograms. For other variables, the available data
may be very limited or completely absent. Sometimes it is reasonable to let experts define
the shapes of the input distribution subjectively, but this is not always a workable strategy
and often leads to more controversy [16]. Use of default (i.e. arbitrary) input distributions is
sometimes suggested, but this approach can be criticized easily [17-18].

The probability distributions for the hard coal, blast furnace gas, coke oven gas and
natural gas were considered to be normal with coefficient of variation (CV) of 0.10
according to the [18, 19]. The probability distributions for the lubricant oil were considered
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to be normal with CV of 0.1, according to the estimations published by Weidema and
Wesnaes [20]. The proper determination of the log-normal probability distributions in
the case of SO, (emissions), CO (emissions), NO, (emissions), Cr, Cd, Ni and HCI data
with a geometric standard deviation (c,) between 1.5 and 2.2 is possible according to
the estimations published by Sonnemann et al. [14] based on Rabl and Spadaro [21] and
STQ [22], as well as the data taken from Kulczycka, Henclik study [5]. It was possible
to simulate the following parameters emitted in air (e.g. lack of information regarding
geometric standard deviation, Gg): Cu, Mn, S and Pb, because according to the criteria
proposed by Sonnemann et al. [14] that “heavy metals is a sum parameter in the form of Pb
equivalents of following heavy metals: As, B, Cr, Cu, Hg, Mn, Mo, Ni Pb and Sb”, the log-
normal probability distributions with a geometric standard deviation (Gg) equal 2.5, were
selected from STQ [22]. The geometric standard deviations consideration as well as normal
standard deviations were done due to the lack of Polish data applied to the concentrations
in emissions of the AMSP steel processes. In the study presented by Sonnemann et al.
[14] related to the uncertainty assessment by Monte Carlo simulation for LCI applied to
waste incinerator in Tarragona, the data were obtained from the ETH database [19]. These
data have been collected from a Swiss perspective on a European scale. The probability
distributions for other elements of Site-Specific Data had to be derived from the CB
analysis experimental results. The confidence level is specified as 95%.

Meier [18] proposed to assume classes of normal probability distributions with the
following CVs:

— for data obtained by stochiometric determination, a CV of 2% needs to be considered,
— for actual emission measurements or data computable in well-known process simulation,

a CV of 10% is expected,

— for well-defined substances or summed parameters, a CV of 20% can be assumed,
— for data taken from specific compounds by an elaborated analytical method, a CV of 30%
is expected.

According to [23], and [26] several reports in risk assessment and impact pathway
analysis have shown that the log-normal distribution seems to be a more realistic
approximation for the variability in fate and effect factors than the normal distribution.
The 50™ percentile of a log-normal distribution is related to the mean of its corresponding
normal distribution. The log-normal distribution is calculated assuming that logarithm of
the variable has a normal distribution. The geometric mean, M, and the geometric standard
deviation, O, of the sample is very practical and correspond to the mean and coefficient
of variation for the normal distribution. Moreover, they provide multiplicative confidence
intervals such as:

[u, /0,1, -cg] for confidence interval (level) of 68%.

[u, /o>, -o°] for confidence interval of 95% [14].
g g g g

The complete inventory was integrated by main environmental loads (inputs, outputs):
energy and raw materials consumed, waste produced, and emissions into the air for the year
2005 with their distribution type and deviations are presented in [5].

In this case study only the following substances have been taken in account: hard coal,
blast furnace gas, coke oven gas, lubricant oil, cadmium (Cd), carbon monoxide (CO),
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carbon dioxide (CO,), nitrogen dioxide (NO,), hydrochloric acid (HCI), sulfur dioxide

(SO,) and lead (Pb).

Figures 3-5 show the results of 10000 replications of the CB screenshot (define assumption
dialogue box for normal and log-normal distributions as well as the final provision) related

to the data given in [5].
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Fig. 3. Steel process chain includes all activities linked with steel production from Coke Plant and
Sinter Plant to Hot Rolling Mill in 2005

Rys. 3. Rozktady prawdopodobienstwa oraz wyniki symulacji MC (histogramy) przeprowadzone dla roz-
nych produktow przyporzadkowanych procesowi produkeji stali (koksownia-walcownia goraca) w 2005
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Fig. 4. (continued) Steel process chain includes all activities linked with steel production from Coke
Plant and Sinter Plant to Hot Rolling Mill in 2005

Rys. 4. (cd.) Rozklady prawdopodobienstwa oraz wyniki symulacji MC (histogramy) przeprowadzone dla
roznych produktéw przyporzadkowanych procesowi produkeji stali (koksownia-walcownia goraca) w 2005
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Fig. 5. (continued) Steel process chain includes all activities linked with steel production from Coke
Plant and Sinter Plant to Hot Rolling Mill in 2005

Rys. 5. (cd.) Rozktady prawdopodobienstwa oraz wyniki symulacji MC (histogramy) przeprowadzone dla
réznych produktow przyporzadkowanych procesowi produkeji stali (koksownia-walcownia goraca) w 2005
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4.2. Discussions

Several LCA studies have been proposed in the literature to present and to compare
many techniques to compute uncertainty propagation. Simulation models are generally
easier to understand than many analytical approaches [4]. Usually the overall uncertainty
of an LCI is dominated by a few major uncertainties [24]. One of the most interesting
experiences is that reported by Rabl and Spadaro [21]. They evaluated the uncertainty and
variability of damage and costs of air pollution by means of analytical statistical methods.
Monte Carlo Simulation in LCA approach used for airborne emissions of biomass-based
ethanol products from different feedstock planting areas in China is presented in [27], as
well as Monte Carlo Simulation on the uncertainties in transportation distance and moisture
content is studied in [28]. For the uncertainty analysis of LCI, Hanssen and Asbjornsen [19]
used statistical analysis. Ros [30] proved the fuzzy logic, and Maurice et al. [31] as well
as Meier [18] decided in favour of the stochastic methods [14]. Benetto et al. [32] have
presented the possibility theory approach in uncertainty analysis. The uncertainty analysis
in ecological risk assessment is found in the 24™ Pellston Workshopon on Uncertainty
Analysis in Ecological Risk Assessment [33], and discussion about the uncertainty and
error calculation in LCA is presented in 14" SETAC Europe Annual Meeting [34]. An
adaptation of the procedure for the uncertainty and variability assessment in the LCI has
been presented in [14]. LCI of GHG emission for electricity power plants in Thailand using
the LCIA was developed in [35].

5. Conclusions

The aim of the study is the use of a stochastic assessment by Monte Carlo Simulation
for LCI applied to steel process chain: the AMSP in Krakow, Poland, case study and to
promote the use of uncertainty estimation as routine in environmental science. Uncertainty
analysis in the LCA methodology has received increasing attention over the last years. The
functional unit in this study, the central concept in LCA, is defined as “steel process chain
[which] includes all activities linked with steel production from Coke Plant and Sinter
Plant to Hot Rolling Mill in 2005”. The economic and social criteria and indicators have
not been further discussed in this paper.

LCA/LCI data are full of uncertain numbers. The benefits of Monte Carlo Simulation
save time and resources. CB eliminates the need to run, test, and present multiple
spreadsheets. With the CB analysis we can show the benefit of investing more on
a monthly basis.

The use of stochastic model helps to characterize the uncertainties better than the pure
analytical mathematical approach. The created inventories using the probabilistic approach
facilitate the environmental damage estimations for industrial process chains with complex
number of industrial processes (e.g. steel production). Consequently, the Monte Carlo
analysis is a powerful method for quantifying parameter uncertainty in LCA studies. For
example, in this study the most likely SO, emission values ranged between 411.40 Mg and
2,033.03 Mg. The certainty level is 95%. The quantity of the SO, emissions used in the
model calculation was 916.64 Mg.
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6. Outlook

The research described in this paper can also serve as the basis for future work. The data
obtained from the Monte Carlo Simulation, presented in Figures 3-5, will be used in the next
step of the LCA analysis, in the Life Cycle Impact Assessment (LCIA). A potential direction
for the future research is the integrated LCA and risk assessment for industrial processes,
based on the probabilistic and statistical modelling for decision making under risk analysis
as this technique accounts for uncertainties in the assumptions. The baselines presented in
this study use deterministic input values. In a deterministic model, all data are known, or
assumed to be known, with certainty. In a probabilistic model, some data are described by
probabilistic distributions. Simulation models are generally easier to understand than many
analytical approaches.
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