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Abstract 

The thesis concerns dynamic analysis of a two-phase, fully saturated medium. The  purpose 

is to determine the limits of validity of various simplification models. In order to do this a full set of 

governing, dynamic equations of saturated two phase media (Biot’s model) and a series of 

simplifying models often used in practice, such as the u-p simplification model, the quasi-static 

consolidation model and the single-phase model, are considered. The displacement of the skeleton, 

displacement of fluid, pore water pressure, influence of the soil saturation level, and physical 

parameters on the dynamic (amplification) factor are shown and compared with each model with 

various formulations. Moreover, the dynamic factor, which is a multiplier for the static solution, is 

analyzed. 

One dimensional (1D) and two dimensional (2D) problems were solely solved by the 

author. In the case of the 1D problems, an analytical solution was used. Regarding the 2D model, 

the Finite Element Method was utilized. In order to present and compare the results a customized 

computer program in Matlab was created. According to the results obtained all the simplifications 

have a significant impact. The level of discrepancy depends not only on the simplification used, but 

also on the parameters of the soil. What is worth mentioning  here, is that the very commonly used 

single phase model, which does not include pore water pressure, implies a significant inaccuracy in 

both displacements and stresses.  
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1. Introduction. 

1.1. Introduction. 

Soil mechanics is a branch of engineering mechanics that describes the behavior of soil. It 

differs from fluid mechanics and solid mechanics in the sense that soil consists of a heterogeneous 

mixture of fluids (usually air and water) and particles (for example clay, silt, sand, and gravel) but 

soil may also contain organic solids, liquids, gases, and other matter. Soil mechanics provides the 

theoretical basis for analysis in geotechnical engineering using a great deal of knowledge from 

physics, chemistry, geology, theory of elasticity, theory of plasticity, and strength of materials. We 

can say that it is an interdisciplinary science, which is proved in (Wrana & Pietrzak, 2015). 

Soil dynamics is a branch of geomechanics that describes processes which are unstable in 

time and which, as a consequence, require taking inertia forces into consideration. The study covers 

the numerical analysis of a two-phase media under harmonic loading. 

The response of saturated porous media under a dynamic load is of high interest in many 

fields ranging from geomechanics to biomechanics. Problems like transient phenomena during 

impact loading, earthquakes, water wave loading, and consolidation are of significant interest in 

geomechanics. The nature of the response of the saturated porous media depends not only on the 

nature of the loading but also on the flow and deformation characteristics of the media. The 

response is said to be fully drained when the rate of loading is much smaller than the rate of pore 

fluid flow. The problem is said to be static if the steady-state pore fluid pressures depend only on 

the hydraulic conditions and are independent of the porous skeleton response leading to uncoupled 

flow and deformation problem. A one-phase media for all the calculations is adequate then. At the 

other extreme if the rate of loading is much faster than the rate of flow, the fluid  follows the motion 

of the solid. This is an undrained condition, where the single-phase solution is also adequate. 

Depending on the rate of loading and the characteristics of the flow and deformation there 

are three possible models : 

- fully dynamic (the Biot’s model (Biot, 1956) ) 

- u-p formulation (partly dynamic (Zienkiewicz, et al., 1980)) 

- the consolidation equations (quasi-static (Terzaghi, 1960)) 
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In the first model , the coupled equations of flow and deformations are formulated 

including an acceleration of both the solid skeleton and the fluid. In case of the u-p formulation, the 

coupled equations consider only the acceleration of the solid skeleton. The governing equations are 

represented only in terms of the solid displacement u and the pore fluid pressure p. When it comes 

to the quasi static case , all inertial terms are ignored. 

1.2. Motivation and objectives. 

Dynamic analysis plays a very important role in geotechnics. Currently, there are many 

simplified models used in practice, starting from the commonly used single phase model to other 

simplifications of two and three phase models. The aim of the thesis is to present the influence of 

the particular phases in the two-phase media model (the skeleton phase with its inertia and the water 

phase with its inertia). The thesis shows the differences not only in the theoretical equations, but 

also in the obtained results. One dimensional and two dimensional problems are analyzed. The 

following topics are raised in the thesis: 

A) for the one dimensional problem: 

1. Defining the fully dynamic (Biot’s) model and deriving simplified formulations in dynamic 

analysis of the two phase media (u-p and quasi-static consolidation models). 

2. Presenting discrepancies and limits of validities  between the above formulations. 

3. Analyzing  the influence of the saturation level, physical parameters and extortion frequency of 

the dynamic factor. 

B) for the two dimensional problem 

1. Defining the u-p model, the u-p model omitting the change of water pressure with time and the 

commonly used single phase model.  

2. Presenting discrepancies between the u-p model both including and then omitting the change of 

water pressure with time. 

3. Presenting divergences between the two-phase model and the commonly used single phase 

model.  
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1.3. Thesis outline. 

Chapter 2 of this research contains a brief history of the development of the theory of porous media. 
It mentions the most relevant scientists and gives an overview of three main eras in this field. 

Chapter 3 presents details about propagation of elastic waves in a half-space soil due to dynamic 
loads in single phase (solid), two-phase (solid and fluid), and three-phase media (solid, fluid and 
gas). It mainly concentrates on dilatational and shear waves equations. 

Chapter 4 is the introduction to the research part of the thesis. It gives the detailed review of 
equations, which are the starting point for the analysis. It covers stress-strain relations, equilibrium 
relations and it defines the boundary and initial conditions for the thesis purpose. 

Chapter 5 explains the differences between three formulations for the one dimensional problem not 
only in theory but also by means of numerical example. The disparities between the models are 
thoroughly analyzed and compared. The limits of validities for each model are estimated. In the last 
section of this chapter the dynamic amplification factors are evaluated for different types of soil, 
frequencies and degrees of saturation.  

Chapter 6 together with Appendix 1 gives the detailed view of the Finite Element Method approach 
to the two dimensional problem under plane strain condition. The strong and the weak formulation 
is presented.  Again different formulations presenting alternative simplifications are compared and 
discussed. Appendix 1 presnts the FEM matrices for the plane strain condition.  

Chapter 7 presents a brief summary and a possibility of extension of this study for further research. 
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2. Theory of porous media. 

The space in naturally existing materials like soils, is usually not completely filled with the 

matter. There are some empty interspaces called pores. In general, three phases can be 

distinguished: solid skeleton with pores filled with fluid and gas phase. This complex 

microstructure determines the soil features. The skeleton which forms the body matrix and the 

contents in the pores have different material properties and different motions and the individual 

constituents are mutually influenced by each other. What is more, even some interaction 

phenomena occur. All these concepts confirm, that  the soil, which is a three-phase media, is a very 

complex material, which has been investigated for decades by many scientists. As a large number of 

other solids contain pores it is not surprising that these media have been repeatedly investigated, the 

more so as these media play an important role in nearly all fields of engineering. 

The history of porous media evaluation was widely discussed by R. de Boer (Boer, 1999; 

Boer, 1996). He explains all existing theories of as complex media as soil is. He divides the 

historical development into three periods. In the early era, in the 18th and 19th centuries, the 

fundamental principles of mechanics were discovered, the concept of volume fractions was started 

and the mixture theory was founded. In the period between 1910 and 1960, first attempts to clarify 

the mechanical interaction of liquids, gases, and rigid porous solids were performed and, for the 

first time, deformable saturated porous solids were treated. In the 1970s and 1980s theories of 

immiscible mixtures were developed which are still under study (Murray & Sivakumar, 2010) . 

Below I would try to describe shortly the aforementioned periods.  

2.1. The Early Era. 

In the 18th century first steps in soil mechanics were taken. Basic discoveries are mainly due 

to brilliant mathematician Leorhard Euler and excellent engineer Reinhard Woltman. Euler at the 

beginning of his soil mechanic adventure pointed out the elasticity in solid as a certain subtile 

matter in closed pores but he did not pay more attention to this matter. However he was the one, 

who formulated the axioms of continuum mechanics, which he called cut principle , balance of 

mass, balance of momentum and the balance of moment of momentum (Euler, 1736). Unfortunately 

the Euler’s work was disturbed by the lack of principles of mechanics. He outlined in his book 

topics in mechanics that should be investigated in the future. Although he was not able to define 

clear rules and equations for raised subjects, he was definitely the pioneer of soil mechanics. 
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The concept of volume fraction was first used by an ingenious harbor construction director 

Reinhard Woltman (1757-1837). Not only did he formulate the volume fraction but he also noticed 

that the moisture content enlarges the cohesion. He particularly turned his attention to partially and 

totally water-saturated substances and was the first to use an expression mixture for soils as he 

noticed they consist of earth, fluid and air (Woltman, 1794). 

The mixture theory is a second important branch of the porous media theory. First steps in 

this field were taken by Fick, who investigated the problem of diffusion. He analyzed the Fourier’s 

heat transfer equation and noticed an analogy which lead him to the differential equation of the 

diffusion stream  (Fick, 1855): 

2

2

1y y dQ y
k

t x Q dx x

 ∂ ∂ ∂= − + ∂ ∂ ∂ 
  (2.1) 

Where y is the concentration, t the time , k a constant which depends on the nature of the 
constituent, x the measure for the height of a container, and Q the cross section of the container. 

Josef Stefan (1835-1893) on the contrary stated : “If the true processes in a mixture should 

be calculated, it is not sufficient anymore, to consider the mixture as a uniform body as common 

mechanics does; equations must be set up which contain the condition of equilibrium and the laws 

of motion for every individual constituent in the mixture”. Stefan also introduced the interaction 

forces between the constituents and as a consequence he also formulated two one-dimensional 

equations for the two gases. Some scientists say that Stefan was the first who created the theory of 

the mixture, where different phases are treated as individual constituents considering the interaction 

forces. 

Henry Darcy also played an important role in soil mechanics. He created basic constitutive 

relations for the problem of running water through a layer of sand. Although his  investigations 

were purely experimental, the equations became essential. Then there were lots of other scientists 

who modified the Darcy’s law trying to introduce some theoretical investigations. 

2.2. The Classical Era. 

The formulations of basic relations in the early stages had provided the sufficient 

background for further  development of porous media. From 1913 to 1936 some important physical 

phenomena were described by Paul Fillunger and Karl von Terzaghi, professors in Vienna. They 

mainly worked on such phenomena as uplift, friction, capillarity and effective stress. Paul Fillunger 

was the first who stated that masonry dams are never impermeable, so water will certainly enter the 



9 
 

voids of the masonry. As a consequence the weight of the masonry decreases and there is an 

additional horizontal component as illustrated in Fig. 2.1 , reducing the stability of the dam (de 

Boer, et al., 1996) . In his papers (Fillunger, 1913) Fillunger analyzed the stresses in concrete and 

masonry gravity dams and gave the following equation : 

( )a k n nγ ′=− −   (2.2) 

where n is the volume porosity, n’ the surface porosity, and k the gradient of the pore-water 

pressure in the damn. The value of n’ is between zero and one and it depends on representative 

elementary area caused by the cut. 

 

Fig. 2.1: Theories of uplift; a) The Early Era b) The classical Era 

Karl von Terzaghi also touched the subject of uplift of dams on granular soils. He was a full 

advocate of designing  for full uplift (von Terzaghi, 1925). He took up a study of the hydrodynamic 

uplift within the pores of cement mortar and concrete. Finally he introduced the equation for  the 

uplift as : 

( )a wk n nγ = −   (2.3) 

where nw is the effective surface porosity, a material property of the dam medium. In order to 

determine the value of nw Terzaghi together with Rendulic performed series of triaxial compression 

tests and they finally made a conclusion that the value of nw is very close to one, which means that 

dams should be designed for full uplift. There was a long bitter dispute with Fillunger on this 

matter.  
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The theoretical treatment of capillary forces in saturated porous media was closely 

connected to the uplift problem. Karl von Terzaghi created the formula for the hydrostatic pressure 

of the pore liquid caused by capillarity (von Terzaghi, 1933). Fillunger strongly disapproved 

Terzaghi’s statement but he also stated that the capillary suction for the liquid causes an additional 

pressure for the solid phase. 

The third, even the most important mechanical effect in saturated porous solids, is the effect 

of effective stresses. The opinions on this matter were divided. Some scientists believed that the 

liquid pressure affects the porous solid materials whereas some of them strongly declined this 

possibility. The pioneer of the first concept was Fillunger. He assumed that the uniform internal 

pressure cannot cause a significant reduction in the strength. He came back to this problem few 

years later but his investigations were totally forgotten. It was Karl von Terzaghi that explained the 

effect of effective stresses to engineers’ minds  : 

“The stresses in any point of a section through a mass of earth can be computed from the 

total principal stresses s1, s2,s3 which act in this point. If the voids of the earth are filled with water 

under a stress u, the total principal stresses consist of two parts. One part, u, acts in the water and in 

the solid in every direction with equal intensity. It is called the neutral stress (or porewater 

pressure). The balance, σ�� = σ� − u, σ�� = σ� − u , σ	� = σ	 − u represents an excess over the 

neutral stress u and it has its seat exclusively in the solid phase of the earth. 

This fraction of the total principal stresses will be called the effective principal stresses . . .” 

(Terzaghi, 1936). 

Neither Fillunger nor von Terzaghi considered this mechanism as being as important effect  

as a general principle. All of beforementioned discoveries (the uplift, the capillarity and the 

effective stresses) in fully saturated rigid and deformable porous solids make an incredible step 

forward in soil mechanics. 

In The Classical Era also another important theory was discovered - the theory of 

consolidation. Firstly it was mathematically described by von Terzaghi, who formulated the one 

dimensional consolidation after performing a lot of experiments (Terzaghi, 1924) : 

2

2

k w w

a z t

∂ ∂=
∂ ∂

  (2.4) 
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where w is the porewater overpressure, k and a are the permeability and the compression 

coefficients, z is a vertical coordinate and t the time. He made a series of assumptions like that clay 

is saturated and homogeneous, soil and water is incompressible and what is more Darcy’s law was 

introduced when deriving the above equation. It is obviously very similar to the differential 

equation of heat propagation (Fourier’s law). When Fillunger found the opportunity to compromise 

von Terzaghi, he immediately started to work on the same subject and after six months he 

formulated the one dimensional consolidation as : 

1 1
1

1

( )
v v g np

v Z
t z n zγ

∂ ∂ ∂+ = − −
∂ ∂ ∂

  (2.5) 

2 2
2

2

(1 )
( )

(1 )

v v g n p
v Z

t z n zγ
∂ ∂ ∂ −+ = −
∂ ∂ − ∂

  (2.6) 

1( )
0

nvn

t z

∂∂ + =
∂ ∂

  (2.7) 

2(1 )
0

n vn

t z

∂ −∂− + =
∂ ∂

  (2.8) 

Fillunger stated that the pore-water [body 1] flows upwards and the solid [body 2] flows 

downwards with the settlement rate. If we disregard the effect of self-weight, then the external force 

for each body consists only of the resistance to this flow put up by the other body, and the coupling 

of the two motions is based on this. It is further recommended that this external force no longer be 

related to the mass unit but rather to the unit volume, and that it be imagined that the pore-water 

constantly, but with varying  density fills the total space as well as the soil. It is then as if the flows 

were to exist in the same space: two flows which can influence each other only through resistance, 

but not according  to the law of volume displacement (Fillunger, 1936). In each cross-section z of 

the double flow, there exists stress which is distributed on the two bodies or materials. If n is the 

pore space per unit of volume, then it follows from Delesse’s law (where on each cut surface , in a 

uniform mixture, the surface ratios of each partial constituent must be equal to their volume ratios) 

that the partial stress 
� = �� falls on the pore-water, and the partial stress 
� = (1 − �)� falls on 

the solid particles in the clay. In fact, � = 
� + 
�. Invoking the Darcy’s law, Fillunger arrived at 

� = − ��������� �� where k’ is the coefficient of permeability and n0 is the initial porosity.  

It is obvious that both scientists Terzaghi and Fillunger were brilliant and they contributed 

to an incredible development in the field of mechanics of porous media. Unfortunately their dispute 

ended tragically with Fillunger’s suicide.  
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The porous media theory was further developed by the above scientists’ followers. It was 

M.A. Biot that had the greatest impact on the development of the Terzaghi’s direction. 

Unfortunately G.Heinrich, a follower of Fillunger, was nearly completely forgotten. In the period 

between 1935 and 1962 Biot published a number of scientific papers that lay the foundations of the 

theory of poroelasticity (now known as Biot theory), which describes the mechanical behaviour of 

fluidsaturated porous media. He also made a number of important contributions in areas of 

dynamics, irreversible thermodynamics and heat transfer, viscoelasticity and thermoelasticity, 

among others. 

In 1941 Biot’s generalization of the consolidation was published (Biot, 1941). The 

following basic properties of the soil were assumed :  

- isotropy of the material, 

- reversibility of stress-strain relations under final equilibrium  conditions, 

- linearity of the stress-strain relations, 

- small strains, 

- the water contained in the pores is incompressible, 

- the water may contain air bubbles, 

- the water flows through the porous skeleton according to Darcy’s law. 

He formulated equations governing consolidation for three dimensional case as follows: 

2 0
1 2

G
G u

x x

ε σα
ν

∂ ∂∇ + − =
− ∂ ∂

  (2.9) 

2 0
1 2

G
G v

y y

ε σα
ν

∂ ∂∇ + − =
− ∂ ∂

  (2.10) 

2 0
1 2

G
G w

z z

ε σα
ν

∂ ∂∇ + − =
− ∂ ∂

  (2.11) 

2 2 2
2

2 2 2x y z

∂ ∂ ∂∇ = + +
∂ ∂ ∂

  (2.12) 

where 

ε - the volume increase of the soil per unit initial volume 

2(1 )

E
G

ν
=

+
 - the shear modulus 

2(1 )

3(1 2 )

G

H

να
ν

+=
−
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The above constants E,ν,G are known by majority, these are Young’s modulus, Poisson 

ratio and the shear modulus. There is one new constant 1/H which is a measure of the 

compressibility of the soil for a change in water pressure also used later on in this chapter. The 

constant α measures the ratio of the water volume squeezed out to the volume change of the soil if 

the latter is compressed while allowing the water to escape (
 = 0).  

There are three equations in (2.9), (2.10), (2.11) with four unknowns u, v, w, 
 . In order to 

have a complete system we need one more equation. This is done by introducing Darcy’s law 

governing the flow of water in a porous medium. We consider an elementary cube of soil and call 

Vx the volume of water flowing per second and unit area through the face of this cube perpendicular 

to the x axis. In the same way we define Vy, Vz . According to the Darcy’s law these three 

components of the rate of flow are related to the water pressure by the relations : 

x

y

z

v k
x

v k
y

v k
z

σ

σ

σ

∂= −
∂
∂= −
∂
∂= −
∂

  (2.13) 

The physical constant k is called the coefficient of permeability of the soil. On the other 

hand, if we assume the water to be incompressible the rate of water content of an element of soil 

must be equal to the volume of water entering per second through the surface of the element, hence 

yx z
vv v

t x y z

θ ∂∂ ∂∂ = − − −
∂ ∂ ∂ ∂

  (2.14) 

Combining all equations from (2.9) to (2.12) we obtain : 

2 1
k

t Q t

ε σσ α ∂ ∂∇ = +
∂ ∂

  (2.15) 

where σ is water pressure increment and Q  is a physical constant, which is a measure of 

the amount of water which can be forced into the soil under pressure while the volume of the soil is 

kept constant. 
�� is defined as : 

1 1

Q R H

α= −   (2.16) 
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where the coefficient  
�� is a measure of the compressibility of the soil for a change in water 

pressure , while 
�  measures the change in water content for a given change in water pressure. The 

two elastic constants and the constants H and R are the four distinct constants which under our 

assumption define completely the physical proportions of an isotropic soil in the equilibrium 

conditions. Other constants, like before mentioned α,  have been derived from these four.    

 M.A. Biot used the above equation in his further works.  His next article examines the 

consolidation settlement under a rectangular load distribution (Biot, 1940). In the calculation of 

foundations and the prediction of settlement we are not so much interested in the absolute value of 

the settlement but rather in the differences in settlement which can occur in loaded area due to 

differences in load intensity. Then differential settlements are direct cause of damage  in buildings 

and structures carried by the soil. Biot tries to answer three questions in this article. First question is 

what happens at the edge of the loaded area – how much additional settlement is due to the water 

flowing from the loaded region to the unloaded region. Then he tries to explain how much restrain 

does the settlement of the loaded area encounter from the unloaded region. Finally he gives a 

quantitative answer to how much settlement does the unloaded area undergo in the vicinity of the 

load. In the article (Biot, 1940) he considers an infinitely deep layer of a completely saturated clay 

with rectangular load distribution as shown in figure below. The uniform load is suddenly applied at 

the instant t=0 at the surface of the clay on the strip infinitely long in the y direction as in Fig. 2.2b. 

The water is assumed to escape  freely at the surface so that the water pressure at the top is equal to 

atmospheric pressure. This a two-dimensional problem, where v=0.  

 

Fig. 2.2: Load distributions; on the left from x=-l/2 to x=l/2;  on the right from x equal to zero to infinity 

Starting from the below equations (writing symbolically 
!!" = � ) : 
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2

2

2

0
1 2

0
1 2

G
G u

x x
G

G w
z z

p

c

ε σ
ν

ε σ
ν

εε

∂ ∂∇ + − =
− ∂ ∂

∂ ∂∇ + − =
− ∂ ∂

∇ =

  (2.17) 

where 

k
c

a
=    - coefficient of consolidation, 

1 2

2 (1 )
a

G

ν
ν

−=
−

  - final compressibility, 

the settlement is found most conveniently by the operational method after defining the boundary 

conditions : 

a) all the variables vanish at infinite depth # = ∞ 

b) 
 = 0  at # = 0 

c) σ = 2& '!(!) + *+���*, = -sinλ2  at # = 0 

d) 
!3!" + !(!4 = 0  at # = 0 

We can find the whole derivation of  the solution in article (Biot, 1940), here below we have the 

settlement ws of the soil surface at various time intervals for a load extending from x=0 to x=∞ an 

in Fig. 2.2b, where l is characteristic length which can be chosen arbitrarily. Then settlement curves 

are plotted as a function of  x in Fig. 2.3 at time intervals corresponding to 
5"��6 = �7 , �7 , 	7 , 97 , :7 and 

compared directly with the settlements wsi which would have occurred after the same time intervals 

if the load extended from infinity to infinity. The slope of the soil deflection at the edge of the 

loaded area (x=0) is infinite, it constitutes , therefore, a singular point probably associated with 

infinite stress. However this infinite slope does not show up in the plotted curve because it is highly 

localized effect. The settlements ws  and  wsi are equal at first for x>0 due to the water flowing out at 

the surface directly under the load , then ws becomes slightly larger and finally for large values of 

time ws becames smaller and smaller compared to wsi.   
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Fig. 2.3: Settlement of the soil surface at various time 
intervals 

 

 

 

 

 

 

The same steps are taken for the second type of loading as in Fig. 2.2a. Below we also have 

the settlement graph, which we analyze  similarly to the previous one.  It can be noted that 

immediately after loading the settlement is little affected by the unloaded regions on both sides, 

while in the last phase the settlement is considerably reduced by the restraining effect of the 

unloaded regions. 

 

Fig. 2.4: Settlement of the soil surface at various time 
intervals for the load distribution represented in Fig. 2.2 a 
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Biot in his next publication together with his colleague  (Biot & Clingan, 1941)  

investigates  the problem when the top surface is completely impervious. It is clear that in this case 

the settlement is due to the fact, that the water contained in the soil flows from under the load to 

unloaded regions. Since it is assumed that the water cannot escape through the top surface . this will 

produce the swelling of the unloaded region in the vicinity of the load. Two dimensional 

consolidation for fully saturated clay with zero Poisson ratio is defined as : 

2

2

2

0

0

G u G
x x

G w G
z z

p

c

ε σ

ε σ

εε

∂ ∂∇ + − =
∂ ∂
∂ ∂∇ + − =
∂ ∂

∇ =

  (2.18) 

The variables and symbols were defined when analyzing the equation (2.9). This time the boundary 

conditions are : 

a) all the variables vanish at infinite depth # = ∞ 

b) 
!;!) = 0  at # = 0 

c) −σ + 2& !(!) = −-sinλ2  at # = 0 

d) 
!3!" + !(!4 = 0  at # = 0 

The second condition expresses that no water flows from the top surface. The last two 

conditions express that at the surface the normal stress is equal to the load and that the shearing 

stress is zero. 
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Fig. 2.5: Settlement of the soil 
surface at various time intervals 
for a uniform load extending 
from x=0 to x=∞ 

 

 

 

 

 

 

 

 

The settlement is composed of two parts : a purely elastic deflection which occurs at the 

instant of application of the load and a settlement due to consolidation which occurs gradually 

thereafter. In Fig. 2.5 we can see the settlements for the load shown in Fig. 2.2b. There is a 

considerable swelling of the unloaded area. For the load distribution presented in Fig. 2.2a the 

swelling is lower but for large values of time, the settlements are larger. 

Fig. 2.6: Settlement of soil surface  at 
various instants of time for a uniform 
load p0 extending from x=-l/2 to x=l/2 
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M.A. Biot in 1955 extended the theory in the previous articles to the most general case of 

anisotropy (Biot, 1955). The method by which the theory is derived is also more general and direct. 

The same physical assumption is introduced , that the skeleton is purely elastic and contains a 

compressible viscous fluid. The theory in this article can therefore also be considered as a 

generalization of the theory of elasticity to porous materials. The author concentrates mostly on the 

case of transverse isotropy, which can be applied not only to soils but also to natural rock 

formations, since transverse isotropy is the type of symmetry usually acquired  by rock under the 

influence of gravity. 

In 1956 Biot’s main field of interest was soil dynamics. He wrote an article which consisted 

of two parts, which are the basics for the thesis. In the first part (Biot, 1956) a theory is developed 

for the propagation of stress waves in a porous elastic solid containing a compressible viscous fluid 

and is restricted to the lower frequency range where the assumption of Poiseuille flow is valid. The 

extension to the higher frequencies are treated in the second part (Biot, 1956). The emphasis of 

these papers is on materials where fluid and solid are of comparable densities. The detailed 

information on the articles would be given in Chapter 3 and 4, where the current state of theory of 

soil dynamics will be presented. 

2.3. The Modern Era. 

Several papers on porous solids filled with fluids were published in the time period between 

1960 and 1980 using the mixture theory without the volume fraction concept, so called modern 

continuum mechanics. Lots of scientists tried to formulate principles that help to formulate physical 

principles of balance and that close the dilemma about the validity of many of the approaches that 

had been used in the past. The new theory, known as multi-polar continuum mechanics, is based on 

some concepts developed by Truesdell an Toupin, who introduced generalized forces, body and 

surface forces and generalized stresses. Many other researchers tried to find the better 

understanding of the behavior of mixtures.  

It seems that Morland (1972) was the first scientist to use the volume fraction concept in 

connection with modern mixture theories to describe the behavior of porous media as a “immiscible 

mixture”. He constructed “a simple constitutive theory for a fluid-saturated porous solid” for the 

purely mechanical state. Before introducing the volume fraction concept, Morland considered the 

kinematics of the individual constituents, and formulated the state of stress and the balance of 

momentum for the individual constituents in the usual way. At the beginning Morland expressed the 
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partial density and the partial stress tensor of the constituent by the volume and surface fractions, 

and by the real densities and the real stress tensors, which were denoted by “effective”. It should be 

mentioned that while the decomposition of the partial density can be physically founded, there is, 

however, no physical foundation for the decomposition of the partial stress tensor. Then, Morland 

discussed the deformation state and decomposed the partial deformation gradient into a spherical 

part and a partial density preserving part <=∗ 
1

1 3
* *03F J F F

p

α

α α α αα
ρ= =   (2.19) 

where ?@A is the density in the reference configuration and Jα  the determinant of Fα . The effective 

real deformation was then defined by 

1
*3

R RF J Fα α α=   (2.20) 

where  

0
R

n
J J

n

α

α αα=   (2.21) 

and where 0n α
denotes the volume fractions in the reference configuration. Morland also assumed 

a constitutive equation for BA  which he defined as a functional depending on the effective 

deformation gradient 

1/3

0

n
T m F F

n

α
α α α

αα

 
=  

  
  (2.22) 

and he proposed the following constitutive relation : 

2

0

( )F
F

F

n
T J I

n
α

αρ
 

= −  
 

  (2.23) 

where the equivalence of the surface and volume fractions has been assumed. 

We can find more information on constitutive relations, effective stresses in solid from that 

period in Morland’s excellent paper (Morland, 1972). Morland’s further treatment of the fluid-

saturated porous solid was directed towards the geometrically-linear theory and toward a special 
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problem in the finite theory. Furthermore the elastic-plastic state of the porous solid was 

investigated, and a saturated, porous tuff model was treated.  

Drumheller (1978) presented a theoretical treatment of porous solid using a mixture theory 

in which the volume fraction concept was introduced. The key point in his derivation was in the 

formulation of pore collapse relation to express the rate of change of the volume fraction. Bowen 

(1982) summarized all findings of the mixture theory and introduced the volume fractions concept 

for the saturated condition. The book from 2006 (Voyiadjis & Song, 2006) gives the profound 

information on the theory of porous media in the Modern Era.  

The work of Biot also received great attention and was extensively used. The literature is 

replete with publications pertaining to the analytical solution of the general governing equations of 

motion for two-phase media based on the work of Biot. Deresiewicz (1960, 1962) solved Biot’s 

governing equations of motion for an elastic half-space under harmonic time variations using 

displacement potentials. Derski used velocity terms to express the relative motion of different 

phases. Burridge and Vargas (1979) obtained the time domain fundamental solution (Green’s 

function) for an infinite space. They also studied the disturbance in a poro-elastic infinite space due 

to application of an instantaneous point body force. Simon et al. (1984) presented an analytical one-

dimensional solution for the transient response of an infinite domain by using Laplace 

transformations. Gazetas and Petrakis (1981) evaluated the compliance of a poroelastic half-space 

for swaying and rocking motions of an infinitely long, rigid and pervious strip that permitted 

complete drainage at the contact surface. Finally, Halpern and Christiano (1986) evaluated the 

compliances of three-dimensional square footings considering pervious as well as impervious cases. 

For the numerical treatment of initial and boundary-value problems, quite different models 

have been used. These range from improved classical models proposed by Biot (Biot, 1955) (Biot, 

1956) to such models which are based on the mixture theory restricted by the volume fraction 

concept. In this connection, one can read the extended paper by Zienkiewicz (Zienkiewicz, et al., 

1990) which contains an improved Biot model as well as the treatise by Schrefler in which a model 

based on the mixture theory is treated. 

Due to colossal devastation caused by earthquakes the scientists were forced to concentrate 

on dynamic problems as well. Prior to 1975, dynamic analysis were based on total stresses because 

of the deficiency in practical models that could predict pore water pressure. A widely used method 

was the Equivalent Linear Method ELM, which provided an approximate solution based on elastic 

soil stiffness and damping that are compatible with induced strains in the soil. In this method results 
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from laboratory tests relate the damping ratio and the shear modulus to cyclic shear strain levels. A 

linear solution is based on initial values of the shear modulus  and the damping ratio. From the time 

variation of the shear strain , an equivalent strain magnitude is estimated and used to obtain new 

values of the shear modulus and the damping ratio. A new solution is calculated , and the procedure 

is repeated until convergence is achieved. The method became popular after Seed and co-workers 

and was implemented in computer applications as SHAKE (1972), QUAD (1983) and FLUSH 

(1975). However none of these models could predict either the increase of pore water pressure or its 

effect in the effective stresses. More information on this method can be found in (Yoshida, et al., 

2002). 

As the modern computational science developed and the rigorous numerical techniques 

such as finite element method became more and more popular, Biot’s equations and mixtures 

theories found wide applications. A variational formulation of the dynamics of fluid-saturated 

porous solids was the basis of a numerical method that Ghaboussi and Dikman (1978) developed 

for the purpose of discretizing a partial media into finite elements. Shandu and Wilson (1969) first 

applied the finite element method to study fluid flow on saturated porous media. With the 

introduction of the FEM as a sound numerical technique, it became possible to extend the mixture 

theory to encompass elasto-plastic non-linear constitutive models and obtain reliable solutions of 

the field displacements and pressures. Prevost (1980) presented the general analytical procedure for 

non-linear effects in which he focused on the integration of the discretized field equations based on 

the mixture theories of Green and Naghdi. Later, he worked on several numerical applications to 

study the consolidation of inelastic porous media and on the non-linear transient phenomena and 

wave propagation effects in saturated porous media. Because of  the increasing necessity of non-

linear applications, Zienkiewicz and Shiomi (Zienkiewicz & Shiomi, 1984) classified different 

methods of analysis in a comprehensive paper on numerical solutions of the Biot formulation. 

These numerical solutions were further studied and used in several numerical applications related to 

the undrained, consolidating, and dynamic behaviour of saturated soils. A continuum theory for 

saturated porous media that is applicable for soils exhibiting large strains was formulated later by 

Kiousis and Voyiadjis using a Lagrangian reference frame. 

I tried in this chapter to give an overview of the theories applied to soil mechanics during 

the longh time period. In the thesis I would develop the Biot’s and Zienkiewicz’s approach , the 

classical approach. 
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3. Theory of elastic waves in half space. 

3.1. Single phase media. 

3.1.1. Basic wave equations. 

Propagation of elastic waves problem in a half-space soil due to dynamic loads is 

considered. The load can be placed on the soil surface (e.g. a passing car, train), can be caused by 

mechanical device resting on the foundation (e.g. harmonic excitation by electric turbine, impact 

loads by hammer,…) or can be derived from load inside half-space (e.g. traffic in a tunnel ). Load 

causing a wave phenomenon can be periodic or aperiodic (Verruijt, 2010). 

 

 

Fig. 3.1: Elastic half-space and continuum point of single-phase model (Wrana, 2016) 

The basic equations of the dynamics problem in single-phase soil model are a set of the 

Navier equations which include inertia forces. In the Cartesian coordinate system, the equations are: 
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where:   

ρ   – volume density of soil 

1b , 2b , 3b  – components of mass force in the direction  1x , 2x  , 3x  . 

 

Fig. 3.2: Stresses acting on an element during wave propagation. The perturbation travels in x direction 

3.1.2.  Dilatational waves. 

In consideration of wave propagation it is assumed that  0321 === bbb  , so that equations 

(3.1),(3.2) and (3.3) reduces to the homogeneous differential equations: 
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Differentiating the above equations: (3.7) with respect to 1x , (3.8) with respect to 2x , (3.9) 

with respect to 3x  obtained: 
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Summing above equations (3.10),(3.11) and (3.12) we obtained: 
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Equation (3.15) is a homogeneous differential equation that describes the eigen-vibrations of half-

space soil as a homogeneous isotropic elastic area. The first part defines the elasticity of soil, and 

the second one determines the inertia of a soil area by the   variable. The equation describes the 

propagation of the dilatational wave, the volumetric wave or the pressure wave (flat or spherical, 

depending on the space dimension), see Fig. 3.3. Constant in eq.(3.15) is: 

ρν−ν+
ν−=

ρ
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ρ
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)21)(1(

)1()2(2 EMG
VL

       (3.16) 

which defines the speed of dilatational wave. 

 

Fig. 3.3: The dilatational wave a) before the wave propagation; b) during the wave propagation (Santamarina, et al., 2001) 

3.1.3. Shear waves. 

Shear waves equations are obtained from eq. (3.7),(3.8) and (3.9) by reducing the dilatation 

part. Next differentiating it successively in respect to the variables: 2�,  2�, 2	. 

The shear wave equation in the plane 2� − 2	 obtained by differentiating eq.(3.8) with 

respect to 2	, eq.(3.9) with respect to 2�, and then adding the parties to give: 
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 - rotation in the plane 2� − 2	.   (3.19) 

The shear wave equation in the plane 2� − 2	 obtained by differentiating equation (3.7) 

with respect to 2	, (3.9) with respect to 2�, and then adding the parties to give: 
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The shear wave equation in the plane 2� − 2� obtained by differentiating equation (3.7) 

with respect to 2�, (3.8) with respect to 2�, and then adding the parties to give: 
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The shear wave equations (3.18), (3.20), (3.22) are homogeneous differential equations that 

describe the eigen-vibrations of half-space soil as a homogeneous isotropic elastic area. The first 

part defines the elasticity of soil, and the second one determines the rotation inertia of a soil area in 

the plane (2� − 2	), (2� − 2	) and(2� − 2�). These are the equations of the dynamics of the 

variables ω�, ω�, ω	 and therefore describe the propagation of shear, rotating and distortion waves. 

In the equations (3.18), (3.20) and (3.22) is constant  D� - the shear wave velocity: 
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and the relation: 

1 2

2(1 )S LV V
− ν=

− ν
        (3.25) 

We can assume from the above equations the following : 

• from eq.(3.25) it appears that, the dilatational waves velocity DE is greater than the shear wave 

velocity DF because 
( 2 )

L S

G
V V

λ += >
ρ

. 

• the dilatational wave is called the primary wave – P. 

• the shear wave is called the distortion wave, the secondary wave – S (Fig. 3.4). 

 

Fig. 3.4: The shear wave: a) before the wave propagation; b) during the wave propagation (Santamarina , et al., 2001) 

3.1.4. Surface waves. 

In addition to the dilatational and shear waves that propagate inside the half-space, there are 

also waves that propagate on the surface called surface waves. The thesis mainly concentrates on 

dilatational and shear waves. The surface waves are only discussed hereunder cursorily. 

First type of a surface wave is a Rayleigh wave, which is a shear plane wave which 

propagates at a free surface of half-space and is strongly damped at depth. Rayleigh was the first to 

described this kind of wave in 1885, therefore the name of this wave comes from the name of the 

researcher, see Fig. 3.5. These waves occur during the earthquakes, explosions, etc., and play an 
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important role in seismic studies.

 

Fig. 3.5: Rayleigh wave (Fung, 1965) 

Fig. 3.6 shows an example record of the horizontal component of the earthquake 

acceleration. The figure shows some typical time periods: 

• The first time interval corresponds to the dilatational wave (P), 

• The second time interval corresponds to the shear wave (S), 

• The final, with large amplitudes, corresponds to the Rayleigh surface wave. 

 

Fig. 3.6: Sample of acceleration during an earthquake (Wrana, 2016) 

In the layered elastic half-space dilatational waves and shear waves refract and reflect on 

the layer surfaces. In the plane of the layer surface Love’s surface wave also arises. Love's plane 

wave propagation is the plane perpendicular to the plane of Rayleigh surface wave propagation. The 

following is considered the simplest case of Love’s wave, propagating in a weak layer with a 

stronger layer below (Fig. 3.7), the case was first considered by Love in 1911. 
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Fig. 3.7: Love’s plane (
1 2x x− ) wave propagation on the layer surface 

3x h=   

3.2. Two phase media- skeleton, fluid. 

3.2.1.  Introduction. 

A soil mass consist of the solid particles and the voids in between them. These voids are 

filled with air or/and water.  So there is a three phase system, but when the voids are only filled with 

air, or only filled with water then soil becomes a two phase system.  When the voids are only filled 

with water, it is said to be saturated. A saturated porous medium is composed of a matrix and a 

porous space, the latter being filled by the fluid. The connected porous space is the space through 

which the fluid actually flows and whose two points can be joined by a path lying entirely within it 

so that the fluid phase remains continuous there. The matrix is composed of both  a solid part and a 

possible occluded porosity, whether saturated or not, but through which no filtration occurs. The 

connected porosity is the ratio of the volume of the connected porous space to the total volume. In 

what follows the term “porosity”, used without further specification, refers to the entire connected 

porosity.  
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Fig. 3.8: The porous media as a superimposition of two continuous media: a skeleton particle and a fluid particle coincide 
with the same geometrical infinitesimal volume (Coussy, 2004) 

A porous media can be treated as the superimposition of two continua, the skeleton 

continuum and the fluid continuum. Accordingly, as illustrated in Fig. 3.8, any infinitesimal volume 

can be treated as the superimposition of two material particles. The first is the skeleton particle 

formed from the matrix and the connected porous space emptied of fluid. The second is the fluid 

particle formed from the fluid saturating the connected porous space and from the remaining space 

without the matrix. 

A continuous description of a medium, which is heterogeneous at the microscopic scale, 

requires the choice of a macroscopic scale at which the inner composition of matter is ignored in the 

analysis of the macroscopic physical phenomena. For instance, the porosity is associated with the 

elementary volume including sufficient material to be representative of the filtration process. More 

generally the hypothesis of continuity assumes the existence of a representative elementary volume 

which is relevant at the macroscopic scale for all the physical phenomena involved in the intended 

application. The physics is supposed to vary  continuously from one to another of those juxtaposed 

infinitesimal volumes whose junction constitutes the porous medium. In addition, continuous 

deformation of the skeleton assumes that two skeleton particles, juxtaposed at a given time, were 

always so and will remain so. 

In the following chapters all the calculations are done for fully saturated two-phase media 

which consists of solid skeleton and fully saturated pores as shown in Fig. 3.9. When subjected to 

external forces and no variations in pressure of the saturating fluid, the skeleton deforms. The 

description of this deformation differs in no way from that of a standard solid. 
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Fig. 3.9: Soil as a two-phase media, ns+ nf = 1 (Wrana, 2016) 

The behavior of the mixture of soil and water is affected by the deformation of the solid 

particles (skeleton), the relative motion (sliding) between particles and water, the deformation of 

pore water, and the movement of pore water through pores. A general formulation for such an 

interacting system is presented in this chapter, in which static case, consolidation and a variety of 

dynamic behavior can be obtained as special cases (Kubik, et al., 2000). 

The wave propagation in saturated porous media as a soil skeleton fully saturated with fluid 

is described by Biot (Biot, 1956). Biot  assumed that the motion of porous media on the micro level 

can be described by continuum mechanics of material. He used Lagrange postulate and Hamilton's 

principle to derive the equations of wave propagation. 

The main assumptions of Biot theory, cursorily mentioned in Section 2.2,  are as follows 

(presented in (Wrana, 2016)): 

1. In the porous medium there is a relationship between the current and reference state. 

Displacement, velocity and deformations of particles are small. Constitutive equations, dissipation 

forces and inertia forces are linear. Thus, the strain energy, dissipation potential and kinetic energy 

is a square form of variables. 

2. Principles of continuum mechanics can be applied to measure the macroscopic value. The 

size of averaged macroscopic elementary volume is based on microscopic structure. 

3. The wavelength is large compared to the macroscopic dimensions of the elementary 

volume. This volume sufficiently and accurately determines properties, such as porosity, 

permeability and modulus of elasticity. 

4. The isothermal state is under consideration. 

5. The hydrostatic stress is assumed to fill the pores with viscous fluid. 

6. The liquid phase is a continuum. The skeleton is a solid phase with discrete discontinuous 

areas. 
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The formulation of porous media dynamics is based on the kinetic energy equation, 

dissipation function and it leads to the equations of motion using Lagrange's postulate. 

In the following equations in the introduced indications: "m" - refers to the skeleton, "s" - 

refers to the skeleton particles and "f" - refers to the liquid phase in the pores. 

3.2.2.  Kinetic energy. 

In the Euler description the averaged macroscopic skeleton and the fluid velocity introduced: 

 

m
m i
i

u
v

t

∂=
∂

  or  
 

m m

t

∂=
∂

v u  - macroscopic averaged velocity of skeleton, 

t

u
v

f
if

i  ∂
∂

=  or ff

t
uv

 ∂
∂=  - macroscopic averaged velocity of fluid. 

The kinetic energy of the particles at the microscopic level is: 

1 1
  

2 2
s f

m m f f
s i i f i iT w w d w w d

Ω Ω

= ρ Ω + ρ Ω∫ ∫       (3.26) 

where: m
iw , f

iw  - skeleton and fluid velocity at microscopic level,  

 sρ  - density of skeleton grains,  

fρ  -  density of fluid in the pores,  

 Ω� = (1 − �)ΩH ,  ΩI = �ΩH ,  

 ΩH - representative elementary macroscopic volume. 

Isotropic material and averaged macroscopic velocity in volume 
bΩ was assumed. The kinetic 

energy of the particles at the macroscopic level, similarly to form eq.(3.26) is (Biot, 1956): 

11 12 22

1
 2   

2
m m m f f f

b i i i i i iT v v v v v v = Ω ρ + ρ + ρ        (3.27) 

where: 

11ρ - density of skeleton at macro level, 

22ρ - density of fluid at macro level, 
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12ρ - reciprocal density of skeleton and fluid at macro level. 

The following considerations (below) are shown to determine the material constants 11ρ and 12ρ as a 

function of the skeleton and fluid parameters. 

Assuming a constant fluid and skeleton density in a volume 
bΩ  , eq.(3.26), i.e. the kinetic energy of 

the particles at the microscopic level, can be written as: 

1 1

2 2
m m f f

s m i i s f f i i fT w w w w= ρ Ω 〈 〉 + ρ Ω 〈 〉       (3.28) 

where 〉〈�  means averaging in the representative volume. 

Assuming balance of kinetic energy on the macroscopic and microscopic level, the density of 

mixture medium is received: 

11 12 222 (1 )m m m f f f m m f f
i i i i i i s i i m f i i fv v v v v v n w w n w wρ = ρ + ρ +ρ = − ρ 〈 〉 + ρ 〈 〉   (3.29) 

The momentum of the skeleton and the fluid is 

( )11 12 
s m f
i b i im

i

T
v v

v

∂π = =Ω ρ +ρ
∂

        (3.30) 

( )22 12 
f f m
i b i if

i

T
v v

v

∂π = =Ω ρ +ρ
∂

        (3.31) 

If the relative velocity of the skeleton to the fluid is equal to zero, i.e. s f
i iv v=    and the 

macroscopic velocity is equal to the microscopic velocity, then eq.(3.28) can be simplified: 

11 12 22(1 ) 2s fn nρ= − ρ + ρ =ρ + ρ +ρ        (3.32) 

The momentum of the skeleton and fluid at the microscopic level determined from the eq.(3.28) 

is: 

(1 ) 
 

m m
i b s im

i

T
n w

w

∂π = =Ω − ρ
∂

        (3.33) 
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f
ifbf

i

f
i wn

w

T
 

 
ρΩ=

∂
∂=π          (3.34) 

Comparing equations (3.30),(3.31) with (3.33),(3.34) we obtain: 

11 12 (1 ) snρ +ρ = − ρ          (3.35) 

22 12  fnρ +ρ = ρ           (3.36) 

Substituting  11ρ  and  22ρ  to (3.28) we obtain the reciprocal density 12ρ   (Nelson, 1988): 

( ) ( )12

(1 )   

 

m m m m f f f f
s i i m i i f i i f i i

f m f s
i i i i

n w w v v n w w v v

v v v v

   − ρ 〈 〉 − + ρ 〈 〉 −   ρ = −
− −

   (3.37) 

The reciprocal density is determined as the difference between the square of the average 

velocity of the particles at the micro level and the square of the velocity of the particles at the macro 

level with weights of skeleton and fluid mass. 

Moreover, the reciprocal density can be determined on the basis of tortuosity as a measure 

of the difference velocity of fluid and skeleton at the micro and macro level. 

( ) ( )
( ) ( )

 

m f m f
i i i i m

s f m f m
i i i i

w v w v

v v v v

〈 − − 〉τ =
− −

        (3.38) 

( ) ( )
( ) ( )

 

f m f m
i i i i f

f m f m
i i i i

w v w v

v v v v

〈 − − 〉
τ =

− −
        (3.39) 

12 (1 ) ( 1) ( 1)s s fn nρ =− − ρ τ − − ρ τ−         (3.40) 

In the case of compatibility of the velocity at the microscopic and the macroscopic levels, 

with  1sτ ≈  we obtain 

)1(12 −τρ−=ρ fn          (3.41) 

This case was considered by (Biot, 1956). 
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Assuming that 
L

l

v

w
f

i

f
i =  , where l is the distance between two points on the micro level, and L is 

the distance in a straight line (at the macro level), then the tortuosity defined in eq.(3.39) is: 

2








=τ
L

l
          (3.42) 

If  11ρ  is be considered as a skeleton density moving in fluid, then we receive 

) )(1(11 fs rn ρ+ρ−=ρ          (3.43) 

where  fr ρ   is the density of fluid associated with the skeleton particles moving in the fluid.  Using 

eq.(3.35), (3.41) and (3.43) the tortuosity can be defined as: 

1
1  

n
r

n

− τ = +  
 

         (3.44) 

Constant r =0.5 concerns the case of spherical grains moving in a fluid (Berryman, 1980). 

3.2.3.  Dilatational plane wave without damping. 

Wave propagation is characterized as an example of dilatational plane wave, dilatation wave. In the 

isotropic medium dilatational wave can be separated from the shear one by acting of the divergence 

(div) or rotation (rot) operator on the differential equation of motion. In the case of an isotropic 

material, without loss of generality, a plane wave is considered. The equation below presents a 

generalized eigenproblem with two arrays B and H.  

HeBe  2
pv=           (3.45) 

where 

k
vp

ω=   - phase velocity       (3.46) 

4

3B mK G C

C R

 + =
 
 

B , 








ρρ
ρρ

=
2221

1211H , 








=
2

1

e

e
e      (3.47) 
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mG      - shear modulus of the skeleton 

(1 / )

1 / /
s s

s s f

n K K nK
C

n K K nK K

− −=
− − +

  - constant in Biot notation 

2

1 / /
s

s s f

n K
R

n K K nK K
=

− − +
  - constant in Biot notation 

2( )BK K Q n= + α− , 1
s

K

K
α = − - coefficient of Biot effective stress , 

fs K

n

K

n

Q
+−α=1

, K - bulk 

modulus of skeleton in soil. 

Equation (3.45) presents a generalized eigenproblem with two arrays B and H. From the solution of 

the eigenproblem (3.45) we obtained two eigenvalues 1pv  and 2pv   corresponding eigenvectors:  









=
2,1

1,1
1 e

e
e  and 









=
2,2

1,2
2 e

e
e  with corresponding to the two dilatational waves’ velocity. 

From the orthogonality condition of eigenvectors , i,j=1,2 taking into account the eq.(3.47) 

the equality is obtained 

( ) 0  
3

4
2,22,11,22,12,21,11,21,1 =+++







 + eReeeeeCeeGK m     (3.48) 

From the eq.(3.48) with the positive material constants K, Gm, C, R it appears that: if both 

components of the first eigenvector { }T
2,11,1  ,ee  are of the same sign, the components of the second 

vector { }T
2,21,2  ,ee   must have opposite signs. It means that in the dilatational wave propagation of 

saturated soil, the fluid and skeleton are in a phase, or fluid and skeleton are in an anti-phase. 

Multiplying the left-side eq.(3.45) by 
T
1e  we receive 2

1 1 1 1 1
T T

pv=e Be e He , hence 

( )
2

2,1222,11,112
2
1,111

2
2,12,11,1

2
1,12

1
2

  2 3/4

eeee

eReeCeGK
v m

p ρ+ρ+ρ
+++

=       (3.49) 

Similar operating may be performed with respect to a pair of  2pv , 2e  . 
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In equation (3.49) we take into account the property 012 <ρ   according to (3.41). Analysis of the 

sign of the two eigenvector components 1e and 2e   leads to the conclusion that:  

- if one eigenvector has two components of the same sign, e.g. vector 1e  ,  

- then the second eigenvector has components of the opposite sign, e.g. vector 2e   and in this case 

there is: 

2
2

2
1 pp vv >           (3.50) 

It follows that; the second wave velocity 2pv  (skeleton and fluid in an anti-phase) is slower 

than the first velocity 1pv  (skeleton and fluid in a phase). Biot proposed the following names of the 

waves: 1) the fast wave or wave of the first kind - waves traveling at a higher speed, and 2) the slow 

wave or waves of the second kind - waves traveling at a slower speed. 

3.2.4.  Shear waves without damping. 

Equations of motion in the low frequency range for the fully saturated medium can be written as 

(Biot, 1956): 

( )
2 2

11 122 2
 

  

m m f
ij m fi i

i i
j

u u
b v v

x t t

∂σ ∂ ∂= ρ + ρ + −
∂ ∂ ∂

      (3.51) 

( )
2 2

12 222 2
 

  

m f
f m fi i

i i
i

p u u
n b v v

x t t

∂ ∂ ∂− = ρ + ρ − −
∂ ∂ ∂

      (3.52) 

where here only b is a damping coefficient proportional to the velocity, viscous damping. 

(Coussy, 2004) on the basis of Darcy's law, proposed to adopt 
k

nb
η= 2 , where: η  is the coefficient 

of viscosity of the fluid, k is a coefficient of permeability.     

Introducing ( )
( ) ( )

d t
Y t m t

dt k

δ η= + δ        (3.53) 

and 22
2

fm
n n

ρ τρ= =          (3.54) 
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we obtain: 

2

2

  
( )

  

m
f i i

f
i

p u w
Y t

x t t

∂ ∂ ∂− = ρ + ⋅
∂ ∂ ∂

       (3.55) 

In the above equations it is assumed that constant porosity does not depend on time. 

Moreover, if we assume that the mass forces are equal to zero (0b =  ) (Biot, 1956): 

2 2

11 12 12 222 2
( ) ( )

  

m f
ij i i

j

u u

x t t

∂σ ∂ ∂= ρ + ρ + ρ + ρ
∂ ∂ ∂

 

Assuming the relative displacement of skeleton to fluid: 

 ( )f m
i i iw n u u= −          (3.56) 

and taking into account the equations (3.35) and (3.36), equations of motion in the low frequency 

range can be written as: 

2

2

2

2

   

 

t
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u
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f

m
i

j

ij

∂
∂

ρ+
∂

∂
ρ=

∂
σ∂

        (3.57) 

The equations regarding the shear wave will be evaluated in two steps.  

First step - the rotation operator applied to eq.(3.52) including (3.51): 

2 2 2

2 2 2

 
rot rot

    

m m m f
ij i i i

f
j

u u u
n

x t t t

   ∂ σ  ∂ ∂ ∂= ρ − ρ −     ∂ ∂ ∂ ∂   
     (3.58) 

or 

( ) ( ) ( ) ( )
2 2 2

2 2 2
rot div rot rot rot

   
m m f

fn
t t t

  ∂ ∂ ∂= ρ − ρ −  ∂ ∂ ∂  
Σ u u u      

(3.59)
 

or entering a notation:  rots s=Ω u , ff uΩ rot=  

( ) ( )22

2 2
rot div

  

m fm

fn
t t

∂ −∂= ρ − ρ
∂ ∂

Ω ΩΩ
Σ       (3.60) 
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where  

















σσσ
σσσ
σσσ

=

333231

232221

131211

Σ    – Cauchy stress tensor. 

From experiment of compression test of the mixture in drainage conditions (Biot & Willis, 1957) we 
have the following relation: 

1
2   

3
m m m m f

v v vG K C
 = − ε + ε + ε 
 

σ ε m m m        (3.61) 

the above coefficients K,C were already discussed in Section 3.2.3. The rest is defined as: 
{ }T

231312332211 ,,,,, εεεεεε=ε     – strain vector of skeleton in Voight’s notation, 

m
vε  – volumetric strain of skeleton, 

f
vε  – volumetric strain of fluid, 

1

3ij ij v ijs = ε − ε δ           (3.62) 

or  mεs vε−=
3

1
 – strain deviator of skeleton and fluid mixture medium 

where { }T0 ,0 ,0,1 ,1 ,1=m   .  

From the eq.(3.61) taking into account the eq.(3.62) we receive (Wrana, 2016): 

2
div 2 div ) grad grad

3
m m m f
ij m ij m v vG K G C σ = ε + − ε + ε 

 
.     (3.63) 

Applying rotation operator we receive 

  2
rot 2 rot ) rot grad  rot grad

  3

m m
ij ij m f

m m v v
j j

G K G C
x x

   ∂ σ ∂ ε  = + − ε + ε        ∂ ∂     
.   (3.64) 

       

Because m
vrot grad ε =0 and rot grad 0f

vε = , (3.58), taking into account the (3.63), we shall have 

the form 

2 2 2

2 2 2

 
2 rot  rot rot

    

m m m f
ij i i i

m f
j

u u u
G n

x t t t

 ∂ ε    ∂ ∂ ∂=ρ − ρ −      ∂ ∂ ∂ ∂    
    (3.65)  
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True equality is: 

2 2

2 2

rot rot
2rot 2rot rotgrad

m mm m m
ij j mi i i

v
j j j i j j

uu u u

x x x x x x

    ∂ε ∂∂ ∂ ∂∂= + = ε + =       ∂ ∂ ∂ ∂ ∂ ∂     
   (3.66)  

the eq.(3.65) can be written using the eq.(3.32): 

2

2

2

2

2

2

)1(
t

n
t

n
x

G
f

f

m

s
j

m

m
   ∂

∂ρ+
∂

∂ρ−=
∂

∂ ΩΩΩ
.      (3.67)  

Second step - derivation of the eq.(3.55) used 

2

2
0 ( ) ( )

   

m m f

f nY t nY t
t t t

∂ ∂ ∂= ρ − ⋅ + ⋅
∂ ∂ ∂
Ω Ω Ω .      (3.68)  

We consider, without loss of generality, a plane wave propagating in the direction of the axis 1x  

polarized in the direction2x . Adopted solution in the vectors has the form: { }T
  mm S,0,0=Ω ,

{ }T
  ff S,0,0=Ω , with notation 

1

2

x

u
S

m
m

 

 

∂
∂

= , 
1

2

x

u
S

f
f

 

 

∂
∂

=  

[ ]1 1exp (  - )mS S i t kx= ω          (3.69) 

[ ]2 1exp (  )fS S i t kx= ω −          (3.70)  

where k  - complex wave number including the function of damping in the eq.(3.68).  

Substituting the solution (3.69) and (3.70) to (3.67) and (3.68) we receive 

[ ] 0)1( 2
2

1
2 =ρ−ρ−− SvnSnvG cfscm         (3.71)  

0 1 0 2

1 1
i  i  0f Y n S Y n S

   − ρ + + =   ω ω   
       (3.72)  

where kvc /ω=  - complex shear wave speed. The solution is 

2 1
0i

m
c

f

G
v

Y −=
ρ − ωρ

.         (3.73)  

The phase velocity sv  is obtained dividing the angular frequency by the real part of the complex 

wave number: 
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1

Re( ) 1
Re

S

c

v
k

v +
−

ω= =
 
 
 
 

∓
.        (3.74)  

The factor of wave decay is defined as the imaginary part of the complex wave number: 

( ) 1
m Im

c

I k
v

 
α = = ω  

 
.        (3.75)  

In the low frequency range, the amplitude defined by the formula (3.61c) can be written as

κη+ω= / i0 mY , which after substituting to (3.73) leads to the formula: 

[ ] 12 i / ( )
m

c

f

G
v

m
−=

ρ − ρ − η ωκ
.         (3.76) 

    

In the case without damping (/ 0η κ = ), in (3.76) complex shear wave velocity is given by: 

2 / /
m m

c
f f

G G
v

m n
= =

ρ − ρ ρ − ρ τ
.       (3.77)  

Shear wave amplitudes obtained from the eq.(3.72) : 

2 1 1

1
1  1  

 
fS S S

n m

ρ   = − = −   τ  
.       (3.78)  

In the above equation expression in brackets is positive, because1≥τ , thus the amplitude of the 

shear wave of skeleton and fluid are of the same sign. From the eq.(3.72) we receive21 SS = , 

indicating no relative movement between the skeleton and the fluid in the propagation of shear waves. 

In the case of zero-frequency, , 0=ω →
ρ

= m
c

G
v . 

Remark: Since  0m≥ , the shear wave without damping speed (3.77)  is greater than the average 

speed 
ρ

= m
c

G
v  . 
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3.2.5.  Example. 

The gravel as the water-saturated porous medium is considered. The material parameters of soil are: 

Ks=35 GPa; ρs=2,65 t/m3; Km=1,7 GPa;  Gm=1,855 GPa; n=0,3; κ=1 Darcy; τ=2; Kf=2,4 GPa; 

ρf=1,00 t/m3 and η=1 (Carcione, 1998). Substituting the data to the equation of the dilatational 

wave phase velocity and to the shear wave velocity , the results are in frequency-dependent range f 

[Hz]- Fig. 3.10. 

 

Fig. 3.10: Comparison of the phase velocity of dilatational and shear waves in the fully saturated gravel (Wrana, 2016) 

3.3. Three phase media – skeleton, fluid and gas . 

3.3.1. Introduction. 

The most precise model of the soil is a three-phase model, taking into account-  skeleton, 

water and air. The basic equations much differ, because there is an additional phase that needs to be 

taken into consideration. Consequently the constitutive equations, equations of motion and wave 

propagation changes, which have an impact on the final results. The picture below presents the 

outline of the three-phase media. 

 

Fig. 3.11: Soil as a 
three-phase media 
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The first proposal to unsaturated soil description gave Bishop (Bishop, 1959), he extended 

the Terzaghi equation to three phase medium as: 

'  ( )m m a a wp p pσ =σ − +χ − .        (3.79)  

where:  

'mσ - effective average stress, mσ  - total average stress, χ - function of saturation degree J, ap - air 

pressure in pores, wp – water pressure in pores.  

Unsaturated soil is a soil consisting of three phases: skeleton, water and air. In the mixtures 

theory, such soil is a continuous medium, i.e. at the same point of medium there are three phases. In 

the consideration of wave propagation problem the following assumptions are used: 

a) small deformation, 

b) incompressible soil grains, 

c) material of skeleton is isotropic and linearly elastic, 

d) consider laminar flow of water and air in the pores in accordance with the law of Darcy. 

The gravity forces, chemical changes and electric fields are omitted. It is also assumed that 

the soil mixture material is a homogeneous continuous medium in which there are no phenomena of 

reflection and refraction wave and phase changes. 

3.3.2. Equation of motion. 

The equation of wave propagation in porous soil medium consists with skeleton, water and 

air per unit volume of soil is considered. Having regarded the inertia forces of skeleton, water and air 

we obtained: 

div (1 ) s w w a a
s w an n n=ρ − +ρ +ρσ u u uɺɺ ɺɺ ɺɺ .      (3.80)  

where 

wρ  – density of water  

aρ  – density of air 

wn  – volumetric contents of water phase, 
wn nS=  

an  – volumetric contents of air phase, ( )1an n S= −  
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sn  – volumetric contents of skeleton phase 1s w an n n+ + =  

S – degree of saturation  

Darcy's law of laminar flow through the soil is applied. In the case of anisotropic material and 

omitting gravitational force (Coussy, 2004) we can obtain: 

( ) ( )gradw w s ww
w w

w

k
n p

g
− = − +ρ

ρ
u u uɺ ɺ ɺɺ .      (3.81)  

( ) ( )grada a s aa
a a

a

k
n p

g
− = − +ρ

ρ
u u uɺ ɺ ɺɺ .       (3.82)  

where 

wp  – water pressure in pores 

ap  – air pressure in pores 

wk  – permeability coefficient of water phase in the soil 

ak  – permeability coefficient of air phase in the soil 

g  – acceleration due to gravity 

It is necessary to introduce constitutive equations for the three-phase media in order to 

move forward with the equations of motion. They are defined as follows (Fredlung & Morgenstern, 

1976): 

( )
( )

1 2

1 2

1 2

s s s
v

m aw w w

a wa a a

d m m
d p

dn m m
d p p

dn m m

   ε
σ +    =      −    

   

.       (3.83)  

1
sm , 2

sm  – coefficients of volumetric increment of skeleton representing the physical parameter 

1

3(1 2 )

2(1 )

s
s

s

v
m

v G

−=
+

 

sv   – Poisson ratio of soil skeleton 

Compatibility condition of volume three phases, i.e. 
s w a
vd dn dnε = + , leads to the equations: 

1 1 1
s w am m m= +          (3.84)  
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2 2 2
s w am m m= + .         (3.85)  

where  

1
wm , 1

wm  – coefficient of volumetric increment of water 

1
am , 1

am  – coefficients of volumetric increment of air 

The total stress of three phase soil medium equation is based on the assumption on linear 

elasticity behavior of skeleton grains with including water and air pressure in the pores (Fredlund & 

Rahardjo, 1993), so: 

d d d (1 )dw ap p= − χ − − χσ D ε m m        (3.86)  

where: χ- volume change coefficient defined as: 

2 1/s sm mχ =       (3.87)  

After the substitution (3.86) to (3.83) we have: 

mmσDε asws
p

K
p

K
dddd

3

1

3
1 χ−+χ+= −        (3.88)  

awawwws
ww pcpc

K
n dddd T ++

ψ
= σm

3
       (3.89)  

aaawaws
aa pcpc

K
n dddd T ++

ψ
= σm

3
       (3.90)  

where:  

{ }1,1,1,0,0,0
T=m  

s

w

w
m

m

1

1=ψ           (3.91)  

s

a

a
m

m

1

1=ψ           (3.92)  

s

wsws

s
w

ww
m

mmmm

K
c

1

1221 −
+

χψ
=         (3.93)  

s

wsws

s
w

wa
m

mmmm

K
c

1

1221)1( −
+

ψχ−
=        (3.94)  
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s

asas

s
a

aw
m

mmmm

K
c

1

1221 −
+

χψ
=         (3.95)  

s

asas

s
a

aa
m

mmmm

K
c

1

1221)1( −
+

ψχ−
= .       (3.96)  

The effect of temperature and dissipation of energy are omitted.  The complementary elastic 

energy (work of deformation on stress increments) can be submit, according to (Loret & Khalili, 

2000) : 

a
a

w
w

s pnpnH dddd T ++= σε         (3.97)  

From the eq.(3.97) received: 

σ
ε

∂
∂

= sH
  

w

sw

p

H
n

∂
∂=  

a

sa

p

H
n

∂
∂=       (3.98)  

and 

a
a

s
w

w

ss p
p

H
p

p

HH
dddd

222

∂∂
∂

+
∂∂

∂
+

∂∂
∂

=
σσ

σ
σσ

ε        (3.99)  

a
aw

s
w

ww

s

w

sw p
pp

H
p

pp

H

p

H
n dddd

22T2

∂∂
∂

+
∂∂

∂
+











∂∂
∂

= σ
σ

     (3.100)  

a
aa

s
w

wa

s

a

sa p
pp

H
p

pp

H

p

H
n dddd

22T2

∂∂
∂

+
∂∂

∂
+











∂∂
∂

= σ
σ

.     (3.101) 

where 

d sn  – increment of volumetric contents of skeleton phase 

d wn  – increment of volumetric contents of water phase 

d an  – increment of volumetric contents of air phase 

Comparison of equations (3.88),(3.89),(3.90) with equations (3.99),(3.100) and (3.101) we find 

that a coefficients in equations (3.88),(3.89),(3.90) depend on the Hessian sH . Since the Hessian 

matrix is symmetric, it holds: 

sw mm 21 = .          (3.102) 
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Using the equality ( )ww Vm wdd ρ=  we can received: 

w
ww

w

w
w

K

p
n

m
n

dd
d −

ρ
= .         (3.103) 

where 

dmw   – increment of water mass per unit volume of soil 

K w
  – bulk modulus of water phase in soil 

Similarly, obtained with the air phase 

a
aa

a

a
a

K

p
n

m
n

dd
d −

ρ
= .         (3.104) 

 

Assuming small displacement amplitude, from mass conservation equations (Wrana, 2016) we 

can obtain: 

( ) ( )s
v

w
v

wsww

w

w

nn
m ε−ε−=−−=
ρ

uudiv
d

      (3.105) 

  

( ) ( )s
v

a
v

asaa

a

a

nn
m ε−ε−=−−=
ρ

uudiv
d

       (3.106) 

Substituting (3.103),(3.104) and (3.83) to (3.105),(3.106) and (3.86) constitutive equations were 

obtained: 

( )[ ] ( )[ ] mmmmεσ
a
v

aw
v

ws
v

s
v NCnCLnHG εχ−+χ+εχ−+χ+ε+






 ε−=    11
3
1

   (3.107)

a
v

aw
v

ws
vw CnLnWp ε−ε−ε=         (3.108)

a
v

aw
v

ws
va NnCnMp ε−ε−ε=         (3.109) 

  

where:  

MW
v

Gv
H

s

s

)1(
21

2 χ−−χ−
−

=         (3.110) 
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CnLn
D

AK
W aw

w

++−=          (3.111) 

a
w aK B

M n C n N
D

= − + +          (3.112) 

( )1 1 2 2 1
w a s a s w s wK n m K m m m m

L
D

 + − =       

 (3.113) 

( )[ ]
D

mmmmKmnK
N

wswswswa
12211 −+=        (3.114) 

( )
D

mmmmKK
C

wswsaw
1221 −=         (3.115) 

( )wswsawa mmmmKmnA 12211 −+=         (3.116) 

( )wswswaw mmmmKmnB 12211 −+=         (3.117) 

( )( ) swaawwawsws mnnKnKnmmmmD 11221 ++−=        (3.118) 

Gv

v
m

s

s
s

)1(2

)21(3
1 +

−=          (3.119) 

and with the equations: (3.84), (3.85), (3.101) received: 

sa mm 11 )1( χ−=           (3.120) 

asw mmm 212 −χ=           (3.121) 

ssw mmm 121 χ== .          (3.122)  

Substituting the constitutive equations in the equations of motion (3.80), (3.81) and (3.82) 

received: 

( ) ( ) ( ) ( ) ( )

2

2 2

( 2 )grad (grad )

(1 ) grad

(1 ) grad

1 0

w a s s s
v v

w w a w
v

a a w a
v

w a
w aw s a s s

s
w a

H G n W n M G u

n L C n L n C

n C N n N n C

g n g n
n

k k

+ + + ε − ε −∇ +

 χ + −χ − − ε + 

 χ + −χ − − ε + 

ρ ρ
+ − + − − − ρ =u u u u uɺ ɺ ɺ ɺ ɺɺ

    (3.123) 
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( )
( ) ( )

2

2

grad grad grad

0

w s w s w a a
v v v

w
w w s w w

w
w

n W n L n n C

g n
n

k

− ε + ε + ε

ρ
− − − ρ =u u uɺ ɺ ɺɺ

      (3.124) 

( )
( ) ( )

2

2

grad Ngrad grad

0

a s a a a w w
v v v

a
a a s a a

a
a

n M n n n C

g n
n

k

− ε + ε + ε

ρ
− − − ρ =u u uɺ ɺ ɺɺ

      (3.125) 

In the case of a two-phase fully water saturated soil model with incompressible grains (Biot 

model) the relevant parameters are: 1=rS ,
wwss mmmm 2121 === . Three above equations reduce to 

two equations: 

( ) ( ) ( )

( ) ( ) ( )

2 2

2

2 1
1 grad grad

1 2

1 grad 1 0

s w
s s s
v vs

w w w s sw
v s

w

G K
n G

n

n g
n K n

k

 − ν
 + − ε − ε − ∇ +

− ν  

ρ− ε + − − − ρ =

u

u u uɺ ɺ ɺɺ

    (3.126) 

( ) ( )1 grad grad 0
w

s w w w s ww
v v w

w

ngK
n K

n k

ρ− ε + ε − − −ρ =u u uɺ ɺ ɺɺ     (3.127) 

3.3.3. Dilatational and shear wave propagation. 

The theory of discontinuous wave propagation in an unsaturated soil was used (Coussy, 

2004). In this theory displacement and velocity are described by continuous function and acceleration 

by discontinuous function (skip function). The velocity of wave propagates depend on the soil 

parameters. There are three cases of phase motion:  

a) air and water move independently relative to skeleton, 
b) air moves relative to skeleton, water and skeleton move with the same velocity, 
c) air, water and skeleton move with the same velocity, this case corresponding to undrainage 

problem of  porous material. 

Case a) 

In this case wave propagation problem is described by equations (3.123), (3.124) and (3.125). 

To solve the wave propagation problem, the jump Hadamard operator is used, marked with double 

square brackets [[ ]], where a discontinuity: KLM �N, KLM (N and KLM =N means (Kosiński, 1986): 
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KLM �N = 
M �� O + 
M "�P;   KLM (N = 
M �(O + 
M "(P;   KLM =N = 
M �=O + 
M "=P       (3.128) 

 

where t is a unit vector located in a plane tangent to the wave front, n is a unit vector normal 

to the surface of the wave front in the direction of propagation. Taking into account gradε�� =KO ∙ LM �NO, gradε�( = KO ∙ LM (NO, gradε�= = KO ∙ LM =NO, equations (3.123), (3.124) and (3.125) can be 

written as: 

(V + 2& + �(W + �=X)KO ∙ LM �NO +  

+�(YZ[ + (1 − Z)\ − �([ − �=\]KO ∙ LM (NO + 

+�=YZ\ + (1 − Z)^ − �(\ − �=^]KO ∙ LM =NO + 

+Y& − _�(1 − �)?�]KLM �N = 0       (3.129) 

−�(WKO ∙ LM �NO + (�()�[KO ∙ LM (NO + �(�=\KO ∙ LM =NO − �(?(KLM (N = 0  (3.130) 

−�=XKO ∙ LM �NO + �=�(\KO ∙ LM (NO + (�=)�^KO ∙ LM =NO − _��=?=KLM =N   (3.131) 

where c is velocity of wave propagation.  

Substituting (3.128) to (3.129), (3.130), (3.131) and multiplying by the vector t, received: 

`& − _�(1 − �)ρ�a
M "� = 0        (3.132) 

_��(ρ(
M "( = 0          (3.133) 

_��=ρ=
M "= = 0          (3.134) 

from which it follows that 

  
M "� ≠ 0    →  _� = D�� = c(���)ρd       (3.135) 


M "( = 
M "= = 0.          (3.136) 

Equation (3.135) describes a shear wave (S-wave) propagating in a plane tangent to the wave 

front at a speed of D�. Substituting (3.128) to (3.129), (3.130), (3.131) and multiplying by the vector 

n, obtained: 

(e − _�f) g
M ��
M �(
M �= h = 0         (3.137) 
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where: 

( ) ( )

( )
( )

























−
−












−−

−χ−+χ











−−

−χ−+χ

++

++

=
NnCnnMn

CnnLnWn

NnCn

NC
n

CnLn

CL
n

MnWn

GH

awaa

awww

aw
a

aw
w

aw

2

2

,,

,,

1
,

1

,

2

K    (3.138) 

         

( )

















ρ
ρ

ρ−
=

a
a

w
w

s

n

n

n

,0,0

0,,0

0,0,1

M .       (3.139) 

K  is a symmetric matrix (Wrana, 2016). Equation (3.137) presents three different dilatational 

waves  (P- waves), which propagate in the normal direction to the wave front. From condition of zero 

determinant of matrix 2( )c−K M  we can obtain wave speeds: 

( )2det 0c− =K M          (3.140) 

where 
22
PVc = .   

Equation (3.140) leads to equation on variable 2
PV : 

( ) ( )( ) ( ) +−+++++++− 2
321

2
3

2
2

2
3

2
1

2
2

2
1

222
3

2
2

2
1

32   PppppppPpppP VAAAaaaaaaVaaaV  

( ) 00
2
13

2
22

2
31

2
3

2
2

2
1 =−−++− AaAaAaAaaa pppppp      (3.141) 

where: 

s

aw

p n

MnWnGH
a

ρ−
+++=

)1(

22
1         (3.142) 

w

w

p

Ln
a

ρ
=2

2           (3.143) 

a

a

p

Nn
a

ρ
=2

3           (3.144) 

0

(1 )  (1 )  

(1 ) (1 ) 

w a w a w a w a

s w a s w a

L C n L n C n n MC C N n C n N n n WC
A

n n

   χ + − χ − − χ + − χ − −   = +
− ρ ρ ρ − ρ ρ ρ

 (3.145) 
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[ ]
ws

aww

n

CnLnCLWn
A

ρρ−
−−χ−+χ=

)1(

 )1( 
1        (3.146) 

[ ]
as

aww

n

NnCnNCMn
A

ρρ−
−−χ−+χ=

)1(

 )1( 
2        (3.147) 

aw

aw Cnn
A

ρρ
=

2

3 .          (3.148) 

 

In eq.(3.141) we have variable 
2
PV , hence the solution of this equation is the value of positive 

and negative pV , which correspond to the propagation according to the velocity vector, and contrary 

to the vector. Similar results obtain from eq. (3.135) where there is a variable 
2
sV . 

Case b) 

In this case there is no relative water to skeleton displacement: L( −  L� = i, thus the 

equations (3.123), (3.124) and (3.125) reduced to form: 

YV + 2& + �(Z[ + �((1 − Z)\ + �=(X − �(\)]gradε�� − −&(gradε�� − ∇�L�) + �=YZ\ + (1 − Z)^ − �=^]gradε�= + 

+ (�k)�ρkl�k (Lm = − Lm �) − `(1 − �)ρ� + �(ρ(aLM � = 0        (3.149) 

−�=(X − �(\)gradε�� + (�=)�^gradε�= − (�=)�ρ=no= (Lm = − Lm �) − 

−�=ρ=LM = = 0.         (3.150) 

As in the case a) to solve the wave propagation problem the Hadamard jump operator [[]] is 

used, which leads to the determination of one shear wave and two dilatational waves. Velocity of 

these waves are determined: 

2

(1 )S w
s w

G
V

n n
=

− ρ + ρ
         (3.151) 

and ( ) ( )22 2 2 2 2
1 2 1 2 0

1
 4

2P p p p pV b b b b B = + ± − +  
     (3.152) 

where: 
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[ ]( )
( )[ ] aw

w
s

waa

nn

CnMNnNCn
B

ρρ+ρ−
−−χ−+χ−=

  1

  )1(
0       (3.153) 

( )
( ) w

w
s

waww

p
nn

CnMnCnLnGH
b

ρ+ρ−
−+χ−+χ++=

 1

 )1(22
1      (3.154) 

a

a

p

Nn
b

ρ
=2

2 .          (3.155) 

Similarly, when there is a lack of air to skeleton displacement: L= −  L� = i, received one shear 

wave speed 
SV  and two different dilatational wave speeds 

PV : 

a
a

s
S

nn

G
V

ρ+ρ−
=

)1(
2          (3.156) 

and ( ) ( ) 



 +−±+= 0

22
2

2
1

2
2

2
1

2 4 
2

1
CccccV ppppP

     (3.157) 

where: 

[ ]( )
( )[ ] wa

a
s

aww

nn

CnWLnCLn
C

ρρ+ρ−
−−χ−+χ−=

  1

 )1( 
0       (3.158) 

( )
( ) a

a
s

awaa

p
nn

CnWnNnCnGH
c

ρ+ρ−
−+χ−+χ++=

 1

 )1(22
1      (3.159) 

w

w

p

Ln
c

ρ
=2

2 .          (3.160) 

Case c) 

In this case there is no water to skeleton and no air to skeleton displacement, undrained case, L= − L( − L� = L. Equation of motion simplifies to the form: 

divq = ρLM           (3.161) 

 

where arwrs nSnSn ρ−+ρ+ρ−=ρ )1()1( .      (3.162) 

Taking into account the constitutive equations from 3.3.2 in the above equation the following 

were obtained: 
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r�c(���d)����d + Z stuv + (1 − Z) skwv x gradε� − &(gradε� − ∇�L) − ρLM = 0     (3.163) 

         

In this case, there is the one shear wave propagation at the speed of: 

ρ
= G

VS
2            (3.164) 

and the one dilatational wave propagation at the speed of: 

[ ] ( )
ρ

+−−
= 212 /)21/()1(2 pp

ss

P

ddvvG
V        (3.165) 

where: 

( ) ( ) ( )[ ] s
r

a
r

wswaw
p mSKSKnmmKKd 1

22
12

2
1 /11  / χ−+−χ++χ−=    (3.166) 

( )[ ]( ) s
rr

sww
r

a
rp mSSnmmKSKSnd 1

2
12

2
2 /)1(/ 1 −++χ−−+= .   (3.167) 

     

When the pores are completely filled with air (dry soil, 0=rS ) or if the pores are completely 

filled with water (irrigated soil, 1=rS Sz = 0) the shear wave velocity is defined by the formula 

(3.163) taking account of the volume density ρ: 

with Sz = 0, as nn ρ+ρ−=ρ )1(        (3.168) 

with Sz = 1, ws nn ρ+ρ−=ρ )1( .       (3.169) 

Hence the dilatational wave velocity will define, in accordance with the equation (3.164): 

with Sz = 0, 
[ ] ( )

( ) as

ass

P nn

nKvvG
V

ρ+ρ−
+−−=

 1

/)21/()1(22
     (3.170) 

with Sz = 1,  
[ ] ( )

( ) ws

wss

P nn

nKvvG
V

ρ+ρ−
+−−=

 1

/)21/()1(22
.     (3.171) 

Comments 

1. The above considerations apply to the low-frequency. 

2. The above consideration does not include energy dissipation caused by the laminar water motion 
in the pores. It should be emphasized (Brutsaert, 1964), that in the low frequency range relative 
water to skeleton motion in the pores is negligibly small. In the high frequency range water moves 
freely in the pores and energy dissipation may be omitted. 

3. In paper (Miura, et al., 2001) shows the wave speed depend on frequency for variety irrigated 



56 
 

soil, from clays to soft rock. The authors showed that the coefficient of permeability is the main 
parameter of soil, which determines the bandwidth of low frequency. Reduction of permeability 
coefficient causes the extension frequency bandwidth. From in situ soil geophysical measurement 
to a few hundred kHz carried out by (Santamarina , et al., 2001) and (Miura, et al., 2001) shows 
that the largest components of soil response are in the low frequency range. 

4. Two phase medium – equations of motion. 

4.1. Introduction. 

The following section is concentrated on further description of the two-phase media, which 

was also described in Section 3.2. and expended hereunder for the thesis’ purpose.  

The behavior of saturated porous soil-structure systems subjected to dynamic or static loads 

should be defined by taking into consideration the coupling between flow and deformation. The Fig. 

4.1 shows the schematic of such a soil-structure system. 

The behavior of the mixture of soil and water is affected by the deformation of the solid 

particles (skeleton), the relative motion (sliding) between particles and water, the deformation of 

pore water, and the movement of pore water through pores. A general formulation for such an 

interacting system is presented in this section, in which static case, consolidation and a variety of 

dynamic behavior can be obtained as special cases. 
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Fig. 4.1: Schematic of structure-foundation system (Desai & Zaman, 2014)  

Biot theory describes the wave propagation in saturated porous media as a soil skeleton 

fully saturated with fluid. Biot (Biot, 1956) assumed that the motion of porous media on the micro 

level can be described by continuum mechanics of material. He used Lagrange postulate and 

Hamilton's principle to derive the equations of wave propagation. 

The main assumptions of Biot theory are as mentioned in 3.4.1. The formulation of porous 

media dynamics is based on the kinetic energy equation, dissipation function and it leads to the 

equations of motion using Lagrange's postulate. 

Again – as in all the following equations in the introduced indications: "m" - refers to the 

skeleton, "s" - refers to the skeleton particles and "f" - refers to the liquid phase in the pores. 

4.2. Stress-strain relations. 

Before the formulations presented by Biot will be used, various terms relevant to saturated 

porous materials will be depicted. Fig. 3.9 shows the schematic of a porous material consisting of 

solid (particles) and fluid (water) and the diagram. The porosity n is defined as: 
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v

v s

V
n

V V
=

+
          (4.1) 

where vV   is the volume of pores equal to the volume of fluid (fV= ) and sV  is the volume of 

solids. The density, ρ, of the mixture is expressed as  

(1 ) s fn nρ= − ρ + ρ          (4.2) 

 

Fig. 4.2: Displacements in element with two phases. a) Displacement of different phases; b) relative displacement of fluid 
(Desai & Zaman, 2014) 

The symbolic deformations of solids and fluids are shown in Fig. 4.2 . The terms in this 

figure are as follows: ui (i=1,2,3) are the displacement components for the solid in 1 (x), 2 (y), and 3 

(z) directions, and Ui (i=1,2,3) denotes displacement components of the fluid. Relative 

displacements can occur between the solid and the fluid  for loadings such as dynamic. Then, wi 

(i=1,2,3) denotes such relative displacements between solid and fluid, averaged over the face of the 

solid skeleton, given by 

 ( )i
i i i

i

Q
w n U u

A
= = −          (4.3) 

where iA  is the area normal to the ith direction. The volume of fluid moving through an area of the 

skeleton normal to the ith direction, iQ , is expressed as 

 ( )i i i iQ An U u= −          (4.4) 
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For small strains, the strain tensor, ijε ,  is given by 

, ,

1
( )

2ij i j j iu uε = +          (4.5) 

where ,i ju  denotes derivative of solid displacement iu  (i=1,2,3) and so on. The change in the 

volume of fluid in a unit volume of the skeleton, ξ , is given by 

,i iwξ =           (4.6) 

where (i,i) denote the summation, that is, , 1,1 2,2 3,3i iw w w w= + + . 

Biot (Biot, 1941; Biot, 1956) has developed the formulation for coupled, solid-fluid 

behavior by assuming linear elastic material behavior. For those solid (soil)- fluid (water) media 

which behave nonlinearly, and may experience elastic, plastic, and creep deformations. Zienkiewicz 

and Shiomi (Zienkiewicz & Shiomi, 1984; Zienkiewicz, 1982) have presented equations by 

assuming incremental plasticity, which account for the nonlinear behavior. Accordingly the total 

incremental stress 
ijdσ  is divided into two components as  

'ij ij ijd d dpσ = σ + δ          (4.7) 

where 'ijdσ is the incremental effective stress tensor, dp denotes the incremental pore water 

pressure and ijδ  is the Kronecker delta. Similarly, the total strain increment,ijdε , can be expressed 

as: 

'( ) ( )ij ij ij pd d dσε = ε + ε         (4.8) 

where '( )ijd σε  denotes the incremental strains caused by the deformation of soil or rock grains and 

skeleton due to the effective stress, and ( )ij pdε  denotes the strain caused by the deformations of 

solid grains due to pore water pressure. 

The constitutive equations for an elastic-plastic material in terms of the effective quantities 

can be expressed as 

' 'ep
ij ijkl kld C dσ = + ε          (4.9) 
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' epd C dσ = + ε          (4.10) 

The first equation (4.9), is expressed in tensor notation, while the second one, eq.(4.10), is expressed 

in matrix notation. Here, ep e p
ijkl ijkl ijklC C C= − where the first term relates to elastic behavior while the 

second term arises from inelastic or plastic behavior. The latter is derived based on the particular 
yield criterion or function chosen (e.g., conventional plasticity: von Mises, Drucker-Prager and Mohr 
Coulomb) or continuous yielding (e.g. critical state and cap), and related flow rule (Desai, 2000). 

The bulk elastic behavior of solid grains  (skeleton) can be expressed as 

( )
3ij p ij

s

dp
d

K
ε = δ          (4.11) 

where sK  denotes the bulk modulus of the solid grains. The substitution of equations (4.8) through 

(4.11) in eq.(4.7) leads to 

3
ep

ij ijkl kl ijkl ij
s

dp
d C d C dp

K

 
σ = ε − + δ 

 
       (4.12) 

The common terms without dpin the last two terms can be expressed as  

3

ep
ijkl

ij kl ij ij
s

C

K
δ − δ = αδ + β         (4.13) 

where { is a scalar term. Assuming that the deviatoric part, |, can be neglected (Zienkiewicz & 

Shiomi, 1984), eq. (4.12) reduces to  

ep
ij ijkl kl ijd C d dpσ = ε +α δ         (4.14) 

For elastic materials , 
ep
ijklC  reduces to 

e
ijklC  as 

2e
ijkl ik jl ij klC dp= µδ δ +λ δ δ         (4.15) 

where µ and λ are Lame’s constants. Now, by using equations (4.13) and (4.15) α  can be deduced 

as  

(2/3)
1 1

s s

K

K K

λ+ µα= − = −         (4.16) 

where K is the bulk modulus of the soil-water mixture, which for elastoplastic material can be 

derived as 
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9

ep
ij ijkl klC

K
δ δ

=           (4.17) 

The following four items (given below in order of importance) can influence the volume change 

behavior of the mixture (Zienkiewicz, 1982): 

• the increased volume due to a change in strain i.e.: dε~~ = �~��ε~� = ���, 

• the additional volume stored by compression of void due to water pressure increase: ��p/�I 

• the additional volume stored by the compression of grains by the water pressure increase: (1 − �)��/��, where �� is the bulk modulus of skeleton 

• the change in volume of the solid phase due to a change in the intergranular effective contact 

stress σ� = σ + δ~�� ∶ ������;���
sd = (�/��)(dε� + d�/��)  , where K  is average bulk modulus of the 

soil-water mixture and ε� the total volumetric strain. 

In view of the above four contributions, the volume change of the mixture, the continuum 

condition, can be expressed as 

'
(1 )

3
ii

ii
s f s

ddp dpn
d d n

K K K

σξ = ε + − + −        (4.18) 

The substitution of equation (4.7) and (4.14) into the above equation leads to (Zienkiewicz & 

Shiomi, 1984): 

( )kkdp Q d d= α ε + ξ          (4.19) 

where { was defined previously and Q  is expressed as  

( )
f s

s f

K K
Q

K n K n
=

+ α −
         (4.20) 

Equation (4.14) and (4.18) can be applied for both elastic and elastic-plastic material behavior 

assuming that the bulk modulus for solid grains and fluid are invariant. 

If the bulk modulus for the solid grains is much higher than that for the soil skeleton, that is, 

if sK K>> the values of α  tend to unity. Than eq.(4.14) can be expressed as  

'ij ij ij ijkl kld d dp C dσ = σ − δ = ε         (4.21) 
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The above equation denotes the effective stress concept (Terzaghi, 1943; Terzaghi, 1960), 

implying that the deformation of the solid skeleton is affected by the effective stress. 

4.3. Equilibrium equations. 

As noted before, the solid and fluid components of the mixture are coupled. Equations of 

motion of fully saturated porous soil model include set of three equations: linear momentum 

balance for the mixture, mass balance for the water phase and mass balance for the mixture. 

Unknowns variable are three values: skeleton displacement, water displacement and water pore 

pressure. According to (Zienkiewicz & Shiomi, 1984; Zienkiewicz, 1982; Biot, 1962; Shao , 1997; 

Desai & Galagoda, 1989; Wathugala & Desai, 1990; Desai, 2000), those equations are given by: 

1. Linear momentum balance for the soil-water mixture. 

, (1 ) (1 ) 0s f
ij j s i i s i f in b n b n u n uσ + − ρ + ρ − − ρ − ρ =ɺɺ ɺɺ      (4.22) 

where ib  denotes the components of body force per unit mass, fu and su  are the displacements of 

the fluid and the skeleton, respectively, fρ and sρ  are the densities of fluid and solid grains, 

respectively. 

If we substitute equations (4.2), (4.3) and (4.21) into eq.(4.22), include convective element 

and assume that �~ is the vector of relative velocity of pore water (�~ = 
m ~ I − 
m ~� = 
m ~ I − 
m ~), it 

simplifies to  

, ,( ) 0ij j i f i j i j iu w w w bσ −ρ −ρ + +ρ =ɺɺ ɺ        (4.23) 

or 

��q − ρLM + ρI(�m + �∇��) + ρ� = 0         (4.24) 

where 


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∂
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∂
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∂
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∂
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321
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xxx

L      (4.25) 
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















++
++
++

=∇

3,332,321,31

3,232,221,21

3,132,121,11
T

wwwwww

wwwwww

wwwwww

ww  - convective vector 

� = Lm � − Lm � = Lm � − Lm  - vector of relative velocity of pore water with respect to velocity 

of skeleton 

�m  - vector of relative acceleration of pore water with respect to 

acceleration of skeleton 

Equation (4.23) is an extension of the linear momentum balance for the soil-water mixture 

including convective vector. Overall density of the soil-water mixture is given by eq.(4.2). 

2. Linear momentum balance for the water. 

, ,( ) / 0s
i i f i f i j i j f ip R u w w w n b− − −ρ −ρ + +ρ =ɺɺ ɺ      (4.26) 

or 

−∇� − � − ρILM � − ρI��m + �∇���/� + ρI� = 0     (4.27) 

 where Ri represents the viscous drag forces, which assuming the Darcy seepage law, can be written 

as 

ij j ik R w=           (4.28) 

 In eq.(4.28) the permeability coefficients ijk  is used with dimensions of [length]3[time]/[mass] 

which is different from the usual soil mechanics convention which has the dimension of velocity'k , 

i.e., [length]/[time]. Their values are related by '/ fk k g= ρ  where fρ  are the water density and g 

gravitational acceleration at which the permeability is measured. When these units,jR  has the 

dimension of force. 

Equation (4.26) is an extension of the linear momentum balance for the pore water 

including convective component ,f j i jwwρ . The other components are: (,ip− ) -is the gradient pore 

water pressure, 
s

f iuρ ɺɺ - is the inertia force of skeleton , f iwρ ɺ  - is the inertia force of pore water, f ibρ  - 

is the water body force, iR - is the viscous drag force. 
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3. Mass balance for the mixture. 

Mass balance equation for the soil-water mixture balance the flow divergence ,i iw by the 

augmented storage in the pores of a unit volume of soil occurring in time dt. This storage is 

composed of several before mentioned components given below in order of importance: 

Adding all the storage increase contributions from eq. (4.18) together with a source term 

which represents temperature changes �m@ and a second-order term due to the change in fluid density 

in the process  /f fnρ ρɺ  we can finally write the flow conservation equation 

, 0

(1 )
( ) 0f

i i v v
f s s s f

nnp n p K p
w s

K K K K

ρ−+ ε + + − ε + + + =
ρ
ɺɺ ɺ ɺ

ɺ ɺ ɺ     (4.29) 

or 

, 0

(1 )
1 0f

i i v
s f s s s f

nK n n K
w p s

K K K K K

  ρ  −+ − ε + + − + + =     ρ   

ɺ
ɺ ɺ ɺ     (4.30) 

The following designation is used: 

1 1

f s s s f s

n n K n n

Q K K K K K K

− α −= + − = +        (4.31) 

Given above notation, the Equation  

, 0

(1 )
( ) 0f

i i v v
f s s s f

nnp n p K p
w s

K K K K

ρ−+ ε + + − ε + + + =
ρ
ɺɺ ɺ ɺ

ɺ ɺ ɺ     (4.29)  

can be written: 

, 0 0f
i i v

f

np
w s

Q

ρ
+ αε + + + =

ρ
ɺɺ

ɺ ɺ         (4.32) 

or 

0 0fT
v

f

np
s

Q

ρ
∇ + α ε + + + =

ρ
w m

ɺɺ
ɺ ɺ        (4.33) 

 

The set of three governing equations for the two-phase media gathered together are as follows: 
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    , (1 ) (1 ) 0s f
ij j s i i s i f in b n b n u n uσ + − ρ + ρ − − ρ − ρ =ɺɺ ɺɺ  

    , ,( ) / 0s
i i f i f i j i j f ip R u w w w n b− − −ρ −ρ + +ρ =ɺɺ ɺ      (4.34) 

    , 0

(1 )
( ) 0f

i i v v
f s s s f

nnp n p K p
w s

K K K K

ρ−+ ε + + − ε + + + =
ρ
ɺɺ ɺ ɺ

ɺ ɺ ɺ  

4.4. Boundary and initial conditions. 

Behavior of two-phase medium (skeleton and water in the pores) in dynamic analysis is 

described by equations (4.23) – linear momentum balance for the soil-water mixture ; (4.26) – 

linear momentum balance for the water; (4.32) – mass balance for the mixture and (4.7) – 

constitutive equations. Unknowns in these equations are: 

p - pore water pressure 

{ }1 2 3, ,
T

w w w=w - average velocity vector of water flow inside inside the pore with respect to 

skeleton 

{ }1 2 3, ,
T

u u u=u - displacement vector of soil skeleton 

We can divide the boundary conditions to those regarding the soil skeleton and those 

regarding the pore water : 

• the boundary conditions for the pore water are: known relative flow velocity with respect to 

skeleton �� through the boundary Γ(  and pore water pressure p q=  on the boundary Γ�, where 

Γ = Γ( ∪ Γ�. 

• the boundary conditions for the soil skeleton are: known displacement L� on the boundary Γ3  and 

known normal stress O  = P̅   on the boundary Γ" , where Γ = Γ3 ∪ Γ". 
The above information can be symbolically presented as in Fig. 4.3.  

 

Skeleton phase Pore water phase 

Γ = Γ" ⋃ Γ3 

P = Oq = P ̅ on Γ" 
L = L� on Γ3 

Γ = Γ" ⋃ Γ3 

� = £ on Γ� 

� = �� on Γ( 
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      Fig. 4.3: Boundary conditions of two phase fully saturated soil model (Wrana, 2016) 

The initial conditions, similarly as the boundary conditions, can be divided into those 

regarding the soil skeleton and those regarding the pore water: 

• the initial conditions for the soil skeleton are: known displacement at time ¤@, u(¤ = ¤@) = u@  and 

known velocity at time ¤@, um (¤ = ¤@) = um @. 

• the initial conditions for the pore water are: known the relative flow velocity with respect to 

skeleton at time ¤@, �(¤ = ¤@) = �@ and known pore water pressure at time ¤@, �(¤ = ¤@) = �@.  

5. Solution methods. One dimensional problem of consolidation and 

dynamics. 

Simplified set of equations (4.23), (4.26) and (4.32) after eliminating the relative flow velocity, 

body forces (  0i f ib bρ =ρ = ) and implementing the following simplifications: 

• omitting in equations (4.23) and (4.26) member ,i j i jw ww+ɺ  , which is very small when related to 

soil skeleton displacement u or pore water pressure p, 

• omitting the water density changes in time fρɺ , 

• omitting the effects of temperature changes in time 0sɺ , 

can be presented as follows: 

, 0ij j i f iu wσ −ρ −ρ =ɺɺ ɺ          (5.1) 

, / 0i i f i f ip R u w n− − −ρ −ρ =ɺɺ ɺ         (5.2) 
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, 0i i v

p
w

Q
+αε + =

ɺ
ɺ          (5.3) 

Unknowns in these equations are: 

p    - pore water pressure, 

{ }1 2 3, ,
T

w w w=w  - average velocity vector of water flow inside the pore with respect to 

skeleton, 

{ }1 2 3, ,
T

u u u=u  - displacement vector of soil skeleton. 

The boundary conditions from Fig. 4.3 imposed on these variables complete the problem. 

5.1. Comparison of fully dynamic, partly dynamic and quasi static model. 

5.1.1. Fully dynamic idealization – Biot model. 

For the one-dimensional case we assume 1 2 3,   0u u u u= = =  and 1/ / fQ n K= . For an 

isotropic material, D is given by and for small strains the stress relation is 

,'' D D xp p u p= − = − = −σ σ ε ,  in the next relation we introduce f=w uɺ   where fu  is the 

displacement of fluid. 

From Equation (5.3) we have relation  ( ), ,
f s f

x x

K
p u u

n
= + . Substituting this relation into the 

two remaining equations we obtain (Wrana & Pietrzak, 2013): 

, ,u u u uf fs f s f
xx xx f

K K
D

n n

 
+ + = ρ + ρ 

 
ɺɺ ɺɺ       (5.4) 

( ), ,

w
u u u u +f f fs f s f

xx xx f

K g

n n k

ρ ρ
+ =ρ +ɺɺ ɺɺ       (5.5) 

For a periodic applied surface load q = Qe¨©ª a periodic solution arises after the dissipation 

of the initial transient in the form u� = U(x)e¨©ª,   uI = v = V(x)e¨©ª.  
With following notations  
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K = ¯°±²³¯°́ ,  β = ¶°¶ ,   α = ¸¹º»¼�½ = ¹»¸�¾̅¼ ,   z = Àº, 

where: L – depth of soil layer 

Vº = Á²³¯°́
¶  - compression wave velocity in porous soil, 

f = ©�¸  - frequency of excitation, 

f̅ = �½9º  - reference frequency, 

η = ¾¾̅ = ©º�¸�½ - frequency ration as proportion of excitation to reference frequency, one 

can obtain Biot equations in the form of 

2 2 2 2
,zz ,zzU +KV U V= −η π − η π β        (5.6a) 

2 2
2 2

,zz ,zzKU +KV U -i V
n

 η π β= −η π β − ηα 
 

.     (5.6b) 

5.1.2. Partly dynamic idealization – u-p formulation. 

In this case , the coupled equations  of flow and deformation consider only the acceleration 

of solid skeleton and not that of pore fluid. It is called u-p formulation as in this case the governing 

equations can be represented only in terms of solid displacement, u and pore fluid pressure, p. 

The reduced system in general form when omitting inertia forces of the fluid becomes: 

, 0ij j iuσ −ρ =ɺɺ           (5.7) 

, 0i i f ip R u− − −ρ =ɺɺ          (5.8) 

, 11 0i i

p
w

Q
+αε + =

ɺ
ɺ .         (5.9) 

The appropriate equation set for one-dimensional problem (5.6a) and (5.6b) ,  after 

substituting new variables introduced in the previous section, becomes (Wrana & Pietrzak, 2013): 

2 2
,zz ,zzU +KV U= −η π         (5.10a) 

2 2
,zz ,zzKU +KV U+i V= −η π β ηα .      (5.10b) 
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5.1.3. Quasi static idealization – consolidation model. 

If we ignore all second time derivatives, in other words all inertial terms, the equations 

simplify to : 

, 0ij jσ =           (5.11) 

, 0i ip R− − =           (5.12) 

, 11 0i i

p
w

Q
+αε + =

ɺ
ɺ          (5.13) 

The resulting system corresponds to quasi-static case , which is used frequently in soil 

mechanics. If the phenomena is sufficiently slow the full set of equation is considerably reduced 

and after similar transformations as in previous cases, we obtain : 

U,))  +  KV,))  = 0,         (5.14a) 

KU,))  +  KV,))  =  iηα V        (5.14b) 

We solve all the aforementioned (in 5.1.1, 5.1.2, 5.1.3) differential equations analytically 

reducing them to two uncoupled differential equations of fourth order. 

5.1.4. Numerical example. 

The one-dimensional soil layer subjected to a periodic surface force is considered as shown 

in Fig. 1. To complete the solution, boundary conditions must be applied at z=0 and z=1. These 

conditions are: 

with z=0: pore pressure p=0, stress on external surface σ = q = qÄÅ~Æ", 
with z=1: displacement of skeleton u=0, displacement of fluid v=0. 
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Fig. 5.1: Soil layer subjected to periodic loading 

Numerical analysis is performed with typical parameters for a wide range of sands: porosity 

n=1/3, coefficient K=0.973, and β=1/3. The calculations of skeleton displacement – u and fluid 

displacement – v are carried out for three sets of models: FD- exact solution (Biot’s model), PD- u-

p model and QS- quasi-static model. All the calculations are done using the dimensionless η 

parameter which is the ratio of the excitation frequency to the comparative frequency which is 10Hz 

in our case: Ç =  II̅ = I�@�) . The value of 10Hz is a typical excitation for soil vibrators. There are 

generally considered five values of η : 0.1, 0.8, 1.0, 1.2, 5.0. These values comply with soil 

vibrators. 

The three figures below (Fig. 5.2, Fig. 5.3 and Fig. 5.4) show the displacement of the 

skeleton and of the fluid and also the fluid pressure for Biot’s model, versus normalized depth. 

There are varied values and shapes of the aforementioned unknowns for different η (or different 

excitation frequency in other words). 
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Fig. 5.2: Displacement 
of the soil skeleton 
versus normalized depth 
for FD analysis for five 
different η  

 

Fig. 5.3: Displacement 
of the fluid versus 
normalized depth for FD 
analysis for five 
different η 

 



72 
 

 

Fig. 5.4: General 
variation of the fluid 
pressure versus 
normalized depth for FD 
analysis for five 
different η 

 

 The set of figures below (Fig. 5.5, Fig. 5.6 and Fig. 5.7) on the contrary, present the 

comparison of the skeleton and the fluid displacement for analyzed  formulations and for three 

exemplary  η. 

 

 
 

Fig. 5.5: Skeleton and  fluid displacement versus normalized depth  for Biot’s, u-p and consolidation model for η=0,1 
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Fig. 5.6: Skeleton and fluid displacement versus normalized depth for Biot’s, u-p and consolidation model for η=1 

 

  

Fig. 5.7: Skeleton and fluid displacement versus normalized depth for Biot’s, u-p and consolidation model for η=5 

 

For η=5 (Fig. 5.7) there is a different type of graph used, because it shows the oscillations 

and the violent changes much better than the column graph. 

When it comes to the fluid pressure, the disparity between analyzed models is also bigger 

for higher frequencies as shown in Fig. 5.8 presenting the pressure as a function of depth. 
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Fig. 5.8: Fluid pressure versus 
normalized depth for Biot’s, u-
p and consolidation model for 
η=0.1,  η=1 and η=5 
respectively 
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The analytical study described helps us to determine the limits of applicability of the 

various assumptions in the particular case of a linear one-dimensional and periodic problem. An 

extrapolation of the conclusions can be made to other more realistic problems of soil mechanics 

giving some quantitative basis for the recommended analysis procedure and avoiding a priori 

assumptions.   

The main question which is raised in the thesis is when the PD or even QS model is 

sufficient and whether  FD analysis is necessary to conduct. There are three main conclusions which 

can be done after calculations in previous sections : 

• for low excitation frequency (η ≤ 0.1) the three analyzed models have similar results, so 

there is no point in doing expanded calculations accompanying the PD or FD idealization ; 

• the influence of the fluid inertia forces is very low even for η = 1, so it is not an error to 

neglect them for η ≤ 1 (PD idealization is sufficient) ; 

• if the skeleton displacement is of main interest, it is possible to conduct the PD idealization 

(which neglects the fluid inertia forces) even for relatively high excitation frequency (η = 5). 

5.2. Influence of soil physical parameters on harmonic response. 

5.2.1. Introduction. 

The Equations (5.4) and (5.5) for the fully dynamic idealization can be written as follows (Wrana & 

Pietrzak, 2013):  

( ), ,

1
u u 1 u us f s f

f xx f xx s f

n
D D D n n

n

− + + = − ρ + ρ 
 

ɺɺ ɺɺ      (5.15) 

( ), ,

1
u u u + u ufs f s f s

f xx xx f

n gn
D

n k

ρ− + = ρ − 
 

ɺɺ ɺ ɺ       (5.16) 

where 

f
f

K
D

n
=  - bulk modulus of the air-fluid mixture 

n  - porosity 

and introducing the following  
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f

D

D
χ = , 

1

(1 ) sn n G
β =

+ −
 , 

f
w

f

D
c =

ρ
 , ( ) ( )f sw n u u n v u= − = − , s

s
f

G
ρ=
ρ

 

the above equations (5.14) and (5.15) become: 

 

2
, ,

1 1 1
uw xx xxu w c w

n n

  + = + χ +  β   
ɺɺ ɺɺ       (5.17) 

2
, ,

1 1 1
uw xx xx

g
u w w c w

n k n n
 + + = + 
 

ɺɺ ɺɺ ɺ       (5.18) 

The above equations (5.16), (5.17) present the transfer of energy between solid and fluid phases, 

which result from the viscous forces of interaction between the solid and fluid phases. Biot showed 

that the energy dissipation per unit volume is :   

( )2
0.5 f

d
f

g
E w

D

ρ
= ɺ .         (5.19) 

5.2.2. Steady state response of the Biot column. 

5.2.2.1. Analytical solution. 

The Biot column (Fig. 5.9) is fixed and undrained at the bottom (x=L) but it is free to 

displace and drained at the top (x=0). It is subjected to normal, harmonic pressure at the top having 

the angular frequency ω.  

Solutions of the steady state response of the Biot column are written in the form: 


(2, ¤) = È(2)Å~Æ"         (5.20) 

�(2, ¤) = W(2)Å~Æ"         (5.21)  
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Fig. 5.9: Geometry and boundary conditions of the Biot column  

where É = √−1 and U(x)  and W(x) are 

È(2) = -ÅË4          (5.22) 

W(2) = ÌÅË4.          (5.23) 

When substituting them into the equation of energy transfer (5.17) and (5.18) between solid and 

fluid we obtain (Bardet, 1995) 

- 'Í� 'Z + ��, + �Î, + Ì 'Ï�
� + 1, = 0       (5.24) 

- 'Ï�
� + 1, + Ì 'Ï�

� + �� − É l�Æ, = 0       (5.25) 

where 

Í = 5tËÆ ,  

_(   – wave velocity in the fluid defined in section 5.2.1 

Ð     – unknown, number characterizing the wave length corresponding to the frequency Ñ 

-, Ì  – unknowns. 

If we want to have a nontrivial solution, the determinant of the above equations must be equal to 

zero, which gives the characteristic equation : 
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Ò� Í9 + ÓÍ� + Ô = 0         (5.26)  

where 

Ó = 'Z + ��, �� + ��Î − �� − É l�Æ '�� + Z,      (5.27a) 

Ô = ��Î − 1 − É l�Æ �Î         (5.27b) 

The above characteristic equation always has four complex roots: 

Í�,	 = ±Ö�=��×��=��9H�Ò�Ò         (5.28a) 

Í�,9 = ±Ö�=�³×��=��9H�Ò�Ò         (5.28b) 

 

After calculating these roots, U(x) and W(x) can be found from: 

È(2) = -�ÅË�4 + -�ÅË�4 + -	Å�Ë�4 + -9Å�Ë�4     (5.29) 

W(2) = ��-�ÅË�4 + ��-�ÅË�4 + ��-	Å�Ë�4 + ��-9Å�Ë�4   (5.30) 

where the complex constants are: 

�� = − Ï��(�³�Ò)³ǾÏ��³�          (5.31a) 

�� = − Ï��(�³�Ò)³ǾÏ��³�          (5.31b) 

In order to calculate -�, -�, -	 and -9 it is necessary to analyze the boundary solutions for the 

aforementioned Biot column. As we can see in Fig. 5.9, the applied stress is harmonic with a 

frequency ω and amplitude σ0. The D is given and defined in Appendix 1 by (Z1.10).  The boundary 

conditions are : 

ti
x

ti e
D

uet ϖϖ σσσ 0
0 ,),0( =→=′  
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D
wtp x

0,0),0(
σ−=→=  

0)(0),( =→= LUtLu  

0)(0),( =→= LWtLw         (5.32) 

When substituting the formulas of U(x) and W(x) we have : 

-�ÅË�E + -�ÅË�E + -	Å�Ë�E + -9Å�Ë�E = 0 

-���ÅË�E + -���ÅË�E + -	��Å�Ë�E + -9��Å�Ë�E = 0 

-�Ð� + -�Ð� − -	Ð� − -9Ð� = 
@Ù  

-���Ð� + -���Ð� + -	��Ð� + -9��Ð� = − ;�v      (5.33) 

After solving this set of equations we obtain: 

-� = [
@Ù �� + 1(�� − ��)Ð�[ 11 + Å�Ë�E 

-� = [
@Ù �� + 1(�� − ��)Ð�[ 11 + Å�Ë�E 

-	 = −-�Å�Ë�E 

-9 = −-�Å�Ë�E         (5.34) 

As a consequence the amplitude ( )U x of the solid phase displacement u(x,t) is 

0 2 1 1 2

2 1 1 1 2 2

( 1) sinh[ ( )] ( 1) sinh[ ( )]1
( )

cosh[ ] cosh[ ]

L K x L K x L
U x

D K K L L L L

 σ + λ − + λ −= − − λ λ λ λ 
  (5.35) 

and the amplitude ( )W x of the solid phase displacement w(x,t) is 








 −+−−+
−

=
]cosh[

)](sinh[)1(

]cosh[

)](sinh[)1(1
)(

22

212

11

121

12

0

LL

LxKK

LL

LxKK

KKD

L
xW

λλ
λ

λλ
λσ  (5.36) 

Knowing the expression for change in the fluid pressure and the meaning of relative displacement 

we can write : 
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Δ� = vÛ� (!3!4 + !(!4 )          (5.37) 

For harmonic solutions, the above becomes 

Δ�(2, ¤) = vÛ� '!Ü!4 + !Ý!4 , Å~Æ" = ΔÞ(2)Å~Æ"      (5.38) 

If we substitute into the above expression the formulas of U(x) and W(x) , we obtain: 








 −−−
−

++=∆
]cosh[

)](cosh[

]cosh[

)](cosh[)1)(1(
)(

2

2

1

1

12

210

L

Lx

L

Lx

KK

KK

n
xP

λ
λ

λ
λ

χ
σ .   (5.39) 

5.2.2.2. Variations of parameters. 

In order to make the calculations more clear, it is appropriate to introduce the dimensionless circular 

frequency ∆ and dimensionless permeability � : 

∆= ÆE5�            (5.40) 

� = lE�5�          (5.41) 

where 

_@ = _(Ö|(Z + ��)         (5.42) 

In terms of ∆  and K eq.(5.26a), (5.26b) becomes 

Ó = 'Z + ��, �� + ��Î − �� − É sà '�� + Z,      (5.43a) 

Ô = ��Î − 1 − É sà �Î         (5.42b) 

As a consequence the analytical solutions for U, W and P∆  depend on five dimensionless 

parameters : n, β, c, ∆  and K which depend on soil properties  n, Gs, k and D , the water properties 

S and p, the geometry L, and the circular frequency ω. 
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5.2.2.3. Water properties. 

As it was mentioned before we take into consideration only nearly saturated soils, which consist of 

the skeleton and the homogenous fluid made of water and dissolved gas.  The bulk modulus of the 

fluid strongly depends on the degree of saturation S. It is equal to 2200MPa for S=100%, 100MPa 

for S=99.9%, 10MPa for S=99%, 2MPa for S=95% and 1MPa for S=90%. 

5.2.2.4. Soil properties. 

The ranges of variation of typical soil properties are quite wide. The approximate values for gravel 

are summarized below.  

n = 0.12 – 0.46 

Gs = 2.6 – 2.7 

k = 10 – 10-1 cm/s 

D = 200 MPa 

The thesis does the calculations for the average coefficients. Knowing the extent of fluid bulk 

modulus Df, we can summarize that the coefficient K ranges from 0.1 to about 50. 

5.2.3. Examples of spectral response for gravel. 

5.2.3.1. Amplification factor of solid displacement. 

As it was mentioned before, the Biot column is analyzed, which might be considered as a 

layer of saturated soils that underlies the porous base of a structure or a piece of machinery. Its 

dynamic properties are characterized by the amplitude U(x) of the solid phase. 

0( ) ( , )
L

U x G x
D

σ= ∆          (5.44) 

An amplification factor ( )G ∆  can be easily obtained from eq.(5.35) 

2 1 1 2

2 1 1 1 2 2

( 1)sinh[ ( )] ( 1) sinh[ ( )]1
( )

cosh[ ] cosh[ ]

K x L K x L
G

K K L L L L

 + λ − + λ −∆ = − − λ λ λ λ 
  (5.45) 

If we are interested in the amplitudes at the top of the column, we have to equate x to 0 and as a 

consequence we achieve the following graphs Fig. 5.10 and Fig. 5.11 showing the variety of the 

spectral response for different degrees of saturation and dimensionless permeability. The same 
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relations but in three dimensions are presented in Fig. 5.16 and Fig. 5.17. Irrespective of the soil 

parameters, the Biot column experiences a large dynamic amplification with very sharp peaks when 

∆ =π/2, 3π/2  and 5π/2. It can be deduced, that π/2 is a fundamental period of the column and for 

these frequencies the solid phase is in resonance. The peaks gradually decrease as the degree of 

saturation increases. What is more, for lower dimensionless permeability the peaks became less 

attenuated  and their number increases for S=100%. Fig. 5.12 and Fig. 5.13 present a range of 

variety of the same factor but versus the depth of the column ( x coordinate) for different 

frequencies and permeabilities. As it was expected, the amplitudes would decrease as we go deeper 

in the ground. 

 

Fig. 5.10: Amplification factor G(∆) versus ∆ for conductivity coefficient K=50 and different degrees of saturation S 

 

Fig. 5.11: Amplification factor G(∆) versus ∆ for conductivity coefficient K=1 and different degrees of saturation S 
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Fig. 5.12: Amplification factor G(∆) versus depth x for conductivity coefficient K=50 and ∆ =1.4 and different degrees 
of saturation S 

 

Fig. 5.13: Amplification factor G(∆) versus depth x for conductivity coefficient K=1 and ∆ =1.4 and different degrees 
of saturation S 
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Fig. 5.14: Absolute value of amplification factor G(∆) versus dimensionless frequency ∆ for conductivity coefficient 
K=50 and x=0m, and different degrees of saturation S 

Fig. 5.14 presents the  absolute value of the G(0) for K=1 and two different degrees of 

saturation. This graph  has an important physical interpretation, for values G(0) < 1  the dynamic 

response becomes smaller than the static one (0∆ = and G(0) = 1 for the static case). For G(0) > 1 

there is always a dynamic amplification. The next Figure shows the same relation but for a different 

value of K. 

 

Fig. 5.15: Absolute value of amplification factor G(∆) versus dimensionless frequency ∆  for conductivity coefficient 
K=1 and x=0m,  and different degrees of saturation S 
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Fig. 5.16: Amplification factor G(∆) versus dimensionless frequency ∆  and log fD  for conductivity coefficient K=50 

and x=0m 

 

Fig. 5.17: Amplification factor G(∆) versus dimensionless frequency ∆ and log Df  for conductivity coefficient K=1 
and x=0m 
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5.2.3.2. Velocity of compressional wave. 

The velocity of the fast compressional wave is defined as : 

_� = �5táâ(ã�)          (5.46) 

where 

_( = ÖvÛäÛ  - wave velocity in the fluid 

ψ�  - defined in 5.2.2.1. 

Fig. 5.18 and Fig. 5.19 show the velocity _� versus dimensionless frequency for different degrees of 

saturation S and K. In Fig. 5.18 the velocity strongly depends on the frequency of applied load. It 

means that for K=50 the soil is a dispersive media, while for K=1 and Δ>1 (Fig. 5.19) the soil is an 

elastic media, which on the contrary means that the applied load frequency does not affect the wave 

velocity. 

 

Fig. 5.18: Velocity _�	versus dimensionless frequency ∆ for two different degrees of saturation for K=50 
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Fig. 5.19: Velocity _�	versus dimensionless frequency ∆  for two different degrees of saturation for K=1 

 

5.2.3.3. Solid phase displacement. 

As we can see in Fig. 5.20 (according to eq. (5.44) and (5.45)), the amplitude is the highest 

at the top of the  Biot column, which is obvious, because that is  the place where the extortion is 

applied. As it was mentioned before, ∆=π/2 is the column’s fundamental period and as the result the 

solid phase displacement violently increases around this value. The Biot column is clamped at the 

bottom, which explains the zero displacements for x=10m. 
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Fig. 5.20: Solid displacement versus x coordinate for three different extortions ∆  for K=50 

 

5.2.3.4. Relative displacement of the fluid. 

At first it is appropriate to introduce an amplification factor for the relative displacement of 

the fluid. Similarly as for the solid phase, we can write 

W�2� � 	 Eæ�
v &(�Δ, 2�         (5.47) 

where 

&(�Δ, 2� � �
s��s�

�s��s�³�� ç¨èéYË��4�E�]
Ë�E5ê�ë�Ë�E� � s��s�³��ç¨èé	YË��4�E�]

Ë�E5ê�ë�Ë�ì� �    (5.48) 
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Fig. 5.21: Amplification factor Gw(∆) versus ∆ for conductivity coefficient K=50 and three different degrees of 
saturation S 

 

Fig. 5.22:Amplification factor Gw(∆) versus ∆ and log(Df) for conductivity coefficient K=50 

 

Fig. 5.23 shows  the variation of an amplitude W(x) versus ∆ for various values of K and S . 

The relative displacement W(x) is more chaotic then U(x). There are local drops and pickups. For 

S=99% and less, W(x) for the resonance frequency  is about ten times bigger from other amplitudes. 

This occurrence does not happen for fully saturated soils contrary to solid displacement, where the 

differences of the displacements for the resonance frequencies and the remaining ones are 

substantial. For the static case (∆ =0) the relative displacement is the biggest, which means that 

fluid damping is considerable. 
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Fig. 5.23: Fluid relative displacement versus x 
coordinate for four different extortions ∆ and 
for various K and S  
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5.2.3.5. Amplitude of the pore pressure. 

We apply the same approach as previously. We can write : 

∆Þ � 	 æ�
�í &àî�Δ, 2�         (5.49) 

where 

&àï�Δ, 2� � �s�³���s�³��
s��s�

�ðñçéYò��4���]
ðñçéYò�E] � ðñçé	Yò��4���]

ðñçé	Yò�E] �      (5.50) 

Fig. 5.24: Amplification factor G∆p(∆) 
versus ∆ for two different conductivity 
coefficients and for x=1m for different 
degrees of saturation S  
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Fig. 5.24 presents an amplification factor GDp versus dimensionless frequency. The above 

graph is for a depth x=1m, because for x=0m, as it is expected,  the fluid pressure is equal to zero.  

Water can freely  drain from the soil. It is noticeable that for high permeability, the amplification 

factor has lots of local drops and pickups.  As shown in Fig. 5.25 the water pressure is quite 

turbulent for high permeability, while it increases evenly with depth for lower permeabilities. 
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Fig. 5.25: Pore pressure amplitude versus x coordinate for four different extortions and various K and S 

As we can see in Fig. 5.26, for fully saturated gravels at the fundamental frequency, the 

water pressure is much higher than in nearly saturated soils. 

 

Fig. 5.26: Pore pressure amplitude versus x coordinate for K=1 and ∆=π/2 and for various  S 
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5.2.4. Conclusions. 

The chapter included the analytical solution of the harmonic response of a column made of 

nearly and fully-saturated poroelastic materials using the Biot’s theory. The study revealed the 

relative influence of the degree of saturation, permeability, and matrix rigidity on the fundamental 

period , the maximum amplitude and the dissipated energy. Parameters used in the article concern 

gravels. In the future work it is needed to find the solution for an undrained case, which is clay.  

As it was proved in previous sections, the water diffusion plays an important role in the 

dynamic behavior of nearly and fully-saturated gravels, which vary from undamped (|G|>1) to 

overdamped (|G|<<1)  depending on the degree of saturation. 

6. Solution methods. Two dimensional problem of consolidation and 

dynamics. 

 6.1. Basic equations. 

For the two dimensional problem the partly dynamic idealization (us –p formulation) is 

applied described in Section (5.1.2). Simplified set of equations (4.24), (4.27) and (4.33) 

eliminating the members of relative velocity w of pore water with respect to skeleton. 

The following simplification in the equations used: 

•   omitted in equations (4.24) and (4.27) member  �m + �∇�� � i, as small with respect to Ló � L 

– displacement of skeleton and with respect to p – pore water pressure. 

•   assumed the linear Darcy seepage law ô� � �, 

•   omitted the water density changes in time, ρm I � 0 ,  

•   omitted the effects of temperature changes in time �m@ � i.  

Equation (4.24) takes the form 

��q � ρLóM + ρ� � 0          n   (6.1) 

where � is the differential operator defined in Appendix 1. 
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From the eq.(4.27) determine the force � � �∇� � ρILM � + ρI� � 0, hence Darcy seepage 

law can be written as ô� � ô��∇� � ρILM � + ρI�� � �. Then, substituting to (4.33) received 

∇�ô��∇� � ρILM � + ρI�� + α��m + �
� �m + �mê � 0.     (6.2) 

 Equations (6.1) and (6.2) are dynamics consolidation equations which take into account the 

inertia forces ρLM �and  ρILM �. 

Omitting members of inertia forces we can obtained the two phase soil equations for static 

consolidation problem 

��q + ρ� � 0 

∇�ô��∇� + ρI�� � 0.         (6.3) 

 

Initial conditions 

The initial conditions for the soil skeleton are: known the displacement at time ¤ê, L��¤ �
¤ê� � Lê�  and known the velocity at time ¤ê, Lm ��¤ � ¤ê� � Lm ê�. 

The initial condition for the pore water is - known the pore water pressure at time ¤ê, 

��¤ � ¤ê� � �ê.          

     

Boundary conditions 

The boundary conditions for the soil skeleton are: known the displacement L�� on the 

boundary Γ3 and known the normal stress Oq � P ̅on the boundary Γ3õ , where Γ � Γ3 ∪ Γ3õ  

The boundary conditions for the pore water are: known the pore water pressure p = q  on 

the boundary Γ� and the water flow £I through the boundary Γ�õ, where Γ � Γ� ∪ Γ�õ 

Determined values of the boundary conditions: 

•   displacement of skeleton L� � L��,   on Γ3,     (6.4) 

•   normal stress ö�q � P,̅ on ÷3õ,       (6.5) 

•   pore water pressure � = �̅, on Γ�.       (6.6) 
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•   water flow condition 

¶Û
øt ô��grad�I + ρI� � ρILM ���O � £( on  Γ�

õ      (6.7) 

where £( – known the external water flow normal to the boundary, n = {n1, n2, n3} T .  

6.2. Weak formulation. 

In case of the two-dimensional task, it is impossible to solve it analytically. The Finite 

Element Method is applied for the us –p formulation. In order to discretize the momentum equation 

(strong form) (6.1), (6.2), a weak form, often called a variational form or the principle of virtual 

work (or virtual power) will be developed. The weak form will be used to approximate the strong 

form by finite elements; solutions obtained by finite elements are approximate solutions to the 

strong form. 

A weak form will now be developed for the momentum equation and the traction boundary 

conditions. For this purpose we define trial functions (us, pf) which satisfy any displacement 

boundary conditions and are smooth enough so that all derivatives in the momentum equation are 

well defined. The weight function (w,p) are assumed to be smooth enough so that all of the 

following steps are well defined and to vanish on the prescribed displacement boundary. The weak 

form is obtained by taking the product of the momentum equation expressed in terms of the trial 

function with the test function. This gives 

ù �����q � ρLM � + ρ��dΩ
Ω

+ ù ���ö�q � P�̅dΓ3 � 0
Γ

     (6.8) 

where for displacement of skeleton, trial function us, once differentiable, adopted so as to satisfy the 

boundary conditions (6.4) and (6.5) on Γ3, and weight function w satisfy vanish and prescribed 

condition on boundary  

w = 0  na Γ3  

�� � �� na Γ3
õ.         (6.9) 
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Fig. 6.1. Boundary conditions of two phase fully saturated soil model, more precisely discussed in Fig. 4.3. 

Use of the Green theorem dΓ φψψdΩ
φ

dΩ
ψ

φ
ΓΩΩ

∫+∫ ∂
∂−=∫ ∂

∂
xn

xx
 with respect to the equation 

(6.43)  one can receive 

� ù �����qdΩú + ù ��ö�qdΓ �û ù ��ρLM �dΩ + ù ��ρ�dΩ +úú   

+ ù �� ��ö�q � P�̅dΓûü
ý � 0        (6.10) 

and after taking into account eq.(6.9) finally obtained 

ù �����qdΩú � ù ��ρ�dΩ �ú ù ��ρLM �dΩ + ù �� �Pd̅Γûü
ýú � 0.   (6.11) 

    

Now the weak formulation to mass balance equation for the soil-water mixture (6.2) is used 

and to boundary condition (6.7), obtained 

ù �∗� þ∇� r ô
øt ��∇� � ρILM � + ρI��x + {���Lm � + '���

sd + �
st, !�

!"� dΩ +ú

        + ù �∗� r ôøt �−∇� − ρILM � + ρI���O − õt
¶Û x dΓû = 0        (6.12) 

           

where for pore pressure, trial function �, twice differentiable, adopted so as to satisfy the boundary 

condition (6.6) on Γ�, and weight function �∗ satisfy vanish and prescribed condition on boundary 

(6.13) 

�∗ = 0    na Γ�  

�� ∗ = −�∗   na Γ�õ       (6.13)  
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Use of the Green theorem to equation (6.12) finally obtained 

ù r��∇�∗�� '� ô
øt ∇� � ô

øt ρILM � + ô
øt ρI�, + �∗�α���Lm ç + �∗� '���

sd + �
st, !�

!"x dΩ +ú

+ ù �∗� õt
¶t dΓû�

� � 0         (6.14)  

6.3. Finite Element Method formulation. 

6.3.1. FEM discretization. 

FEM discretization was used, for the skeleton displacement the following approximation 

was introduced 

L� � ö3L          (6.15)  

 

and for pore water pressure 

�I � ö��          (6.16)  

 

Similarly, in place of the weight function w the shape function ö3 used, and in place of 

weight  function �∗ the shape function ö� introduced.  

Discretization of the linear momentum balance for the soil-water mixture 

After implementation of the above approximation functions, the Equation (4.24) can be 

written: 

ù �ö3��
ú ��q�Ω � ù �ö3��

ú ρö3LM �Ω + ù �ö3��
ú ρ��Ω � 0.    (6.17)  

Green theorem 

After transformations we obtain 

ù ��ö3��
ú q�Ω + `ù ρ�ö3��

ú ö3�ΩaLM � ù ρ�N3��
ú ��Ω + ù ρ�N3��

û� P�Γ"  (6.18) 

       M        ���� 

When introducing the differential operator: 
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� � �ö3          (6.19) 

one can receive : 

fLM + ù ��
ú q�Ω � ����        (6.20) 

where 

q  - total stress defined by eq.(4.7) or similarly: 

q� = q + α�	�         (6.21) 

when using it, one can obtain: 

fLM + ù (��ú q� − ��α���
)�Ω = �(�)       (6.22) 

fLM + ù ��ú q��Ω − ù (��α��ö�ú )�Ω� = �(�)      (6.23) 

           Q 

In case of small strains �q� = �(��L − ��i) and neglecting all the thermal strains the 

above equation can be written in a form: 

fLM + Yù ��ú ���Ω]L − �� = �(�)       (6.24) 

       K  

Eventually : 

fLM + eL − �� = �(�)         (6.25) 

where: 

f = ù ρ(ö3)�ú ö3�Ω   – mass matrix,  

e = ù ��ú ���Ω   – stiffness matrix,  

� = ù (��α��ö�ú )�Ω   – water coupling matrix 

The mass matrix f  and the stiffness matrix e  are symmetrical because of chosen weight 

functions. Unfortunately the water coupling matrix �  proved to be asymmetrical. 
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Discretization of the linear momentum balance for the water including mass balance for the 

mixture 

Equation (6.2) if neglecting the ρILM � term and the term representing the temperature 

changes �mê , as being negligible for the thesis’ purpose, and implementing the differential operator 

(6.19): 

∇�ô��∇� + ρI�� + α�	Lm + �
� �m � 0.       (6.26) 

Similarly, after introduction into eq.(6.26) the shape functions (6.16) in place of weight 

functions and integration over the Ω area, received 

ù �ö���
ú ∇�ô��∇� + ρI���Ω + ù �ö���

ú α���Lm �Ω + ù �ö���
ú


m
� �Ω � 0  (6.27) 

After further transformations : 

      H    QT 

���∇ö���
ú

ô�∇ö���Ω� � + ���ö���
ú

α���ö3�Ω� Lm + 

+Yù �ö���
ú

�
� ö��Ω]�m � ����       (6.28) 

       S 

where 

���� � ù �ö���
ú ∇��oρI���Ω + ù �ö���

ût ��Γ( .     (6.29)  

Finally: 

��Lm + �� + ��m � ����         (6.30)  

where:  

� � ù �∇ö���
ú ô�∇ö���Ω  – water permeability matrix; 

 � � ù �ö���
ú

�
� ö��Ω   – compressibility matrix 

Again all of the matrices are symmetrical except ��. 
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6.3.2. FEM set of equations. 

6.3.2.1. Partly dynamic formulation. 

Full set of Finite Element Method equations, called Partly Dynamic Formulation (or u-p 

formulation), regarding the aforementioned matrices is as follows: 

rf i
i ix �LM�M � + � i i�� �� �Lm�m � + re ��

i � x rL�x � �����
�����    (6.31)  

The unknowns are:  

• pore water pressure � and rate of change of the pore water pressure  �m   

• soil skeleton displacements L, velocities Lm  and accelerations LM  

Most of the literature, for example (Zienkiewicz & Shiomi, 1984) and (Smith & Griffiths, 

2006), omit the water compressibility matrix S as being irrelevant, see eq.(6.32).  

rf i
i ix �LM�M � + � i i�� i� �Lm�m � + re ��

i � x rL�x � �����
�����    (6.32)  

 

This thesis examines the influence of this matrix on the displacements and pore water 

pressure. The matrix is responsible for storage increase. It describes the energy storage and it is 

associated with water compressibility.  

 

Fig. 6.2: Components of the FEM set of equations if harmonic loading is applied 

6.3.2.2. Partly dynamic formulation without consolidation. 

Consolidation is a process by which soil decreases in volume (Fig. 6.2). According to Karl 

von Terzaghi consolidation is any process which involves a decrease in water content of saturated 
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soil without replacement of water by air. In general it is the process in which reduction in volume 

takes place by expulsion of water under long term static loads. When this occurs in soil that is 

saturated with water, water will be squeezed out of the soil. If we analyze the fast short-term period, 

the consolidation part from eq.(6.31) can be omitted. 

In case of harmonic loading we can predict the solution of the FEM set of equation in the 

following form  

�L�¤���¤�� � r��x Å~©", �Lm �¤��m �¤�� � Éω r��x Å~©", �LM (¤)�M (¤)� = −ω� r��x Å~©",��(�)(¤)�(�)(¤)� = ��(�)
�(�)� Å~©".  (6.33)  

Equation (6.31) omitting the consolidation term can be expressed: 

rf ii ix �LM�M � + re −�i � x rL�x = ��(�)�(�)�       (6.34)  

and after introducing the relations (6.33): 

þ−ω� rf ii ix + re −�i � x� r��x = ��(�)
�(�)�      (6.35)  

The above approach allows for the omission of integration over time domain. The results obtained 

are for a specific frequency only. 

6.3.2.3. Partly dynamic formulation –  omitting the change of water pressure with 

time. 

It was mentioned in the previous section, that the water compressibility matrix S is sometimes 

omitted (Zienkiewicz & Shiomi, 1984). This approach excludes the change of water pressure with 

time, in other words, the significant part of storage increase terms are excluded from the equations. It 

is then possible to eliminate the pore water pressure p as follows: 

From the second eq.(6.31) we obtain: 

��Lm + �� = �(�)          

� = ���(�(�) − ��Lm )         (6.36)  

Afterwards we put this formula into the first eq.(6.31):  

fLM + eL − (−������Lm ) − �����(�) = �(�)     (6.37)  
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or fLM + ������Lm + eL � ���� + ��������     (6.38)  

The above formula is relatively easy, symmetric and valid for both linear and nonlinear 

cases. What is most important is that it outlines a very relevant fluid parameter, which is damping. 

Unfortunately this approach is problematic. The inverse of the H matrix or the solution of the 

equation ������� needs to be calculated. 

Regarding the harmonic loading, the eq.(6.38) can be written in this form: 

��ω�f + Éω������ + e�L � ���� + �������� .     (6.39) 

6.3.2.4. Set of equations for the consolidation model. 

If dynamic loading is slow enough, it can be assumed that quasi static formulation (the 

consolidation model in other words) is sufficient. Unfortunately the boundary is not very clear and 

its range is planned to be estimated in a future study. 

The Finite Element Method set of equations for the consolidation model (all inertia forces 

are omitted) are as follows: 

� i i�� �� �Lm�m � + re ��
i � x rL�x � �����

�����      (6.40) 

In Section 6.3.3 the comparison of some of the above formulations can be found in  

numerical examples. In Appendix 1 all the matrices introduced above are presented in a more 

detailed way for an eight-node Serendipity quadrilateral finite element in a plane strain 

condition. 

6.3.3. Examples for individual formulations. 

6.3.3.1. Introduction. 

The example presented in this section is a limited region of the plane strain elastic model as 

shown in Fig. 6.4. The eight node Serendipity finite element is introduced for the skeleton, which is 

a higher order element with only exterior nodes. For the pore water pressure the four node 

Lagrangian finite element is used (Fig. 6.4).  
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Fig. 6.3: Schematic of the example – geometry and 
boundary conditions for the solid skeleton and the fluid; 
finite elements   

Fig. 6.4: Finite elements used in the example for the 
solid displacements and pore water pressure 

 

 

Fig. 6.5 presents the discretized region for the 

skeleton consisting of 28 nodes. Each of the nodes can 

move in both horizontal and vertical direction, which 

implies 56 degrees of freedom if boundary conditions are 

disregarded. Fig. 6.6 on the contrary shows the 

discretization for the pore water pressure. This time the four 

node finite element is introduced. Each of the node has only 

one degree of freedom (which is pressure), which implies 

12x1=12 degrees of freedom if not considering the 

boundary conditions. 

Fig. 6.5: The region after discretization (skeleton) consisting of 5 
elements, having 28 nodes and 56 degrees of freedom 

Fig. 6.6: The region after discretization (fluid in the pores) consisting of 
5 elements, having 13 nodes and 12 degrees of freedom 

Generally the results in the following sections are presented 

for two types of soil – clay and sand, which parameters’ are 

shown in Table 6.1. The harmonic loading with various 

frequencies ω is applied at the top with an amplitude of 

q=100kN. 
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  SOIL TYPE 1 -CLAY SOIL TYPE 2 -SAND 

IL / ID 0,2 0,5 

Modulus of Elasticity E [MPa] 25 80 

Poisson Ratio ν 0,37 0,25 

porosity n 0,35 0,35 

permeability coefficient k [m/s] 10^�-10� 10^(-4) 

Biot constant Q [GPa] 6,2 6,7 

density  r [kg/m^3] 2000 2000 

Table 6.1 Soil parameters used in the computational examples.  

In order to make it more clear and precise, all the formulations from Section 6.3.2 are 

named: 

� i i�� �� �Lm�m � + re ��
i � x rL�x � �����

�����    Model 1 (Equation 6.40) 

rf i
i ix �LM�M � + re ��

i � x rL�x � �����
�����    Model 2 (Equation 6.34) 

rf i
i ix �LM�M � + � i i�� �� �Lm�m � + re ��

i � x rL�x � �����
�����   Model 3 (Equation 6.31) 

rf i
i ix �LM�M � + � i i�� i� �Lm�m � + re ��

i � x rL�x � �����
�����   Model 4 (Equation 6.32) 

6.3.3.2. Comparison of partly dynamic idealization including and omitting the 

change of water pressure with time. 

Hereunder, the results of the Model 3 and Model 4 - equations (6.31) and (6.32) are 

presented and compared. Model 4, which omits the change of water pressure with time, is the 

simplified version of Model 3, which is equivalent to eliminating the compressibility matrix � from 

eq.(6.30). Direct numerical integration of the equations over time  is introduced, which means, that 

integration step-by-step is performing, where the word "direct" means that there is no 

transformation of the equation of motion. The HHT-α method, proposed by Hilbert, Hughes and 

Taylor in 1977, is used with the α parameter equal to zero (Lacoma & Romero, 2007).  
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Fig. 6.7: The results for soil Type 1, including compressibility matrix S for the excitation frequency equal to 20Hz a) load 
multiplier b) displacement uy  [m] c) effective stress σ′44 vs. pressure p and total stress [Pa] d) effective stress σ′!! vs. 
pressure p and total stress [Pa] 
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Fig. 6.8: The results for soil Type 1, omitting compressibility matrix S for the excitation frequency equal to 20Hz a) load 
multiplier b) displacement uy [m] c) effective stress σ′44 vs. pressure p and total stress [Pa] d) effective stress σ′!! vs. 
pressure p and total stress [Pa] 

The calculations are done for soil Type 1 and soil Type 2 from Table 6.1. At first, the study 

concentrates on soil Type 1 (clay). The excitation has two exemplary frequencies – 20Hz and 40Hz. 

The graphs below (from Fig. 6.7 to Fig. 6.13) present the nature of loading applied at the top of the 

area, the displacements, effective stresses, pressure and finally total stresses for the exemplary point 

shown in green in Fig. 6.5 and Fig. 6.6., where time is on x- axis. 

 

Fig. 6.9: The comparison of displacements uy [m] for soil Type 1 for excitation frequency equal to 20Hz  a) including 
compressibility matrix S b) omitting compressibility matrix S 

 

 

Fig. 6.10: The comparison of effective stress σ′44 vs. pressure p and total stress [Pa] for soil Type 1 for excitation 
frequency equal to 20Hz  a) including compressibility matrix S b) omitting compressibility matrix S 
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Fig. 6.11: The comparison of effective stress σ!! vs. pressure p and total stress [Pa] for soil Type 1 for excitation 
frequency equal to 20Hz  a) including compressibility matrix S b) omitting compressibility matrix S 

 

As we can see in Fig. 6.9 the compressibility matrix, which involves the change of water 

pressure with time, has a huge impact on the displacements. If we include it in our equations, the 

settlements are much higher (over ten times). However, for the pore water pressure, the values are 

smaller, whereas the effective stress in the skeleton is higher. For the Model 4 on the contrary, the 

vertical effective stress σ′!! (for the analyzed short time interval) is close to zero, see Fig. 6.11b 

and Fig. 6.16b. The total applied at the top stress is carried by pore water. 

 All of the aforementioned tendencies can be observed for higher frequencies, but the 

proportional relationship between the effective stress and the pressure in Fig. 6.15 and Fig. 6.16 is 

even higher. 

What is also worth mentioning here is, if we omit the change of water pressure with time, 

values of the horizontal total stress σ44 are higher for both lower (Fig. 6.10) and higher frequencies 

(Fig. 6.15).  
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Fig. 6.12: The results for soil Type 1, including compressibility matrix S for the excitation frequency equal to 40Hz a) 
load multiplier b) displacement uy [m] c) effective stress σ′44 vs. pressure p and total stress σ44 [Pa] d) effective stress σ!! vs. pressure p and total stress [Pa] 
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Fig. 6.13: The results for soil Type 1, omitting compressibility matrix S for the excitation frequency equal to 40Hz a) load 
multiplier b) displacement uy [m] c) effective stress σ44 vs. pressure p and total stress [Pa] d) effective stress σ!! vs. 
pressure p and total stress [Pa] 

 

Fig. 6.14: The comparison of displacements uy [m] for soil Type 1 for excitation frequency equal to 40Hz  a) including 
compressibility matrix S b) omitting compressibility matrix S 

 

 

Fig. 6.15: The comparison of effective stress σ′44 vs. pressure p and total stress [Pa] for soil Type 1 for excitation 
frequency equal to 40Hz  a) including compressibility matrix S b) omitting compressibility matrix S 

 

 

Fig. 6.16: The comparison of effective stress σ′!! vs. pressure p and total stress [Pa] for soil Type 1 for excitation 
frequency equal to 40Hz  a) including compressibility matrix S b) omitting compressibility matrix S 
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The same calculations were done for soil Type 2 (medium sand). The outcomes are 

presented in Fig. 6.17 through Fig. 6.23. There are two relevant differences between the results for 

two types of analyzed soils. Firstly, the pressure for the Model 3 in Fig. 6.21a) and Fig. 6.26a) is 

almost equal to zero for soil Type 2 if compared relatively with the vertical effective stress. 

Secondly, this time not only pore water, but also the skeleton takes part in carrying the applied 

loading for Model 4. The vertical effective stress  σ′!! in Fig. 6.21b) and Fig. 6.26b) is definitely 

different from zero. 

 

 

Fig. 6.17: The results for soil Type 2, including compressibility matrix S for the excitation frequency equal to 20Hz a) 
load multiplier b) displacement uy [m] c) effective stress σ44 vs. pressure p and total stress [Pa] d) effective stress σ!! 
vs. pressure p and total stress [Pa] 
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Fig. 6.18: The results for soil Type 2, omitting compressibility matrix S for the excitation frequency equal to 20Hz a) load 
multiplier b) displacement uy [m] c) effective stress σ44 vs. pressure p and total stress [Pa] d) effective stress σ!! vs. 
pressure p and total stress [Pa] 

 

 

Fig. 6.19: The comparison of displacements uy [m] for soil Type 2 for excitation frequency equal to 20Hz  a) including 
compressibility matrix S b) omitting compressibility matrix S 
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Fig. 6.20: The comparison of effective stress σ′44 vs. pressure p and total stress [Pa] for soil Type 2 for excitation 
frequency equal to 20Hz  a) including compressibility matrix S b) disregarding compressibility matrix S 

 

 

Fig. 6.21: The comparison of effective stress σ′!! vs. pressure p and total stress [Pa] for soil Type 2 for excitation 
frequency equal to 20Hz  a) omitting compressibility matrix S b) disregarding compressibility matrix S 
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Fig. 6.22: The results for soil Type 2, including compressibility matrix S for the excitation frequency equal to 40Hz a) 
load multiplier b) displacement uy [m] c) effective stress σ44 vs. pressure p and total stress [Pa] d) effective stress σ!! 
vs. pressure p and total stress [Pa] 

 

Fig. 6.23: The results for soil Type 2, omitting compressibility matrix S for the excitation frequency equal to 40Hz a) load 
multiplier b) displacement uy [m] c) effective stress σ44 vs. pressure p and total stress [Pa] d) effective stress σ!! vs. 
pressure p and total stress [Pa] 
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Fig. 6.24: The comparison of displacements uy [m] for soil Type 2 for excitation frequency equal to 40Hz  a) including 
compressibility matrix S b) omitting compressibility matrix S 

 

Fig. 6.25: The comparison of effective stress σ′44 vs. pressure p and total stress [Pa] for soil Type 2 for excitation 
frequency equal to 40Hz  a) including compressibility matrix S b) omitting compressibility matrix S 

 

 

Fig. 6.26: The comparison of effective stress σ′!! vs. pressure p and total stress [Pa] for soil Type 2 for excitation 
frequency equal to 40Hz  a) including compressibility matrix S b) disregarding compressibility matrix S 
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6.3.3.3. Comparison of partly dynamic formulation with and without consolidation 

part. 

The Equation including the consolidation part (Model 3 – eq.(6.31)) and the one omitting it 

(Model 2 – eq.(6.34)) are hereunder discussed and compared. Additionally Model 4, which assumes 

the water being stiff and uncompressible, is also compared in the figures, but only for the Soil Type 

2 (medium sand). Regarding Soil Type 1 (clay), the comparison can be done analogously when 

analyzing the figures in Section 6.3.3.2. Only a short-term period is analyzed. The purpose of this 

section is to estimate if the consolidation part does have any impact on the results even if a long-

term period is not considered. 

The results from Model 2 are the individual values (the displacement or the total stresses in 

both directions) for the specified value of the frequency. In accordance with the set of equations 

(6.34), as there is no loading applied to the pore water, the fluid pressure is equal to zero. The 

figures below (Fig. 6.27 through Fig. 6.29) show the comparison of the values which resulted from 

Model 2 and the extreme values which resulted from Model 3 and 4 for the medium sand (soil Type 

2 from Table 6.1). 

 

Fig. 6.27: The comparison of Soil Type 2 displacements for the sample point for four arbitrarily chosen frequencies -
10,20,30 and 40Hz, for three analyzed models. 
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Fig. 6.28: The comparison of Soil Type 2 stresses in the horizontal direction for the sample point for four arbitrarily 
chosen frequencies -10,20,30 and 40Hz, for three analyzed models. 

 

Fig. 6.29: The comparison of Soil Type 2 stresses in the vertical direction for the sample point for four arbitrarily chosen 
frequencies -10,20,30 and 40Hz, for three analyzed models. 

 

In Fig. 6.27 the displacements of the point shown in green in Fig. 6.5 are compared for four 

arbitrarily chosen frequencies. The results from Model 2 are shown in blue, the results from Model 

3 are shown in orange, and results from Model 4 are shown in grey . As we can see Model 3 is the 

most vulnerable to frequency increase. The values of the displacement for this model grow faster 
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with the frequency. Model 4 on the contrary, which reflects the uncompressible skeleton, is almost 

frequency independent and the displacements are not only much smaller but also do not react 

dynamically. The confirmation of this conclusion is in Fig. 6.29 which shows the stresses in the 

vertical axis (the external load direction). It can be seen that the effective stress for Model 4 is much 

smaller, if compared with other models, and almost does not change with the growing frequency. 

The total stress is also almost frequency independent. 

Fig. 6.28 presents the comparison of the stresses in the horizontal direction σxx 

(perpendicular to the external harmonic loading). For Model 3 and 4 not only the total stress, but 

also the effective stress is presented. As it was mentioned before, for Model 2, there is only one 

type of stress shown in blue in the figure. Since the applied loading is in the opposite (y) direction, 

the effective stresses σ′44 hardly change with the increasing frequency. Only the water pressure 

reacts, which has its reflection in the form of the growing total stresses σ44 for both Model 3 and 4. 

This phenomenon does not occur in the vertical y direction (Fig. 6.29), where both total σ!! and 

effective stress σ′!! increase with the growing frequency except for the frequency-independent 

Model 4.  

To sum up it can be observed that there are noticeable differences in displacements and 

stresses between the models. The differences between Model 2 and 3 can also be seen for Soil Type 

1 (clay) in Fig. 6.30, Fig. 6.31 and Fig. 6.32. One should be aware that the single phase model 

(Model 2) implies an apparent difference in the results. 
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Fig. 6.30: The comparison of Soil Type 1 displacements for the sample point for four arbitrarily chosen frequencies -
10,20,30 and 40Hz, for two analyzed models. 

 

Fig. 6.31: The comparison of Soil Type 1 stresses in the vertical direction for the sample point for four arbitrarily chosen 
frequencies -10,20,30 and 40Hz, for two analyzed models. 
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Fig. 6.32: The comparison of Soil Type 1 stresses in the vertical direction for the sample point for four arbitrarily chosen 
frequencies -10,20,30 and 40Hz, for two analyzed models. 

7. Conclusions and future development plans. 

7.1. Conclusions. 

The analysis portion of the thesis is divided into two parts. The first part of the thesis 

(Chapter 5) concerns the one dimensional problem, whereas the second part (Chapter 6) refers to 

the two dimensional problem, for two-phase media under harmonic loading. The objectives for each 

part are defined in Section 1.2. 

The first objective (A.1) for the one dimensional problem was to define the three possible 

formulations for two phase media - fully dynamic, partly dynamic, and quasi-static. After deriving 

the equations, the author moved forward to the second objective (A.2) for one dimensional problem, 

which was the comparison of the abovementioned models. The discrepancies between the different 

models vary depending on the excitation frequency and soil parameters. The dissertation proposed 

the limits of validity for each model in Section 5.1.4. The last (third) objective for the one 

dimensional problem (A.3) was to examine the influence of the physical parameters and degree of 
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saturation on the fundamental period, the maximum amplitude and dissipated energy. The evident 

dependence of these parameters can be seen on all desired results.  

Regarding the two dimensional problem, firstly, the possible simplifications were 

introduced and implemented into the Finite Element Method , than presented in Section 6.3.3.1. 

This was a prelude to the second objective of the thesis (B.3), which was the comparison of the u-p 

model including (Model 3) and omitting the change of water pressure with time (Model 4). It was 

observed that the compressibility matrix does have a significant influence on the results, especially 

on the displacements, which are over ten times higher if incorporating the compressibility of the 

fluid. It can be deduced that Model 4 is not appropriate for the short-term period dynamic analysis. 

The last but not least (B.3) objective was to highlight the divergences of the very common single 

phase model (Model 2) with the two phase model including the compressibility term (Model 3). The 

strong influence of the frequency was noticed in the results. The higher the frequencies, the bigger 

differences between the models can be observed. Additionally in Section 6.3.3.3 the comparison of 

Model 4 with already discussed Model 2 and 3, for Soil Type 2, (sand) was done. It revealed that 

Model 4 is almost frequency independent and should be avoided in dynamic analysis. 

To sum up, the main goal of the thesis was to show the influence of inertia forces on the 

amplitude of soil displacement, velocity, and acceleration when exposed to harmonic loading. An 

inertia force in soil for the two-phase media model, is the product of mass (skeleton or water) and 

acceleration (skeleton or water respectively). Consequently, the magnitude of inertia forces is 

affected by mass or acceleration change. 

For the one dimensional case the comparison of the FD model, where all the inertia forces 

are included, with a simplified model was presented. This is the PD model, where water inertia 

forces are excluded from the equations. Additionally, the above results were compared with the 

consolidation model. The results presented proved the increasing divergence between the models 

with the increasing frequency of extortion. 

For the two dimensional case, the influence of the inertia forces was also investigated. 

Similarly, the results proved the significant impact of the inertia forces. The comparison revealed 

significant differences in skeleton acceleration and pore water pressure results with the constant 

skeleton mass. A detailed analysis for the two dimensional case can be found in Chapter 6. 
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7.2. Future research plans. 

The thesis concentrated on linear elastic material. Hooke’s Law for the effective stress is 

defined by eq.(4.21). This approach is reasonable if we encounter small strains when designing 

turbine, pump or ventilator foundations. Unfortunately, it will not be adequate when analyzing, for 

example, the process of pile driving or impact loading, where the strain is relatively high. Then it is 

necessary to apply the nonlinear stress-strain relations, which is obviously a topic of research for the 

future. 

In the  thesis, the one and two dimensional problems were analyzed using adequately 

analytical solutions for the former and finite element method implementation for the latter. Firstly, a 

future study will widen the problem to three dimensions. Moreover, the nonlinear stress-strain 

relationships will be introduced.  

In the study only short-term intervals were analyzed. This is the reason why the 

consolidation process itself was not deeply considered. It needs much more time for the water to be 

squeezed out of the soil.  For clay soil this activity can take up to a few years. The purpose of a 

future study will be a profound investigation of the consolidation process. The soil settlements will 

be compared using two models. The first model will be a pure long-term consolidation, whereas the 

second model will additionally consider the harmonic loading at the first stage of the process. The 

initial dynamic loading can possibly shorten the consolidation mechanism and therefore it may have 

a significant impact on the construction industry.  
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APPENDIX 1 

Finite Element Method Matrices for the Plane Strain Condition. 

The finite elements used for the soil skeleton and the pore water pressure in the thesis are 

presented in Fig. 6.4. 

Soil skeleton displacements in both the horizontal (x) direction and vertical (y) direction are 

as follows: 


4�", Ç) = �̂3
Ä4� + �̂3
Ä4� + 	̂3
Ä4	 + 9̂3
Ä49 + 

+ :̂3
Ä4: + #̂3
Ä4# + $̂3
Ä4$ + 7̂3
Ä47      (Z1.1a) 


!(", Ç) = �̂3
Ä!� + �̂3
Ä!� + 	̂3
Ä!	 + 9̂3
Ä!9 + 

+ :̂3
Ä!: + #̂3
Ä!# + $̂3
Ä!$ + 7̂3
Ä!7      (Z1.2a) 

where the shape functions : 

�̂3 = �9 (1 − ")(1 − Ç)(−" − Ç − 1)       (Z1.3a) 

�̂3 = �� (1 − "�)(1 − Ç)        (Z1.3b) 

	̂3 = �9 (1 + ")(1 − Ç)(" − Ç − 1)       (Z1.3c) 

9̂3 = �� (1 + ")(1 − Ç�)        (Z1.3d) 

:̂3 = �9 (1 + ")(1 + Ç)(" + Ç − 1)       (Z1.3e) 

#̂3 = �� (1 − "�)(1 + Ç)        (Z1.3f) 

$̂3 = �9 (1 − ")(1 + Ç)(−" + Ç − 1)       (Z1.3g) 

7̂3 = �� (1 − ")(1 − Ç�)        (Z1.3h) 

Pore water pressure is defined as:  

�(", Ç) = �̂��̅� + �̂��̅� + 	̂��̅	 + 9̂��̅9      (Z1.4) 

where : 

�̂� = �9 (1 − ")(1 − Ç)        (Z1.5a) 
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�̂
� � �

9 �1 + "��1 � Ç�        (Z1.5b) 

	̂� = �9 (1 + ")(1 + Ç)        (Z1.5c) 

9̂� = �9 (1 − ")(1 + Ç)        (Z1.5d) 

In the equations of strong and weak formulation (eq.(6.1), (6.18) and (6.28)) the differential 

operator, L,  is used which has the following form for x1, x2, x3 coordinate system: 

 

� =

%&
&&&
&&&
&&
' !!4� 0 0

0 !!4� 0
0 0 !!4�!!4�

!!4� 0
0 !!4�

!!4�!!4� 0 !!4�()
)))
)))
))
*
 for 3D tasks 

� =
%&&
&' !!4� 0

0 !!4�!!4�
!!4�())

)*
   for 2D tasks 

  

SHAPE FUNCTION MATRIX 

The shape functions in matrix notation are as written below. This notation is necessary to 

derive all the finite element matrices. 

 ö3 = � �̂3 0 �̂3 0 	̂3 0 9̂3 0 :̂3 0 #̂3 0 $̂3 0 7̂3 00 �̂3 0 �̂3 0 	̂3 0 9̂3 0 :̂3 0 #̂3 0 $̂3 0 7̂3� (Z1.6) 

ö� = Y �̂� �̂� 	̂� 9̂�]              (Z1.7) 

ELEMENT STIFFNESS MATRIX 

The stiffness matrix for the plane strain condition is defined as: 

e = ù �����Ωú          (Z1.8) 

Where B and D represent the strain-displacement and stress-strain matrices respectively: 
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� � +ö3          (Z1.9) 

where ∇�
%&&
&' !

!, 0
0 !

!-
!

!- !
!,())

)*
, � � .���*�

��³*�����*� %&&
&' 1 *

��* 0
* ��* 1 0
0 0 ���*�(��*)())

)*    (Z1.10) 

ELEMENT MASS MATRIX 

f = ù (ö3)�ρö3�Ωú          (Z1.11) 

The ρ is the mass of the element per unit volume and again ö3 holds the shape functions. In 

further calculations, in order to make the notation clearer, the shape functions regarding the skeleton 

displacements are written without u index. After multiplication we obtain the following matrix 

ready to be integrated:  

f = 

ù

%&
&&
&&
&&
&&
&&
&&
&&
&&
' �̂� 0 �̂ �̂ 0 �̂ 	̂ 0 �̂ 9̂ 0 �̂ 9̂ 0 �̂ 9̂ 0 �̂ 9̂ 0 �̂ 9̂ 00 �̂� 0 �̂ �̂ 0 �̂ 	̂ 0 �̂ 9̂ 0 �̂ 9̂ 0 �̂ 9̂ 0 �̂ 9̂ 0 �̂ 9̂

�̂ �̂ 0 �̂� 0 �̂ 	̂ 0 �̂ 9̂ 0 �̂ :̂ 0 �̂ #̂ 0 �̂ $̂ 0 �̂ 7̂ 00 �̂ �̂ 0 �̂� 0 �̂ 	̂ 0 �̂ 9̂ 0 �̂ :̂ 0 �̂ #̂ 0 �̂ $̂ 0 �̂ 7̂
�̂ 	̂ 0 �̂ 	̂ 0 	̂� 0 	̂ 9̂ 0 	̂ :̂ 0 	̂ #̂ 0 	̂ $̂ 0 	̂ 7̂ 00 �̂ 	̂ 0 �̂ 	̂ 0 	̂� 0 	̂ 9̂ 0 	̂ :̂ 0 	̂ #̂ 0 	̂ $̂ 0 	̂ 7̂
�̂ 9̂ 0 �̂ 9̂ 0 	̂ 9̂ 0 9̂� 0 :̂ 9̂ 0 #̂ 9̂ 0 $̂ 9̂ 0 7̂ 9̂ 00 �̂ 9̂ 0 �̂ 9̂ 0 	̂ 9̂ 0 9̂� 0 :̂ 9̂ 0 #̂ 9̂ 0 $̂ 9̂ 0 7̂ 9̂
�̂ :̂ 0 �̂ :̂ 0 	̂ :̂ 0 9̂ :̂ 0 :̂� 0 #̂ :̂ 0 $̂ :̂ 0 7̂ :̂ 00 �̂ :̂ 0 �̂ :̂ 0 	̂ :̂ 0 9̂ :̂ 0 :̂� 0 #̂ :̂ 0 $̂ :̂ 0 7̂ :̂
�̂ #̂ 0 �̂ #̂ 0 	̂ #̂ 0 9̂ #̂ 0 :̂ #̂ 0 #̂� 0 $̂ #̂ 0 7̂ #̂ 00 �̂ #̂ 0 �̂ #̂ 0 	̂ #̂ 0 9̂ #̂ 0 :̂ #̂ 0 #̂� 0 $̂ #̂ 0 7̂ #̂
�̂ $̂ 0 �̂ $̂ 0 	̂ $̂ 0 9̂ $̂ 0 :̂ $̂ 0 #̂ $̂ 0 $̂� 0 7̂ $̂ 00 �̂ $̂ 0 �̂ $̂ 0 	̂ $̂ 0 9̂ $̂ 0 :̂ $̂ 0 #̂ $̂ 0 $̂� 0 7̂ $̂
�̂ 7̂ 0 �̂ 7̂ 0 	̂ 7̂ 0 9̂ 7̂ 0 :̂ 7̂ 0 #̂ 7̂ 0 $̂ 7̂ 0 7̂� 00 �̂ 7̂ 0 �̂ 7̂ 0 	̂ 7̂ 0 9̂ 7̂ 0 :̂ 7̂ 0 #̂ 7̂ 0 $̂ 7̂ 0 7̂� ()

))
))
))
))
))
))
))
))
*

ρú �Ω       

          (Z1.12) 

ELEMENT WATER COUPLING MATRIX 

� = ù ��α�/(ö�)��Ωú         (Z1.13) 

where : � = Y1 1 0] . 
After multiplication we obtain the following matrix [16x3]: 
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� � ù

%&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
'!0�

!, �̂
� !0�

!, �̂
� !0�

!, 	̂� !0�!, 9̂�!0�!- �̂� !0�!- �̂� !0�!- 	̂� !0�!- 9̂�!0�!, �̂� !0�!, �̂� !0�!, 	̂� !0�!, 9̂�!0�!- �̂� !0�!- �̂� !0�!- 	̂� !0�!- 9̂�!0�!, �̂� !0�!, �̂� !0�!, 	̂� !0�!, 9̂�!0�!- �̂� !0�!- �̂� !0�!- 	̂� !0�!- 9̂�!01!, �̂� !01!, �̂� !01!, 	̂� !01!, 9̂�!01!- �̂� !01!- �̂� !01!- 	̂� !01!- 9̂�!02!, �̂� !02!, �̂� !02!, 	̂� !02!, 9̂�!02!- �̂� !02!- �̂� !02!- 	̂� !02!- :̂�!02!, �̂� !02!, �̂� !02!, 	̂� !02!, 9̂�!02!- �̂� !02!- �̂� !02!- 	̂� !02!- 9̂�!03!, �̂� !03!, �̂� !03!, 	̂� !03!, 9̂�!03!- �̂� !03!- �̂� !03!- 	̂� !03!- 9̂�!04!, �̂� !04!, �̂� !04!, 	̂� !04!, 9̂�!04!- �̂� !04!- �̂� !04!- 	̂� !04!- 9̂�()
))
))
))
))
))
))
))
))
))
))
))
))
))
*

�Ωú       (Z1.14) 

The  Q matrix, in contrast to other matrices, is asymmetrical.  

ELEMENT COMPRESSIBILITY MATRIX 

As it was stated in Section 6.3.1 the matrix is as follows: 

� = ù (ö
)� �� ö
�Ωú          (Z1.15) 

After multiplication we obtain:: 

� = �� ù %&&
&' �̂� �̂� �̂� �̂� �̂� 	̂� �̂� 9̂��̂� �̂� �̂� �̂� �̂� 	̂� �̂� 9̂�	̂� �̂� 	̂� �̂� 	̂� 	̂� 	̂� 	̂�9̂� �̂� 9̂� �̂� 9̂� 	̂� 9̂� 9̂�())

)*ú dΩ     (Z1.16) 

where the inverse Biot constant 
��  according to (4.31), if we assume that 1α = , is defined as: 
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�
� � �

sÛ + ���
sd           (Z1.17) 

��- bulk modulus of skeleton phase in soil 

�I- – bulk modulus of fluid phase in soil. 

ELEMENT PERMEABILITY MATRIX 

� � ù �∇ö
��ôö��Ωú          (Z1.18) 

where 

ô � �o, 0
0 o-� - water permeability coefficients for each direction 

∇ö� � 5!0�
6

!, !0�
6

!, !0�
6

!, !016
!,

!0�
6

!- !0�
6

!- !0�
6

!- !016
!-

7 .       (Z1.19) 

After detailed writing we finally obtain the following matrix [4x4]:  

� = %&&
&'o, !0�6!, !0�6!, + o- !0�6!- !0�6!- ⋯ o, !0�6!, !016!, + o- !0�6!- !016!-⋮ ⋱ ⋮o, !016!, !0�6!, + o- !016!- !0�6!- ⋯ o, !016!, !016!, + o- !016!- !016!- ())

)*    (Z1.20) 
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STRESZCZENIE 

1. Wprowadzenie, motywacja oraz cele pracy naukowej 

Wprowadzenie oraz motywacja 

W pracy doktorskiej podejmowane jest zagadnienie dynamiki gruntów jako ośrodka 

dwufazowego z zastosowaniem teorii mieszaniny. Rozważa się zachowanie gruntu przy obciążeniach 

szybko zmiennych w czasie uwzględniając zmianę prędkości oraz zmianę przyspieszenia. Obciążenie 

tego typu, to obciążenie dynamiczne, w którym uwzględniana jest siła tłumienia oraz siła bezwładności 

składników mieszaniny. 

W zależności od stopnia dokładności rozróżnia się trzy rodzaje modeli gruntu z uwagi na liczbę 

faz w analizie dynamicznej. Modelem obecnie najdokładniejszym jest model trójfazowy gruntu 

składający się ze szkieletu i płynu z gazem w porach gruntu. Uwzględnia on ich wzajemne relacje i 

wciąż jest rozwijany i stanowi pole badawcze w wielu ośrodkach naukowych. Model ten prowadzi do  

złożonego układu równań ruchu co wymaga sprzętu obliczeniowego o dużej mocy. W modelu 

jednofazowym występuje jeden materiał gruntu, jako mieszanina o określonych parametrach fizycznych 

i mechanicznych w każdym punkcie ośrodka. Model ten stosowany jest głównie do analizy 

rozchodzenia się fal sejsmicznych i parasejsmicznych w gruncie z założeniem liniowo-sprężystego 

prawa fizycznego. Model dwufazowy stosowany jest głównie w przypadku gruntu w pełni nasyconego 

wodą, np. w analizie zapór wodnych, skarp lub zboczy oraz w przypadku gruntu suchego. W 

zagadnieniach propagacji fal od źródła drgań do punktu odbioru drgań, jakim jest budynek, najczęściej 

stosowany jest model jednofazowy. Jeśli wymagana jest analiza drgań gruntu wokół obiektu 

budowlanego, to odpowiedni jest model dwufazowy. Model trójfazowy często stosowany jest w analizie 

zjawisk zachodzących lokalnie. 

Praca naukowa zawiera analizę numeryczną odpowiedzi gruntu na obciążania harmoniczne 

(cykliczne). W pracy rozważany jest problem wpływu poszczególnych składników obowiązujących 

równań (w tym sił bezwładności szkieletu i wody w porach), przy założeniu gruntu w pełni nasyconego 

wodą, jako ośrodka dwufazowego. Uwzględniany jest wpływ deformacji szkieletu gruntowego na 

zmianę ciśnienia wody w porach. Problem tego rodzaju jest określany, jako „coupled problem”, gdzie 

woda w porach powoduje odkształcanie szkieletu gruntu. W równaniu ruchu uwzględnia się założenie 

laminarnego (zgodnie z prawem Darcy) przepływu wody. Ponadto, w równaniu ruchu zakłada się, że: 

przemieszczenie, prędkość i przyspieszenie cząstki wody są różne od przemieszczenie, prędkość i 

przyspieszenie szkieletu. Rozważania prowadzone są w zakresie teorii dynamicznej konsolidacji Biota 

przy uwzględnieniu wpływu sił bezwładności. Analizowany jest przypadek jednowymiarowy 

(rozwiązany analitycznie) oraz przypadek dwuwymiarowy (w ujęciu MES).  
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Cele pracy naukowej 

W pacy doktorskiej rozważane jest zagadnienie wpływu definicji poszczególnych faz modelu 

dwufazowego gruntu, fazy szkieletu, jego bezwładności oraz fazy płynnej, wody, jej bezwładności i 

tłumienia drgań. Praca doktorska dotyczy zagadnienia modelowania gruntu w zakresie obciążeń 

dynamicznych. Rozważane są następujące sformułowania: 

A) dla problemu jednowymiarowego: 

1. Wpływ przyjętego modelu gruntu w sformułowaniu przemieszczeniowym: a) modelu dwufazowego 

dokładnego (fully dynamic FD) uwzględniającego przemieszczenia szkieletu, wody i ciśnienie wody w 

porach; b) modelu dwufazowego u-p (partly dynamic PD) przemieszczenia szkieletu i ciśnienia wody 

w porach,  oraz c) modelu (quasi-static QS), stosowanego w zagadnieniach konsolidacji gruntu, bez 

udziału bezwładności szkieletu. 

2. Przedstawienie różnic wyników trzech powyższych modeli oraz określenie dopuszczalnych 

zakresów zastosowań każdego a nich. 

3. Analiza wpływu stopnia saturacji, parametrów fizycznych i częstotliwości wymuszenia na 

współczynnik amplifikacji drgań. 

B) dla problemu dwuwymiarowego: 

1. Określenie udziału szkieletu i ciśnienia wody w porach w modelu u-p, oraz analiza stosowanych 

obecnie uproszczeń tego modelu polegającego na pominięcie zmiany ciśnienia w czasie na tle  

powszechnie stosowanego modelu jednofazowego. 

2. Przedstawienie różnic wyników obliczeń komputerowych (przemieszczeń, prędkości i 

przyspieszeń), przy zastosowaniu własnego autorskiego programu komputerowego, różnic pomiędzy 

modelem u-p z uwzględnieniem i bez uwzględnienia ciśnienia w czasie. 

3. Zaprezentowanie różnic w przemieszczeniach, prędkościach i przyspieszeniach pomiędzy modelem 

dwufazowym z powszechnie stosowanym modelem jednofazowym. 

W pracy ograniczono się do analizy gruntu w zakresie małych odkształceń. Założenie to 

stosowane jest w zagadnieniach inżynierskich, np. w dynamice gruntów pod fundamentami maszyn. 

Przedstawione są wyniki osiadania, ciśnienia, naprężenia gruntu na przykładzie zadania płaskiego 

stanu odkształcenia. 

Jak wspomniano wcześniej faza szkieletu i wody jest ze sobą powiązana. Równania ruchu w 

pełni nasyconego ośrodka gruntowego to układ trzech równań spełniających trzy zasady: 

- Zasada pędu mieszaniny szkieletu i wody 

- Zasada pędu cieczy 
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- Zasada zachowania masy przepływu 

W tych  równaniach uwzględnia się: ρ¾ - gęstość cieczy (wody); ρ � �ρ¾ + �1 � ��;  ρ - gęstość 

całkowita; ρç - gęstość szkieletu ; b – wektor sił masowych (w ogólności grawitacja); n – porowatość; 

w – wektor średniej prędkości przepływu wody (Darcy’ego); �I – moduł odkształcenia 

objętościowego cieczy w porach; L - macierz operatorów różniczkowania; R wektor  wiskotycznej 

siły oporu przepływu zgodnie z równaniem k R = w. Macierz współczynników 

wodoprzepuszczalności k określona jest w jednostkach [długość]3 [czas]/[masa]. 

Niewiadomymi dla powyższego układu równań są: 

- przemieszczenia szkieletu us,  

- przemieszczenia wody uf  

- ciśnienie wody w porach p. 

2. Zakres pracy 

Rozdział 1 obejmuje wprowadzenie, motywację oraz cele pracy naukowej. 

Rozdział 2 pracy zawiera krótki opis historii rozwoju ośrodka porowatego. Wspomina 

najbardziej wpływowych naukowców oraz przedstawia zarys trzech epok w tej dziedzinie.  

Rozdział 3 przedstawia szczegóły propagacji sprężystych fal w półprzestrzeni ośrodka 

gruntowego będącego pod wpływem obciążeń dynamicznych. Rozważany jest ośrodek jednofazowy 

(szkielet), dwufazowy (szkielet i woda) oraz trójfazowy (szkielet, woda i powietrze). Rozdział główną 

uwagę poświęca równaniom fal dylatacyjnych oraz poprzecznych. 

Rozdział 4 jest wstępem do części obliczeniowej pracy doktorskiej. Przedstawia szczegółowy 

opis obowiązujących równań, które są bazą dla dalszej analizy. W ich skład wchodzą równania 

konstytutywne, równowagi, przedstawione są również na potrzeby pracy warunki początkowe oraz 

brzegowe. 

Rozdział 5 wyjaśnia różnice między trzema możliwymi sformułowaniami dla przypadku 

jednowymiarowego. Oprócz różnic teoretycznych, przedstawione są różnice w wynikach na podstawie 

przykładu obliczeniowego rozwiązanego analitycznie. Rozbieżności te są szczegółowo 

przeanalizowane i zestawione ze sobą. Dla każdego modelu określone są dopuszczalne zakresy 

poprawności rozwiązań. W ostatni podrozdziale Rozdziału 5 analizowane są wartości współczynnika 

amplifikacji dla różnych rodzajów gruntu, częstotliwości wymuszenia oraz stopni saturacji. 

Rozdział 6 razem z Załącznikiem 1 przedstawia równania w przypadku dwuwymiarowego 

płaskiego stanu odkształcenia. Podobnie jak dla przypadku jednowymiarowego wyprowadzone są 
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różne modele (uproszczenia), które następnie są ze sobą zestawione i porównane. Obliczenia 

prowadzone są w ramach aproksymacji metody elementów skończonych. Załącznik 1 prezentuje 

macierze MES dla ośmiowęzłowego elementu skończonego dla szkieletu oraz czterowęzłowego 

elementu skończonego dla ciśnienia.  

Rozdział 7 zawiera podsumowanie całości pracy oraz przedstawiono dalsze kierunki rozwoju 

naukowego. 

3. Wnioski z pracy 

Obliczenia prezentowane w pracy doktorskiej podzielono na dwie części. Pierwsza (Rozdział 

5) dotyczy przypadku jednowymiarowego, a druga (Rozdział 6) dotyczy przypadku 

dwuwymiarowego. Obie części dotyczą opisu zachowania się ośrodka dwufazowego pod działaniem 

obciążenia harmonicznego.  

A) W ramach analizy zadania jednowymiarowego wyniki pracy doktorskiej obejmują: 

• W ramach celu A.1 przedstawiono analizę i dyskusję wpływu poszczególnych składników równania 

dynamiki gruntu jako ośrodka dwufazowego.  

• W ramach celu A.2 dla przypadku jednowymiarowego przedstawiono wyniki rozwiązań 

analitycznych porównania wyprowadzonych modeli. Rozbieżności w wynikach dla poszczególnych 

sformułowań różnią się w zależności od częstotliwości wymuszenia oraz parametrów fizycznych 

gruntów. W pracy zaproponowano zakresy praktycznych zastosowań poszczególnych modeli w 

podrozdziale 5.1.4.  

• W ramach celu A.3 przedstawiono wyniki wpływu parametrów fizycznych oraz stopnia saturacji na 

podstawowy okres drgań układu, ekstremalną amplitudę drgań oraz współczynnik amplifikacji drgań. 

Wpływ każdego z czynników został zaprezentowany na zamieszczonych w pracy wykresach. 

B) W ramach analizy zadania dwuwymiarowego w sformułowaniu MES wyniki pracy doktorskiego 

obejmują: 

• W ramach celu B.1 przedstawiono analizę i dyskusję wpływu poszczególnych składników równania 

dynamiki gruntu w ramach pełnego modelu u-p, następnie modelu u-p z pominięciem zmiany 

ciśnienia w czasie oraz powszechnie stosowanego modelu jednofazowego. Każdy z tych modeli 

zapisano w postaci układu równań MES i zestawiono w podrozdziale 6.3.3.1.  

• W ramach celu B.2 przedstawiono wyniki obliczeń komputerowych tzw. zadania „kolumny Biota” 

w którym wykazano znaczące różnice pomiędzy pełnym modelem u-p (Model 3) a modelem często 

stosowanym w praktycznych obliczeniach, w którym  pomija się zmianę ciśnienia w czasie (Model 4). 

Udowodniono, że macierz ściśliwości w równaniu MES ma znaczący wpływ na wyniki, w 

szczególności na przemieszczenia, które są około 10 razy większe w przypadku jej uwzględnienia. Na 
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podstawie zamieszczonych wyników można wywnioskować, iż Model 4 nie jest odpowiednim 

modelem dla krótkiego w czasie zjawiska obciążenia dynamicznego.  

• W ramach celu B.3 przedstawiono wyniki obliczeń dla „kolumny Biota”, które wskazują na 

znaczące różnice w wynikach między modelem dwufazowym uwzględniającym zmianę ciśnienia 

wody w porach w czasie (Model 3) a powszechnie stosowanym modelem jednofazowym (Model 2). 

Występuje duża rozbieżność wyników między tymi modelami z uwagi na częstotliwość wymuszenia 

harmonicznego. Im wyższa częstotliwość wymuszenia, tym większe różnice w wynikach. Dodatkowo 

w podrozdziale 6.3.3.3 dokonano porównania Modelu 4 oraz dotychczas omówionych Modeli 2 i 3, 

dla gruntu typu 2 (piasek średni). Zamieszone wyniki wskazują , iż Model 4 jest praktycznie 

niezależny od częstotliwości wymuszenia, a więc powinien być unikany przy analizie dynamicznej.  

Podsumowując, głównym celem pracy doktorskiej było wykazanie wpływu sił bezwładności 

na wielkości amplitud przemieszczenia (osiadania) gruntu oraz prędkości i przyspieszenia przy 

obciążeniu dynamicznym typu harmonicznego. Siła bezwładności występująca w gruncie w ramach 

modelu dwufazowego, to iloczyn masy szkieletu gruntu i wody w porach z przyspieszeniem szkieletu 

i wody. Zatem na wielkość sił bezwładności ma wpływ zmiana masy i zmiana przyspieszenia. 

W zagadnieniu jednowymiarowym porównano wyniki obliczeń modelu PD, w którym 

występują siły bezwładności szkieletu i wody z modelem uproszczonym bez siły bezwładności wody. 

Wyniki obu modeli przedstawiono na tle modelu opisującego zjawisko konsolidacji gruntu. 

Przedstawione wyniki wykazują znaczące rozbieżności wraz ze wzrostem częstotliwości wymuszenia 

dynamicznego 

W przypadku dwuwymiarowego podobnie jako w przypadku jednowymiarowego wyniki 

obliczeń wskazują na znaczące różnice wpływu definicji sił bezwładności. Porównanie wpływu tych 

sił przedstawiono przez pokazanie znaczących różnic w wielkościach przyspieszenia szkieletu i 

ciśnienia wody w porach przy założeniu niezmiennej masy szkieletu gruntu. Szczegółową analizę 

zamieszczono w Rozdziale 6. 

 


