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Abstract

The thesis concerns dynamic analysis of a two-phase, fully saturated medium. The purpose
is to determine the limits of validity of various simplification models. In order to do this a full set of
governing, dynamic equations of saturated two phase media (Biot's model) and a series of
simplifying models often used in practice, such asuthesimplification model, the quasi-static
consolidation model and the single-phase model, are considered. The displacement of the skeleton,
displacement of fluid, pore water pressure, influence of the soil saturation level, and physical
parameters on the dynamic (amplification) factor are shown and conwitiezhch model with
various formulations. Moreover, the dynamic factor, which is a multiplier for the static solution, is

analyzed.

One dimensional (1D) and two dimensional (2D) problems were solely solved by the
author. In the case of the 1D problems, an analytical solution was used. Regarding the 2D model,
the Finite Element Method was utilized. In order to present and compare the results a customized
computer program in Matlab was created. According to the results obtained all the simplifications
have a significant impact. The level of discrepancy depends not only on the simplification used, but
also on the parameters of the soil. What is worth mentioning here, is that the very commonly used
single phase model, which does not include pore water pressure, implies a significant inaccuracy in

both displacements and stresses.



1. Introduction.

1.1. Introduction.

Soil mechanics is a branch of engineering mechanics that describes the behavior of soil. It
differs from fluid mechanics and solid mechanics in the sense that soil consists of a heterogeneous
mixture of fluids (usually air and water) and particles (for example clay, silt, sand, and gravel) but
soil may also contain organic solids, liquids, gases, and other matter. Soil mechanics provides the
theoretical basis for analysis in geotechnical engineering using a great deal of knowledge from
physics, chemistry, geology, theory of elasticity, theory of plasticity, and strength of materials. We
can say that it is an interdisciplinary science, which is proved in (Wrana & Pietrzak, 2015).

Soil dynamics is a branch of geomechanics that describes processes which are unstable in
time and which, as a consequence, require taking inertia forces into consideration. The study covers
the numerical analysis of a two-phase media under harmonic loading.

The response of saturated porous media under a dynamic load is of high interest in many
fields ranging from geomechanics to biomechanics. Problems like transient phenomena during
impact loading, earthquakes, water wave loading, and consolidation are of significant interest in
geomechanics. The nature of the response of the saturated porous media depends not only on the
nature of the loading but also on the flow and deformation characteristics of the media. The
response is said to be fully drained when the rate of loading is much smaller than the rate of pore
fluid flow. The problem is said to be static if the steady-state pore fluid pressures depend only on
the hydraulic conditions and are independent of the porous skeleton response leading to uncoupled
flow and deformation problem. A one-phase media for all the calculations is adequate then. At the
other extreme if the rate of loading is much faster than the rate of flow, the fluid follows the motion

of the solid. This is an undrained condition, where the single-phase solution is also adequate.

Depending on the rate of loading and the characteristics of the flow and deformation there
are three possible models :

- fully dynamic(the Biot's model (Biot, 1956) )

- u-p formulation (partly dynamic (Zienkiewicz, et al., 1980))

- the consolidation equations (quasi-static (Terzaghi, 1960))



In the first model , the coupled equations of flow and deformations are formulated
including an acceleration of both the solid skeleton and the fluid. In casewptfeemulation, the
coupled equations consider only the acceleration of the solid skeleton. The governing equations are
represented only in terms of the solid displacementd the pore fluid pressupeWhen it comes

to the quasi static case , all inertial terms are ignored.

1.2. Motivation and objectives.

Dynamic analysis plays a very important role in geotechnics. Currently, there are many
simplified models used in practice, starting from the commonly used single phase model to other
simplifications of two and three phase models. The aim of the thesis is to present the influence of
the particular phases in the two-phase media model (the skeleton phase with its inertia and the water
phase with its inertia). The thesis shows the differences not only in the theoretical equations, but
also in the obtained results. One dimensional and two dimensional problems are analyzed. The

following topics are raised in the thesis:
A) for the one dimensional problem:

1. Defining the fully dynamic (Biot's) model and deriving simplified formulations in dynamic

analysis of the two phase mediag and quasi-static consolidation models).
2. Presenting discrepancies and limits of validities between the above formulations.

3. Analyzing the influence of the saturation level, physical parameters and extortion frequency of

the dynamic factor.
B) for the two dimensional problem

1. Defining theu-p model, theu-p model omitting the change of water pressure with time and the

commonly used single phase model.

2. Presenting discrepancies betweerutipanodel both including and then omitting the change of

water pressure with time.

3. Presenting divergences between the two-phase model and the commonly used single phase

model.



1.3. Thesis outline.

Chapter 2 of this research contains a brief history of the development of the theory of porous media.
It mentions the most relevant scientists and gives an overview of three main eras in this field.

Chapter 3 presents details about propagation of elastic waves in a half-space soil due to dynamic
loads in single phase (solid), two-phase (solid and fluid), and three-phase media (solid, fluid and
gas). It mainly concentrates on dilatational and shear waves equations.

Chapter 4 is the introduction to the research part of the thesis. It gives the detailed review of
equations, which are the starting point for the analysis. It covers stress-strain relations, equilibrium
relations and it defines the boundary and initial conditions for the thesis purpose.

Chapter 5 explains the differences between three formulations for the one dimensional problem not
only in theory but also by means of numerical example. The disparities between the models are
thoroughly analyzed and compared. The limits of validities for each model are estimated. In the last
section of this chapter the dynamic amplification factors are evaluated for different types of sail,
frequencies and degrees of saturation.

Chapter 6 together with Appendix 1 gives the detailed view of the Finite Element Method approach
to the two dimensional problem under plane strain condition. The strong and the weak formulation
is presented. Again different formulations presenting alternative simplifications are compared and
discussed. Appendix 1 presnts the FEM matrices for the plane strain condition.

Chapter 7 presents a brief summary and a possibility of extension of this study for further research.



2. Theory of porous media.

The space in naturally existing materials like soils, is usually not completely filled with the
matter. There are some empty interspaces called pores. In general, three phases can be
distinguished: solid skeleton with pores filled with fluid and gas phase. This complex
microstructure determines the soil features. The skeleton which forms the body matrix and the
contents in the pores have different material properties and different motions and the individual
constituents are mutually influenced by each other. What is more, even some interaction
phenomena occur. All these concepts confirm, that the soil, which is a three-phase media, is a very
complex material, which has been investigated for decades by many scientists. As a large number of
other solids contain pores it is not surprising that these media have been repeatedly investigated, the

more so as these media play an important role in nearly all fields of engineering.

The history of porous media evaluation was widely discussed by R. de Boer (Boer, 1999;
Boer, 1996). He explains all existing theories of as complex media as soil is. He divides the
historical development into three periods. In the early era, in thari819' centuries, the
fundamental principles of mechanics were discovered, the concept of volume fractions was started
and the mixture theory was founded. In the period between 1910 and 1960, first attempts to clarify
the mechanical interaction of liquids, gases, and rigid porous solids were performed and, for the
first time, deformable saturated porous solids were treated. In the 1970s and 1980s theories of
immiscible mixtures were developed which are still under study (Murray & Sivakumar, 2010) .

Below | would try to describe shortly the aforementioned periods.

2.1. The Early Era.

In the 18 century first steps in soil mechanics were taken. Basic discoveries are mainly due
to brilliant mathematician Leorhard Euler and excellent engineer Reinhard Woltman. Euler at the
beginning of his soil mechanic adventure pointed out the elasticity in solid as a certain subtile
matter in closed pores but he did not pay more attention to this matter. However he was the one,
who formulated the axioms of continuum mechanics, which he aaltegrinciple, balance of
mass, balance of momentum and the balance of moment of momentum (Euler, 1736). Unfortunately
the Euler’s work was disturbed by the lack of principles of mechanics. He outlined in his book
topics in mechanics that should be investigated in the future. Although he was not able to define

clear rules and equations for raised subjects, he was definitely the pioneer of soil mechanics.



The concept of volume fraction was first used by an ingenious harbor construction director
Reinhard Woltman (1757-1837). Not only did he formulate the volume fraction but he also noticed
that the moisture content enlarges the cohesion. He particularly turned his attention to partially and
totally water-saturated substances and was the first to use an expnegsimafor soils as he

noticed they consist of earth, fluid and air (Woltman, 1794).

The mixture theory is a second important branch of the porous media theory. First steps in
this field were taken by Fick, who investigated the problem of diffusion. He analyzed the Fourier’s
heat transfer equation and noticed an analogy which lead him to the differential equation of the
diffusion stream (Fick, 1855):

2
9y __, [0y, 1dQay 2.1)
ot 9°x Q dxadx

Wherey is the concentratior, the time k a constant which depends on the nature of the
constituent, x the measure for the height of a container, and Q the cross section of the container.

Josef Stefan (1835-1893) on the contrary stated : “If the true processes in a mixture should
be calculated, it is not sufficient anymore, to consider the mixture as a uniform body as common
mechanics does; equations must be set up which contain the condition of equilibrium and the laws
of motion for every individual constituent in the mixture”. Stefan also introduced the interaction
forces between the constituents and as a consequence he also formulated two one-dimensional
equations for the two gases. Some scientists say that Stefan was the first who created the theory of
the mixture, where different phases are treated as individual constituents considering the interaction

forces.

Henry Darcy also played an important role in soil mechanics. He created basic constitutive
relations for the problem of running water through a layer of sand. Although his investigations
were purely experimental, the equations became essential. Then there were lots of other scientists
who modified the Darcy’s law trying to introduce some theoretical investigations.

2.2. The Classical Era.

The formulations of basic relations in the early stages had provided the sufficient
background for further development of porous media. From 1913 to 1936 some important physical
phenomena were described by Paul Fillunger and Karl von Terzaghi, professors in Vienna. They
mainly worked on such phenomena as uplift, friction, capillarity and effective stress. Paul Fillunger

was the first who stated that masonry dams are never impermeable, so water will certainly enter the



voids of the masonry. As a consequence the weight of the masonry decreases and there is an
additional horizontal component as illustrated in Fig. 2.1, reducing the stability of the dam (de
Boer, et al., 1996) . In his papers (Fillunger, 1913) Fillunger analyzed the stresses in concrete and

masonry gravity dams and gave the following equation :

¥, =—K(n—nl) (2.2)

where n is the volume porosity, n’ the surface porosity, and k the gradient of the pore-water
pressure in the damn. The value of n’ is between zero and one and it depends on representative

elementary area caused by the cut.

!

!
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Fig. 2.1: Theories of uplift; a) The Early Era b) The classical Era

Karl von Terzaghi also touched the subject of uplift of dams on granular soils. He was a full
advocate of designing for full uplift (von Terzaghi, 1925). He took up a study of the hydrodynamic
uplift within the pores of cement mortar and concrete. Finally he introduced the equation for the
uplift as :

Y, =k(n—n,) 2.3)

where R is the effective surface porosity, a material property of the dam medium. In order to
determine the value of,Terzaghi together with Rendulic performed series of triaxial compression
tests and they finally made a conclusion that the value of nw is very close to one, which means that
dams should be designed for full uplift. There was a long bitter dispute with Fillunger on this

matter.



The theoretical treatment of capillary forces in saturated porous media was closely
connected to the uplift problem. Karl von Terzaghi created the formula for the hydrostatic pressure
of the pore liquid caused by capillarity (von Terzaghi, 1933). Fillunger strongly disapproved
Terzaghi's statement but he also stated that the capillary suction for the liquid causes an additional

pressure for the solid phase.

The third, even the most important mechanical effect in saturated porous solids, is the effect
of effective stresses. The opinions on this matter were divided. Some scientists believed that the
liquid pressure affects the porous solid materials whereas some of them strongly declined this
possibility. The pioneer of the first concept was Fillunger. He assumed that the uniform internal
pressure cannot cause a significant reduction in the strength. He came back to this problem few
years later but his investigations were totally forgotten. It was Karl von Terzaghi that explained the

effect of effective stresses to engineers’ minds :

“The stresses in any point of a section through a mass of earth can be computed from the
total principal stresses s1, s2,s3 which act in this point. If the voids of the earth are filled with water
under a stress u, the total principal stresses consist of two parts. One part, u, acts in the water and in
the solid in every direction with equal intensity. It is called the neutral stress (or porewater
pressure). The balanacg, = 6, — u, 0, = 6, — u, 65 = 63 — u represents an excess over the

neutral stress u and it has its seat exclusively in the solid phase of the earth.

This fraction of the total principal stresses will be called the effective principal stresses . . ."
(Terzaghi, 1936).

Neither Fillunger nor von Terzaghi considered this mechanism as being as important effect
as a general principle. All of beforementioned discoveries (the uplift, the capillarity and the
effective stresses) in fully saturated rigid and deformable porous solids make an incredible step

forward in soil mechanics.

In The Classical Era also another important theory was discovered - the theory of
consolidation. Firstly it was mathematically described by von Terzaghi, who formulated the one
dimensional consolidation after performing a lot of experiments (Terzaghi, 1924) :

k*w_ow

20Z ot (24)
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wherew is the porewater overpressukeanda are the permeability and the compression
coefficientszis a vertical coordinate antdhe time. He made a series of assumptions like that clay

is saturated and homogeneous, soil and water is incompressible and what is more Darcy’s law was
introduced when deriving the above equation. It is obviously very similar to the differential

equation of heat propagation (Fourier’'s law). When Fillunger found the opportunity to compromise
von Terzaghi, he immediately started to work on the same subject and after six months he

formulated the one dimensional consolidation as :

oy, , 0y _ g on

Lty 2L="(Z2-— 2.5

ot oz nyl( azp> (@-5)

ov, ov, g Jdd-n)p

24y 2= Z- 2.6

o ‘oz (1—n)y2( 9z ) (2.6)

on o(nv) _ 2.7)

ot 0z

_a_n+ 6(1— I'])V2 -0 (28)
ot 0z

Fillunger stated that the pore-water [body 1] flows upwards and the solid [body 2] flows
downwards with the settlement rate. If we disregard the effect of self-weight, then the external force
for each body consists only of the resistance to this flow put up by the other body, and the coupling
of the two motions is based on this. It is further recommended that this external force no longer be
related to the mass unit but rather to the unit volume, and that it be imagined that the pore-water
constantly, but with varying density fills the total space as well as the soil. It is then as if the flows
were to exist in the same space: two flows which can influence each other only through resistance,
but not according to the law of volume displacement (Fillunger, 1936). In each crosssettion
the double flow, there exists stress which is distributed on the two bodies or mateniedghté
pore space per unit of volume, then it follows from Delesse’s law (where on each cut surface , ina
uniform mixture, the surface ratios of each partial constituent must be equal to their volume ratios)
that the partial stresg' = np falls on the pore-water, and the partial steeSs= (1 — n)p falls on

the solid particles in the clay. In fapt= u® + . Invoking the Darcy’s law, Fillunger arrived at

V1

Z=- _k",z y: Wherek'’ is the coefficient of permeability amd is the initial porosity.

No

It is obvious that both scientists Terzaghi and Fillunger were brilliant and they contributed
to an incredible development in the field of mechanics of porous media. Unfortunately their dispute

ended tragically with Fillunger’s suicide.

11



The porous media theory was further developed by the above scientists’ followers. It was
M.A. Biot that had the greatest impact on the development of the Terzaghi’s direction.
Unfortunately G.Heinrich, a follower of Fillunger, was nearly completely forgotten. In the period
between 1935 and 1962 Biot published a number of scientific papers that lay the foundations of the
theory of poroelasticity (now known as Biot theory), which describes the mechanical behaviour of
fluidsaturated porous media. He also made a nhumber of important contributions in areas of
dynamics, irreversible thermodynamics and heat transfer, viscoelasticity and thermoelasticity,
among others.

In 1941 Biot's generalization of the consolidation was published (Biot, 1941). The
following basic properties of the soil were assumed :
- isotropy of the material,
- reversibility of stress-strain relations under final equilibrium conditions,
- linearity of the stress-strain relations,
- small strains,
- the water contained in the pores is incompressible,
- the water may contain air bubbles,

- the water flows through the porous skeleton according to Darcy’s law.
He formulated equations governing consolidation for three dimensional case as follows:

GO%u+ G a—“:—afa—a=0 (2.9)
1-2v 0x 0X

G 2,00 _
1-2voy oy

G a_g—aa_azo
1-2v oz 0z

9> 0% 0°
= + +

x> ay* 07

G?v+ (2.10)

GO*w+

(2.11)

|:|2

(2.12)

where

& — the volume increaseof the soil per unit initial volume
E
2(1+v)
g= 20+v)G

31-2H

— the shear modulus

12



The above constanisy ,G are known by majority, these are Young’'s modulus, Poisson

ratio and the shear modulus. There is one new corigtdnthich is a measure of the
compressibility of the soil for a change in water pressure also used later on in this chapter. The
constant. measures the ratio of the water volume squeezed out to the volume change of the soil if

the latter is compressed while allowing the water to eseapge().

There are three equations in (2.9), (2.10), (2.11) with four unknoywmsw,o . In order to
have a complete system we need one more equation. This is done by introducing Darcy's law
governing the flow of water in a porous medium. We consider an elementary cube of soil and call
Vx the volume of water flowing per second and unit area through the face of this cube perpendicular
to the x axis. In the same way we defifeV, . According to the Darcy's law these three
components of the rate of flow are related to the water pressure by the relations :

Vv, = —ka—J
0X

v, = —k%—j (2.13)
z = _ka_a
0z

The physical constant k is called the coefficient of permeability of the soil. On the other
hand, if we assume the water to be incompressible the rate of water content of an element of soil

must be equal to the volume of water entering per second through the surface of the element, hence

00 __ov,_v, o,

— =" - 2.14

ot ox o0y o0z (214)
Combining all equations from (2.9) to (2.12) we obtain :

kO?%0 = aa_£+ia_a (215)

where J is water pressure increment aQd is a physical constant, which is a measure of
the amount of water which can be forced into the soil under pressure while the volume of the soil is

kept constan% is defined as :

_a (2.16)
H

|-

1.
Q
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where the coefficien% is a measure of the compressibility of the soil for a change in water

a1 . . .
pressure , Whll% measures the change in water content for a given change in water pressure. The

two elastic constants and the constdhtndR are the four distinct constants which under our
assumption define completely the physical proportions of an isotropic soil in the equilibrium

conditions. Other constants, like before mentiomethave been derived from these four.

M.A. Biot used the above equation in his further works. His next article examines the
consolidation settlement under a rectangular load distribution (Biot, 1940). In the calculation of
foundations and the prediction of settlement we are not so much interested in the absolute value of
the settlement but rather in the differences in settlement which can occur in loaded area due to
differences in load intensity. Then differential settlements are direct cause of damage in buildings
and structures carried by the soil. Biot tries to answer three questions in this article. First question is
what happens at the edge of the loaded area — how much additional settlement is due to the water
flowing from the loaded region to the unloaded region. Then he tries to explain how much restrain
does the settlement of the loaded area encounter from the unloaded region. Finally he gives a
guantitative answer to how much settlement does the unloaded area undergo in the vicinity of the
load. In the article (Biot, 1940) he considers an infinitely deep layer of a completely saturated clay
with rectangular load distribution as shown in figure below. The uniform load is suddenly applied at
the instant=0 at the surface of the clay on the strip infinitely long inytloirection as in Fig. 2.2b.

The water is assumed to escape freely at the surface so that the water pressure at the top is equal to

atmospheric pressure. This a two-dimensional problem, whéxe

-
0 Uz

1]

Fig. 2.2: Load distributions; on the left from x=-1/2 to x=I/2; on the right from x equal to zero to infinity

Starting from the below equations (writing symbolic%qély: p):

14



coru+—2 92 99 _
1-2v 0x O0X
GD2W+ G a_g—a_a- = (217)
1-2v 0z 0z
nze =P
c
where
c= 5 - coefficient of consolidation,
a
a= - - final compressibility,
2G(1-v)

the settlement is found most conveniently by the operational method after defining the boundary

conditions :
a) all the variables vanish at infinite depth o

b)o =0 atz=0

ve
1-2v

C)0'=2G(Z—VZV+ )=Asin)\x atz=0

du  dw
d)Eﬁ'a—o atz=20

We can find the whole derivation of the solution in article (Biot, 1940), here below we have the
settlementvs of the soil surface at various time intervals for a load extendingXedhto x=c0 an
in Fig. 2.2b, wheréis characteristic length which can be chosen arbitrarily. Then settlement curves

(NI

are plotted as a function of x in Fig. 2.3 at time intervals correspondﬂ%g:to:;,g,z,g, and

©|un

compared directly with the settlements which would have occurred after the same time intervals

if the load extended from infinity to infinity. The slope of the soil deflection at the edge of the
loaded areaxt0) is infinite, it constitutes , therefore, a singular point probably associated with
infinite stress. However this infinite slope does not show up in the plotted curve because it is highly
localized effect. The settlements and wsiare equal at first fax>0 due to the water flowing out at

the surface directly under the load , thetvecomes slightly larger and finally for large values of

time wsbecames smaller and smaller comparegsto

15
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The same steps are taken for the second type of loading as in Fig. 2.2a. Below we also have
the settlement graph, which we analyze similarly to the previous one. It can be noted that
immediately after loading the settlement is little affected by the unloaded regions on both sides,
while in the last phase the settlement is considerably reduced by the restraining effect of the

unloaded regions.

|
|
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312 1 X | Fig. 2.4: Settlement of the soil surface at various time
§§=§ 0 intervals for the load distribution represented in Fig. 2.2 a
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Biot in his next publication together with his colleague (Biot & Clingan, 1941)
investigates the problem when the top surface is completely impervious. It is clear that in this case
the settlement is due to the fact, that the water contained in the soil flows from under the load to
unloaded regions. Since it is assumed that the water cannot escape through the top surface . this will
produce the swelling of the unloaded region in the vicinity of the load. Two dimensional

consolidation for fully saturated clay with zero Poisson ratio is defined as :

cotu+ 625 -979 -
ox O0X
cow+ G2 -97 _g (2.18)
0z 0z
n2e=PE
C

The variables and symbols were defined when analyzing the equation (2.9). This time the boundary
conditions are :

a) all the variables vanish at infinite depth
do
b)z =0 atz=0
¢)—0 + 2622 = —Asin\x atz =0
du dw
d)Eﬁ'a— 0 atz=0
The second condition expresses that no water flows from the top surface. The last two

conditions express that at the surface the normal stress is equal to the load and that the shearing
stress is zero.
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Fig. 2.5: Settlement of the soil
surface at various time intervals
for a uniform load extending
from x=0 to x=o
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The settlement is composed of two parts : a purely elastic deflection which occurs at the

instant of application of the load and a settlement due to consolidation which occurs gradually

thereafter. In Fig. 2.5 we can see the settlements for the load shown in Fig. 2.2b. There is a

considerable swelling of the unloaded area. For the load distribution presented in Fig. 2.2a the
swelling is lower but for large values of time, the settlements are larger.

Fig. 2.6: Settlement of soil surface at
various instants of time for a uniform
load p extending from x=-1/2 to x=I/2
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M.A. Biot in 1955 extended the theory in the previous articles to the most general case of
anisotropy (Biot, 1955). The method by which the theory is derived is also more general and direct.
The same physical assumption is introduced , that the skeleton is purely elastic and contains a
compressible viscous fluid. The theory in this article can therefore also be considered as a
generalization of the theory of elasticity to porous materials. The author concentrates mostly on the
case of transverse isotropy, which can be applied not only to soils but also to natural rock
formations, since transverse isotropy is the type of symmetry usually acquired by rock under the

influence of gravity.

In 1956 Biot's main field of interest was soil dynamics. He wrote an article which consisted
of two parts, which are the basics for the thesis. In the first part (Biot, 1956) a theory is developed
for the propagation of stress waves in a porous elastic solid containing a compressible viscous fluid
and is restricted to the lower frequency range where the assumption of Poiseuille flow is valid. The
extension to the higher frequencies are treated in the second part (Biot, 1956). The emphasis of
these papers is on materials where fluid and solid are of comparable densities. The detailed
information on the articles would be given in Chapter 3 and 4, whereurrent state of theory of
soil dynamics will be presented.

2.3. The Modern Era.

Several papers on porous solids filled with fluids were published in the time period between
1960 and 1980 using the mixture theory without the volume fraction concept, so called modern
continuum mechanics. Lots of scientists tried to formulate principles that help to formulate physical
principles of balance and that close the dilemma about the validity of many of the approaches that
had been used in the past. The new theory, known as multi-polar continuum mechanics, is based on
some concepts developed by Truesdell an Toupin, who introduced generalized forces, body and
surface forces and generalized stresses. Many other researchers tried to find the better

understanding of the behavior of mixtures.

It seems that Morland (1972) was the first scientist to use the volume fraction concept in
connection with modern mixture theories to describe the behavior of porous media as a “immiscible
mixture”. He constructed “a simple constitutive theory for a fluid-saturated porous solid” for the
purely mechanical state. Before introducing the volume fraction concept, Morland considered the
kinematics of the individual constituents, and formulated the state of stress and the balance of

momentum for the individual constituents in the usual way. At the beginning Morland expressed the
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partial density and the partial stress tensor of the constituent by the volume and surface fractions,
and by the real densities and the real stress tensors, which were denoted by “effective”. It should be
mentioned that while the decomposition of the partial density can be physically founded, there is,
however, no physical foundation for the decomposition of the partial stress tensor. Then, Morland
discussed the deformation state and decomposed the partial deformation gradient into a spherical

part and a partial density preserving [t

Wl

a

1
F =33 =P " (2.19)

a a'a a a

p

wherep{ is the density in the reference configuration a]gdhe determinant oFa. The effective

real deformation was then defined by

FaR = ‘]aR3 Fa (2.20)
where
Ja=13 (2.21)

a . . . .
and wherel,” denotes the volume fractions in the reference configuration. Morland also assumed

a constitutive equation f@*® which he defined as a functional depending on the effective

deformation gradient

e u3
T'=nfF|— FE (2.22)
Ny

and he proposed the following constitutive relation :

T4 =—,0F{(nFa)2JF}I (2.23)

where the equivalence of the surface and volume fractions has been assumed.

We can find more information on constitutive relations, effective stresses in solid from that
period in Morland’s excellent paper (Morland, 1972). Morland’s further treatment of the fluid-

saturated porous solid was directed towards the geometrically-linear theory and toward a special
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problem in the finite theory. Furthermore the elastic-plastic state of the porous solid was
investigated, and a saturated, porous tuff model was treated.

Drumheller (1978) presented a theoretical treatment of porous solid using a mixture theory
in which the volume fraction concept was introduced. The key point in his derivation was in the
formulation of pore collapse relation to express the rate of change of the volume fraction. Bowen
(1982) summarized all findings of the mixture theory and introduced the volume fractions concept
for the saturated condition. The book from 2006 (Voyiadijis & Song, 2006) gives the profound

information on the theory of porous media in the Modern Era.

The work of Biot also received great attention and was extensively used. The literature is
replete with publications pertaining to the analytical solution of the general governing equations of
motion for two-phase media based on the work of Biot. Deresiewicz (1960, 1962) solved Biot's
governing equations of motion for an elastic half-space under harmonic time variations using
displacement potentials. Derski used velocity terms to express the relative motion of different
phases. Burridge and Vargas (1979) obtained the time domain fundamental solution (Green’s
function) for an infinite space. They also studied the disturbance in a poro-elastic infinite space due
to application of an instantaneous point body force. Simon et al. (1984) presented an analytical one-
dimensional solution for the transient response of an infinite domain by using Laplace
transformations. Gazetas and Petrakis (1981) evaluated the compliance of a poroelastic half-space
for swaying and rocking motions of an infinitely long, rigid and pervious strip that permitted
complete drainage at the contact surface. Finally, Halpern and Christiano (1986) evaluated the

compliances of three-dimensional square footings considering pervious as well as impervious cases.

For the numerical treatment of initial and boundary-value problems, quite different models
have been used. These range from improved classical models proposed by Biot (Biot, 1955) (Biot,
1956) to such models which are based on the mixture theory restricted by the volume fraction
concept. In this connection, one can read the extended paper by Zienkiewicz (Zienkiewicz, et al.,
1990) which contains an improved Biot model as well as the treatise by Schrefler in which a model

based on the mixture theory is treated.

Due to colossal devastation caused by earthquakes the scientists were forced to concentrate
on dynamic problems as well. Prior to 1975, dynamic analysis were based on total stresses because
of the deficiency in practical models that could predict pore water pressure. A widely used method
was the Equivalent Linear Method ELM, which provided an approximate solution based on elastic

soil stiffness and damping that are compatible with induced strains in the soil. In this method results
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from laboratory tests relate the damping ratio and the shear modulus to cyclic shear strain levels. A
linear solution is based on initial values of the shear modulus and the damping ratio. From the time
variation of the shear strain , an equivalent strain magnitude is estimated and used to obtain new
values of the shear modulus and the damping ratio. A new solution is calculated , and the procedure
is repeated until convergence is achieved. The method became popular after Seed and co-workers
and was implemented in computer applications as SHAKE (1972), QUAD (1983) and FLUSH
(1975). However none of these models could predict either the increase of pore water pressure or its
effect in the effective stresses. More information on this method can be found in (Yoshida, et al.,
2002).

As the modern computational science developed and the rigorous numerical techniques
such as finite element method became more and more popular, Biot's equations and mixtures
theories found wide applications. A variational formulation of the dynamics of fluid-saturated
porous solids was the basis of a numerical method that Ghaboussi and Dikman (1978) developed
for the purpose of discretizing a partial media into finite elements. Shandu and Wilson (1969) first
applied the finite element method to study fluid flow on saturated porous media. With the
introduction of the FEM as a sound numerical technique, it became possible to extend the mixture
theory to encompass elasto-plastic non-linear constitutive models and obtain reliable solutions of
the field displacements and pressures. Prevost (1980) presented the general analytical procedure for
non-linear effects in which he focused on the integration of the discretized field equations based on
the mixture theories of Green and Naghdi. Later, he worked on several numerical applications to
study the consolidation of inelastic porous media and on the non-linear transient phenomena and
wave propagation effects in saturated porous media. Because of the increasing necessity of non-
linear applications, Zienkiewicz and Shiomi (Zienkiewicz & Shiomi, 1984) classified different
methods of analysis in a comprehensive paper on numerical solutions of the Biot formulation.

These numerical solutions were further studied and used in several numerical applications related to
the undrained, consolidating, and dynamic behaviour of saturated soils. A continuum theory for
saturated porous media that is applicable for soils exhibiting large strains was formulated later by
Kiousis and Voyiadjis using a Lagrangian reference frame.

| tried in this chapter to give an overview of the theories applied to soil mechanics during
the longh time period. In the thesis | would develop the Biot's and Zienkiewicz's approach , the

classical approach.
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3. Theory of elastic waves in half space.

3.1. Single phase media.

3.1.1. Basic wave equations.

Propagation of elastic waves problem in a half-space soil due to dynamic loads is
considered. The load can be placed on the soil surface (e.g. a passing car, train), can be caused by
mechanical device resting on the foundation (e.g. harmonic excitation by electric turbine, impact
loads by hammer,...) or can be derived from load inside half-space (e.qg. traffic in a tunnel ). Load
causing a wave phenomenon can be periodic or aperiodic (Verruijt, 2010).

Mixt
i pure :> Q

Continuum
Skeleton ' Point

Fig. 3.1: Elastic half-space and continuum point of single-phase model (Wrana, 2016)

The basic equations of the dynamics problem in single-phase soil model are a set of the
Navier equations which include inertia forces. In the Cartesian coordinate system, the equations are:

2 2 2 2
()\+G)i%+au2+OU3 +Gau1+6 W, 0% tby = 0°ug 3.1)
Ox | 0xg  Oxp Ox3 X2 ox5  ox3 at?
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2 2 2 2
()\+G)(au1 0u2+au?,j 0 u2 0 u22+6 U22 +b2:pa u22
ax2 aX]_ ax2 aX3 axl aX2 ax3 ot

o (')u2 (')U3 62u3 02u;3 62u3 GZU3
(e 2 [ +hy=p® 3
0x3\ 0% a><2 a><3 o G o ot
2
o (n+6) L ou+a?y !
X at?
9 5 9%uy
(}\ + G)*DU + =
X at?
2 0°ug
()\+G)—Du+GD ugtby=p—= >
ot
where:
P — volume density of sail
b b, b — components of mass force in the directigp, X, , X5 .
or,,
oz
<«
oo, e
< < ox
dz -
or,
A.\x dl
oy
7%
dx

Fig. 3.2: Stresses acting on an element during wave propagation. The perturbation tredieéction

3.1.2. Dilatational waves.

(3.2)

(3.3)

(3.4)

(3.6)

In consideration of wave propagation it is assumed that b, = b, = 0 , so that equations

(3.1),(3.2) and (3.3) reduces to the homogeneous differential equations:
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2
0 2 _ 0 %]
()\ +G)67Xl£V+GD u1—pﬁ

2
()\+G)—£V+GD2u —pa U2
X2 at?

9 2 _ 9%u3
()\ +G)67X3€V+GD u3—pﬁ

(3.7)

(3.8)

(3.9)

Differentiating the above equations: (3.7) with respecktp(3.8) with respect ta%;, (3.9)

with respect toX; obtained:

A 92 (aul+6u2 +OU3J+G 92 (aU]__'_aUZ +0U3j+
0X12 0Xy Oxo  0X3 2{9xg 9xp X3

G azul+azul 0%y )_ 0 0%y
ox 0% 0% ox0 t

aul+auz+au3j G[aul au2 OU3J

ax%(axl o 0x3)  allom Oxp O

d [azuz 62u2+62u2]: 3 9%up

Cool 0z ol ol | P o2
x1 X5 ax3 2 0t

{M+%+MJ+G#[M+%+%J+
pl\o oo og) el dq O O

+Gi aZU3+02U3+OZU3 - 162U3
o3l a5 s | O3 ot

Summing above equations (3.10),(3.11) and (3.12) we obtained:

A+ )_ oy au2+au3 F(A+2G )_ oy 0y, au
0x 0% 0% ¢\ ox 0% 0><3

(3.10)

(3.11)

(3.12)

25



2 2
+(A+2@)0_(%+%+%]: a_[a_ula_a_] (3.13)

¢\ ax 0x 0x) dflax ax 0x%
2 2 2 2
or (A+26)) 0% L 0% s 0T -0 0 (3.14)
Poloxd T a3 oxd at2
2
o X2 —6—2 g, =0 (3.15)
p ot

Equation (3.15) is a homogeneous differential equation that describes the eigen-vibrations of half-
space soil as a homogeneous isotropic elastic area. The first part defines the elasticity of soil, and
the second one determines the inertia of a soil area by the variable. The equation describes the
propagation of the dilatational wave, the volumetric wave or the pressure wave (flat or spherical,
depending on the space dimension), see Fig. 3.3. Constant in eq.(3.15) is:

V2= A+2G) _M _  E@-v)
L™ p  p  @v)-2v)p

(3.16)

which defines the speed of dilatational wave.
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Fig. 3.3: The dilatational wave a) before the wave propagation; b) during the wave propagation (Santamarina, et al., 2001)

3.1.3. Shear waves.

Shear waves equations are obtained from eq. (3.7),(3.8) and (3.9) by reducing the dilatation

part. Next differentiating it successively in respect to the variables:,, xs.

The shear wave equation in the plage- x; obtained by differentiating eq.(3.8) with

respect tocs, €g.(3.9) with respect tg,, and then adding the parties to give:
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GDZ[_"UZJ,%)_@[_"UZJ,MJ:O (3.17)

P aX3 0X2 at2 aX3 ax2
or
G2 9%y _
5 =
P ot (3.18)
where (Jq:—auz +<)J3 - rotation in the plane, — x;. (3.19)

o5 0%
The shear wave equation in the plane- x5 obtained by differentiating equation (3.7)

with respect tocz, (3.9) with respect te;, and then adding the parties to give:

2
W, _

=0 .
¥ (3.20)

G
P rPw -
0 w,

oy, o,
0% 0%

The shear wave equation in the plane- x, obtained by differentiating equation (3.7)

where W = - rotation in the plang; — x;. (3.21)

with respect tac,, (3.8) with respect t@;, and then adding the parties to give:

2
W, _
=0 .
FYZ (3.22)

G

P -

0 O

_04 0y
0%, 0x

The shear wave equations (3.18), (3.20), (3.22) are homogeneous differential equations that

describe the eigen-vibrations of half-space soil as a homogeneous isotropic elastic area. The first

where W= - rotation in the plang; — x,. (3.23)

part defines the elasticity of soil, and the second one determines the rotation inertia of a soil area in
the planex, — x3), (x; — x3) andf; — x,). These are the equations of the dynamics of the
variablesw,, w,, w3 and therefore describe the propagation of shear, rotating and distortion waves.

In the equations (3.18), (3.20) and (3.22) is conskantthe shear wave velocity:

*T\p N2@+vp
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and the relation:

v sy, [ (3.25)
2(1-v)

We can assume from the above equations the following :

« from eq.(3.25) it appears that, the dilatational waves velUgity greater than the shear wave

(\ +2G)
P

« the dilatational wave is called the primary wave — P.

velocity Vs because/| = >Vs.

« the shear wave is called the distortion wave, the secondary wave — S (Fig. 3.4).
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Fig. 3.4: The shear wave: a) before the wave propagation; b) during the wave propagation (Santamarina , et al., 2001)

3.1.4. Surface waves.

In addition to the dilatational and shear waves that propagate inside the half-space, there are
also waves that propagate on the surface called surface waves. The thesis mainly concentrates on
dilatational and shear waves. The surface waves are only discussed hereunder cursorily.

First type of a surface wave is a Rayleigh wave, which is a shear plane wave which
propagates at a free surface of half-space and is strongly damped at depth. Rayleigh was the first to
described this kind of wave in 1885, therefore the name of this wave comes from the name of the

researcher, see Fig. 3.5. These waves occur during the earthquakes, explosions, etc., and play an
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important role in seismic studies.

Transient Rayleigh surface wave ~ Rayleigh wave propagation direction

Transient speed vector \ Trajectory of particle

Fig. 3.5: Rayleigh wave (Fung, 1965)

Fig. 3.6 shows an example record of the horizontal component of the earthquake
acceleration. The figure shows some typical time periods:

. The first time interval corresponds to the dilatational wave (P),
. The second time interval corresponds to the shear wave (S),
. The final, with large amplitudes, corresponds to the Rayleigh surface wave.

Acceleration [g]

I

] 4
M PR (AT LR T
5 10 15 20 25 30 35
Time [s]

Fig. 3.6: Sample of acceleration during an earthquake (Wrana, 2016)

In the layered elastic half-space dilatational waves and shear waves refract and reflect on
the layer surfaces. In the plane of the layer surface Love's surface wave also arises. Love's plane
wave propagation is the plane perpendicular to the plane of Rayleigh surface wave propagation. The
following is considered the simplest case of Love’s wave, propagating in a weak layer with a
stronger layer below (Fig. 3.7), the case was first considered by Love in 1911.
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Fig. 3.7: Love's plane ¢, - x, ) wave propagation on the layer surfage= h

3.2. Two phase media- skeleton, fluid.

3.2.1. Introduction.

A soil mass consist of the solid particles and the voids in between them. These voids are
filled with air or/and water. So there is a three phase system, but when the voids are only filled with
air, or only filled with water then soil becomes a two phase system. When the voids are only filled
with water, it is said to be saturated. A saturated porous medium is composed of a matrix and a
porous space, the latter being filled by the fluid. The connected porous space is the space through
which the fluid actually flows and whose two points can be joined by a path lying entirely within it
so that the fluid phase remains continuous there. The matrix is composed of both a solid part and a
possible occluded porosity, whether saturated or not, but through which no filtration occurs. The
connected porosity is the ratio of the volume of the connected porous space to the total volume. In
what follows the term “porosity”, used without further specification, refers to the entire connected

porosity.
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skeleton particle fluid particle infinitesimal volume
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Fig. 3.8: The porous media as a superimposition of two continuous media: a skeleton particle and a fluid particle coincide
with the same geometrical infinitesimal volume (Coussy, 2004)

A porous media can be treated as the superimposition of two continua, the skeleton
continuum and the fluid continuum. Accordingly, as illustrated in Fig. 3.8, any infinitesimal volume
can be treated as the superimposition of two material particles. The first is the skeleton particle
formed from the matrix and the connected porous space emptied of fluid. The second is the fluid
particle formed from the fluid saturating the connected porous space and from the remaining space

without the matrix.

A continuous description of a medium, which is heterogeneous at the microscopic scale,
requires the choice of a macroscopic scale at which the inner composition of matter is ignored in the
analysis of the macroscopic physical phenomena. For instance, the porosity is associated with the
elementary volume including sufficient material to be representative of the filtration process. More
generally the hypothesis of continuity assumes the existence of a representative elementary volume
which is relevant at the macroscopic scale for all the physical phenomena involved in the intended
application. The physics is supposed to vary continuously from one to another of those juxtaposed
infinitesimal volumes whose junction constitutes the porous medium. In addition, continuous
deformation of the skeleton assumes that two skeleton particles, juxtaposed at a given time, were

always so and will remain so.

In the following chapters all the calculations are done for fully saturated two-phase media
which consists of solid skeleton and fully saturated pores as shown in Fig. 3.9. When subjected to
external forces and no variations in pressure of the saturating fluid, the skeleton deforms. The

description of this deformation differs in no way from that of a standard solid.
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Fig. 3.9: Soil as a two-phase medig; nr= 1 (Wrana, 2016)

The behavior of the mixture of soil and water is affected by the deformation of the solid
particles (skeleton), the relative motion (sliding) between particles and water, the deformation of
pore water, and the movement of pore water through pores. A general formulation for such an
interacting system is presented in this chapter, in which static case, consolidation and a variety of

dynamic behavior can be obtained as special cases (Kubik, et al., 2000).

The wave propagation in saturated porous media as a soil skeleton fully saturated with fluid
is described by Biot (Biot, 1956). Biot assumed that the motion of porous media on the micro level
can be described by continuum mechanics of material. He used Lagrange postulate and Hamilton's

principle to derive the equations of wave propagation.

The main assumptions of Biot theory, cursorily mentioned in Section 2.2, are as follows
(presented in (Wrana, 2016)):

1. In the porous medium there is a relationship between the current and reference state.
Displacement, velocity and deformations of particles are small. Constitutive equations, dissipation
forces and inertia forces are linear. Thus, the strain energy, dissipation potential and kinetic energy
is a square form of variables.

2. Principles of continuum mechanics can be applied to measure the macroscopic value. The
size of averaged macroscopic elementary volume is based on microscopic structure.

3. The wavelength is large compared to the macroscopic dimensions of the elementary
volume. This volume sufficiently and accurately determines properties, such as porosity,

permeability and modulus of elasticity.

4. The isothermal state is under consideration.

5. The hydrostatic stress is assumed to fill the pores with viscous fluid.

6. The liquid phase is a continuum. The skeleton is a solid phase with discrete discontinuous
areas.
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The formulation of porous media dynamics is based on the kinetic energy equation,

dissipation function and it leads to the equations of motion using Lagrange's postulate.

In the following equations in the introduced indications: "m" - refers to the skeleton, "s"

refers to the skeleton particles and "f" - refers to the liquid phase in the pores.

3.2.2. Kinetic energy.

In the Euler description the averaged macroscopic skeleton and the fluid velocity introduced:

m
vh = ou or vM = aium - macroscopic averaged velocity of skeleton,
' at t
¢ au.f f o 0 f . . .
v, = 3 i or v = 2t - macroscopic averaged velocity of fluid.
t

The kinetic energy of the particles at the microscopic level is:

=~ [par W+ o, w @ (3.26)

where:\l\V,V\/ - skeleton and fluid velocity at microscopic level,
P, - density of skeleton grains,

P; - density of fluid in the pores,

QS:(l—n)Qb, .Qf:nQb,

Q, - representative elementary macroscopic volume.

Isotropic material and averaged macroscopic velocity in volgmewas assumed. The kinetic

energy of the particles at the macroscopic level, similarly to form eq.(3.26) is (Biot, 1956):
1 m
T :EQb |:p11vim vt 2p12\(11 Yf + pzz\i }}J (3.27)

where:

p,,- density of skeleton at macro level,

P,,- density of fluid at macro level,
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p,, - reciprocal density of skeleton and fluid at macro level.

The following considerations (below) are shown to determine the material coriand p,,as a

function of the skeleton and fluid parameters.

Assuming a constant fluid and skeleton density in a volameeq.(3.26), i.e. the kinetic energy of

the particles at the microscopic level, can be written as:
— l my,,m 1 f f
T _Epst<Wi W >S+Eprf<Wi W, >f (3-28)

where (-) means averaging in the representative volume.

Assuming balance of kinetic energy on the macroscopic and microscopic level, the density of

mixture medium is received:

P=P M+ 20,y P, VY = (- Do W W, + P W, (3.29)

The momentum of the skeleton and the fluid is

ar

U "o =0, (e +p') (3.30)
it %\; =0, (P +0Y) (3:31)

If the relative velocity of the skeleton to the fluid is equal to zero)/ﬁ.t;.\(f and the

macroscopic velocity is equal to the microscopic velocity, then eq.(3.28) can be simplified:

P=(-n)p, +1P; =P + P, +P, (3.32)
The momentum of the skeleton and fluid at the microscopic level determined from the eq.(3.28)
is:
ar
T =——=0,1-n) pW' (3:33)

oW’
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ar
U = P w (3.34)
w

Comparing equations (3.30),(3.31) with (3.33),(3.34) we obtain:

Py P =A-N) P, (3.35)
P tPL=N Py (3.36)
Substituting B; and 35, to (3.28) we obtain the reciprocal dengly (Nelson, 1988):

I a3 U S LIRS R TR
; (v -v") (v =)

The reciprocal density is determined as the difference between the square of the average

(3.37)

velocity of the particles at the micro level and the square of the velocity of the particles at the macro

level with weights of skeleton and fluid mass.

Moreover, the reciprocal density can be determined on the basis of tortuosity as a measure

of the difference velocity of fluid and skeleton at the micro and macro level.

_ (" =) (W v, (3.38)
) (V)
(W' =) (W' =y,
_ (3.39)
(v -v") (v - v)
P, =—(1-n)p, (T,;—D-rp, (-1 (3.40)

In the case of compatibility of the velocity at the microscopic and the macroscopic levels,

with T, =1 we obtain

P =P (-0 (3.41)

This case was considered by (Biot, 1956).
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f

i W, | i . . . .
Assuming that—'f = I , Wherd is the distance between two points on the micro levellLasd
Vi

the distance in a straight line (at the macro level), then the tortuosity defined in eq.(3.39) is:

I 2
T :[J (3.42)

If p,, is be considered as a skeleton density moving in fluid, then we receive

P =A-N)Es+rpy) (3.43)

wherer P, is the density of fluid associated with the skeleton particles moving in the fluid. Using

eq.(3.35), (3.41) and (3.43) the tortuosity can be defined as:

T:l+(1_nj r (3.44)

n

Constant =0.5 concerns the case of spherical grains moving in a fluid (Berryman, 1980).

3.2.3. Dilatational plane wave without damping.

Wave propagation is characterized as an example of dilatational plane wave, dilatation wave. In the
isotropic medium dilatational wave can be separated from the shear one by acting of the divergence
(div) or rotation (rot) operator on the differential equation of motion. In the case of an isotropic
material, without loss of generality, a plane wave is considered. The equation below presents a
generalized eigenproblem with two arr&/andH.

— /2
Be=v; He (3.45)
where
W ,
v, = Y - phase velocity (3.46)
K,+2G, C Pu P e
B=| B 5 m ,H:|: 1 12:|,e:{ } (3.47)
C R P21 P22 )

36



(% - shear modulus of the skeleton

_ (@-n-K/K{)nK,
1-n-K/K,+nK /K,

- constant in Biot notation

n°K . :
R= . - constant in Biot notation
1-n-K/K,+nK,/ K,

K 1_a-n_,n
Ky =K+Q@-n?, o :1—?- coefficient of Biot effective stressa =X +K7’ K - bulk

s S f

modulus of skeleton in soil.

Equation (3.45) presents a generalized eigenproblem with two &@ydH. From the solution of

the eigenproblem (3.45) we obtained two eigenvalgeand V,, corresponding eigenvectors:

e
e = {eu} ande, ={ 2’1} with corresponding to the two dilatational waves’ velocity.

2 2,2

From the orthogonality condition of eigenvector$=1,2 taking into account the eq.(3.47)

the equality is obtained

4
( K nﬁj es+ Cee,+ g,8,)+ Ree,, =0 (3.48)

From the eq.(3.48) with the positive material constints,, C, Rit appears that: if both
components of the first eigenvec&ﬁn, eLz}T are of the same sign, the components of the second

vector{ez;L, ezz}T must have opposite signs. It means that in the dilatational wave propagation of

saturated soil, the fluid and skeleton are in a phase, or fluid and skeleton are in an anti-phase.
Multiplying the left-side eq.(3.45) b we receivee! Be =Vv2,& He, hence

2 _( K"4§/3) ﬁ+20qleL2+Refz

= (3.49)
P P11 ':%1 +20 1 £1€1,1P 22912,2

\

Similar operating may be performed with respect to a palVgf ,e, .
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In equation (3.49) we take into account the propprty< 0 according to (3.41). Analysis of the

sign of the two eigenvector componefgande, leads to the conclusion that:
- if one eigenvector has two components of the same sign, e.g. Gector

- then the second eigenvector has components of the opposite sign, e.gEveatut in this case

there is:
2
Vi > Ve, (3.50)

It follows that; the second wave velocNy, (skeleton and fluid in an anti-phase) is slower

than the first velocity; (skeleton and fluid in a phase). Biot proposed the following names of the

waves: 1) the fast wave or wave of the first kind - waves traveling at a higher speed, and 2) the slow

wave or_waves of the second kind - waves traveling at a slower speed.

3.2.4. Shear waves without damping.

Equations of motion in the low frequency range for the fully saturated medium can be written as
(Biot, 1956):

ao-lm B aZuim aZuif 0

G_Xj_pllatz +p126t2 +b(\/i _\{f) (3.51)
apf B 62 im aZMf .

-n ox =P 9 2 P2 3 2 -b (\/in_\( ) (3.52)

where here only is a damping coefficient proportional to the velocity, viscous damping.
(Coussy, 2004) on the basis of Darcy's law, proposed to &dopt % , Where:n is the coefficient

of viscosity of the fluidk is a coefficient of permealbility.

d3(t)
dt

Introducingy (t) = m +ﬂk5(t) (3.53)

P;T
and m:p—222 =T (3.54)
n n
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we obtain:

0 p; o%u" DQ w
- = —+Y(t 3.55

In the above equations it is assumed that constant porosity does not depend on time.

Moreover, if we assume that the mass forces are equal tolxer6 () (Biot, 1956):

aoij B aZuim aZuif
a_x,. =(ppt plz)W +(py, + pzz)W

Assuming the relative displacement of skeleton to fluid:

w=n(y -y (3.56)

and taking into account the equations (3.35) and (3.36), equations of motion in the low frequency
range can be written as:

00; ym 2w
! =pa u; . 4 VZ' (3.57)
d X ot ot
The equations regarding the shear wave will be evaluated in two steps.
First step - the rotation operator applied to eq.(3.52) including (3.51):
a O—[“ aZu_m azqm azqf
rot L |=rot L —n - (3.58)
(axj] [pat2 pf[at2 ot
or
: 0° 0° 0° ;
rot(d|v2‘.) = pa o (rotu )— np, {[W(rotu )— YT (rolu )H (3.59)
or entering a notationQ°® =rotu®, Q" =rotu'
o doer d(er-o)
rot(divZ) =p s P (3.60)

d t?
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where X=|0, 0, Oy — Cauchy stress tensor.

From experiment of compression test of the mixture in drainage conditions (Biot & Willis, 1957) we
have the following relation:

1
¢" :ZG(sm —gsﬂnj+K e'm+Ce/m (3.61)
the above coefficients,C were already discussed in Section 3.2.3. The rest is defined as:
e={e 1€ »EaEEEp)  — Strain vector of skeleton in Voight's notation,
m

€, - volumetric strain of skeleton,

S\j — volumetric strain of fluid,

Les, (3.62)

S T8 T3

or s=s—éevm — strain deviator of skeleton and fluid mixture medium

wherem ={11,10,0,0}" .
From the eq.(3.61) taking into account the eq.(3.62) we receive (Wrana, 2016):
dive] = 2G, dive] +(K —%Gm)JgradsCWCgradvf : (3.63)

Applying rotation operator we receive

0ol o¢c
rot| —L | = 2G_ rot| — +[K —gGm)jrot grag! +C rot grag - (3.64)
0 X 0 X 3

i i

Becauseot graDHV“:O and rot gl’ad-:\f, = (, (3.58), taking into account the (3.63), we shall have

the form

a Em anm anm aZuf
rof —- |=p rof —5 |-np, 1o —=
% [ax} P {atzJ P (at2 t? (3.69)

1

40



True equality is:

a m m a m 2 m 2 m
2rot(iJ =210 i(ai +iJ =rotgrad + g rotzul = o"roly (3.66)
0x; ox | 0% 0x 0x 0x

the eq.(3.65) can be written using the eq.(3.32):

’Q™ °Qm %0
G =1-n +np, ————.
m OXJZ ( )ps atg pf atz

(3.67)

Second step - derivation of the eq.(3.55) used
20y M m f
o:pf%—nv(t)a‘?—t+ nY(pDaaQ—t. (3.68)

We consider, without loss of generality, a plane wave propagating in the direction of tlkg axis

polarized in the directior,. Adopted solution in the vectors has the for@" ={0,0, Sm}T,

Q —{0,0,S } , with notationS™ = 2% S ox,
S"=Sex] i t- k] (3.69)
S =Sex] iw t ky (3.70)

wherek - complex wave number including the function of damping in the eq.(3.68).

Substituting the solution (3.69) and (3.70) to (3.67) and (3.68) we receive
|G- ¥a- np.|s-rp Vs, =0 (3.71)
—[pf+ilY0nj §+(iigr} $=0 (3.72)
w ()
where v, = w/k - complex shear wave speed. The solution is

| G
Vc = p—iu)sz'l - (373)
f'o

The phase velocity is obtained dividing the angular frequency by the real part of the complex

wave number:
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w 1

Vg = - . (3.74)
* Re(k) [ 1 \J
Rel —

V.

C.

The factor of wave decay is defined as the imaginary part of the complex wave number:

\"/

c

o =Im(k) qolm[ij. (3.75)

In the low frequency range, the amplitude defined by the formula (3.61c) can be written as

Y, = iw m+n/«k, which after substituting to (3.73) leads to the formula:

v, = \/ G —. (3.76)
p-pi[m=in/(wK)]

In the case without damping ( k = 0), in (3.76) complex shear wave velocity is given by:

= | Cn = G (3.77)
p-pr/m \p-m /1
Shear wave amplitudes obtained from the eq.(3.72) :
Ps 1
=1-— = 1-= . 3.78
S [ nmjs [ Tj@ (3.78)

In the above equation expression in brackets is positive, bacalisthus the amplitude of the

shear wave of skeleton and fluid are of the same sign. From the eq.(3.72) we secegye

indicating no relative movement between the skeleton and the fluid in the propagation of shear waves.

Gn,
In the case of zero-frequency,=0—V, = ? .

Remark: Sincem= 0, the shear wave without damping speed (3.77) is greater than the average

G
speedv, = |—™ .
P
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3.2.5. Example.

The gravel as the water-saturated porous medium is considered. The material parameters of soil are:
Ks=35 GPaps=2,65 t/m3K.=1,7 GPa; @=1,855 GPan=0,3;«x=1 Darcy;1=2; K=2,4 GPa,

p=1,00 t/m3 and)=1 (Carcione, 1998). Substituting the data to the equation of the dilatational

wave phase velocity and to the shear wave velocity , the results are in frequency-dependent range f
[Hz]- Fig. 3.10.

37 i
§ |
i |
7 | Frast - Fast longitudinal wave i
i
B o |
z ] E
& ] .
K i
[7] — 1
> |
a7 S -Transverse wave |
£ 17 |
s !
: Fijow - Slow longitudinal wave, |
. |
L o o T e
1 2 3 4 5 6
log (f) [Hz]

Fig. 3.10: Comparison of the phase velocity of dilatational and shear waves in the fully saturated gravel (Wrana, 2016)

3.3. Three phase media - skeleton, fluid and gas .

3.3.1. Introduction.

The most precise model of the soil is a three-phase model, taking into account- skeleton,
water and air. The basic equations much differ, because there is an additional phase that needs to be
taken into consideration. Consequently the constitutive equations, equations of motion and wave
propagation changes, which have an impact on the final results. The picture below presents the

outline of the three-phase media.

[~ Pa _:rrpg
8 Fig. 3.11: Soil as a
P Y £ 9 |
[ i 3 three-phase media
na
= pS v Vv nw
Skeleton_—1 s Continuum
¥ Point
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The first proposal to unsaturated soil description gave Bishop (Bishop, 1959), he extended
the Terzaghi equation to three phase medium as:

0\ =0,~P.+X (P~ P. (3.79)

where:

o', - effective average stres§,, - total average stresg, - function of saturation degrée p,- air
pressure in poreqQ,— water pressure in pores.
Unsaturated soil is a soil consisting of three phases: skeleton, water and air. In the mixtures

theory, such soil is a continuous medium, i.e. at the same point of medium there are three phases. In
the consideration of wave propagation problem the following assumptions are used:

a) small deformation,
b) incompressible soil grains,
¢) material of skeleton is isotropic and linearly elastic,

d) consider laminar flow of water and air in the pores in accordance with the law of Darcy.

The gravity forces, chemical changes and electric fields are omitted. It is also assumed that
the soil mixture material is a homogeneous continuous medium in which there are no phenomena of

reflection and refraction wave and phase changes.

3.3.2. Equation of motion.

The equation of wave propagation in porous soil medium consists with skeleton, water and
air per unit volume of soil is considered. Having regarded the inertia forces of skeleton, water and air
we obtained:

dive =p,(1—-n)u* +p,n'U"+p,nU°". (3.80)

where

P, — density of water
P, - density of air

n"“ — volumetric contents of water phail‘a”, =nS

N% — volumetric contents of air phasi@a: = f‘(l_ 9}
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S

N~ — volumetric contents of skeleton phase+ n¥+ n*=1

S - degree of saturation

Darcy's law of laminar flow through the soil is applied. In the case of anisotropic material and

omitting gravitational force (Coussy, 2004) we can obtain:

nW(uW—us) :—g%w(graopﬁpmpw), (3.81)
(-0’ :—g%a(graqoa +p,0°). (3.82)
where

R, — water pressure in pores
[, - air pressure in pores
KN — permeability coefficient of water phase in the soll

ka — permeability coefficient of air phase in the soil

g - acceleration due to gravity

It is necessary to introduce constitutive equations for the three-phase media in order to
move forward with the equations of motion. They are defined as follows (Fredlung & Morgenstern,
1976):

s <

(3.83)

ol (o, p)
e njwny[d(pa—m)]
dn nf nj

m’, m; — coefficients of volumetric increment of skeleton representing the physical parameter

QD

. _ 30-2)
2(1+Vv°)G

— Poisson ratio of soil skeleton

Compatibility condition of volume three phases, Cﬁj =dn"+ drf, leads to the equations:

S

m;, = m"+ m’ (3.84)
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S

m; = m)+ m. (3.85)

where
w W . . ..
m°,m — coefficient of volumetric increment of water
a a . o . .
m°,m — coefficients of volumetric increment of air

The total stress of three phase soil medium equation is based on the assumption on linear

elasticity behavior of skeleton grains with including water and air pressure in the pores (Fredlund &
Rahardjo, 1993), so:

de = Dde — xdp,m - (- x )do,m (3.86)

where: X- volume change coefficient defined as:

=m/n} (3.87)

After the substitution (3.86) to (3.83) we have:

& =D 3_)5( dp,m (3.88)

dn” 3qJKW m" do + €, dPy, + CuadPa (3.89)

dn 3"IJa m Cb + Cawdpw + Caadpa (390)

where:

m={1,1,1,0,0,9

W, = (3.91)
m

_m
w, =" (3.92)
m
T 095
ny
e L rrﬁﬂi”—sminh (3.94)
K my
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:(1_X)L|Ja + rﬁnf_rnzsnf

Ks m;

C

(3.95)

(3.96)

The effect of temperature and dissipation of energy are omitted. The complementary elastic

energy (work of deformation on stress increments) can be submit, according to (Loret & Khalili,

2000) :
dH, =¢" a5+ i'dp, + ndp,
From the eq.(3.97) received:

S

oo - op,, op,

e _OH, 7 oH

and

2 2 2
_0 Hsds+ 0°H, dpw+a H, o,
0cdc do0p,, do0p,

W (otH Y 9%H, 9%H,
dn® = de + dp,, + dpa

&

op,d¢ op,dp, = 0p,0p,

a2H, ) 92H 92H
dna:[ SJ de + sd S dp, -

Py *+
op,dc 0p.0pPy 0P,0p,
where
dn® —increment of volumetric contents of skeleton phase
dn"  —increment of volumetric contents of water phase
dn® —increment of volumetric contents of air phase

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

Comparison of equations (3.88),(3.89),(3.90) with equations (3.99),(3.100) and (3.101) we find
that a coefficients in equations (3.88),(3.89),(3.90) depend on the Hegsid@ince the Hessian

matrix is symmetric, it holds:

"=

(3.102)
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Using the equalitydﬁv deWVW) we can received:

dm”
dn"="" —nW%W . (3.103)
Pw K
where
dm" — increment of water mass per unit volume of soil
K" — bulk modulus of water phase in soil
Similarly, obtained with the air phase
m* d
dn? _ am” —naij . (3.104)
Pa K

Assuming small displacement amplitude, from mass conservation equations (Wrana, 2016) we

can obtain:
‘mez-n“uiv(uw—us):—nw(ey—si) (3.105)
dm? :-nadiv(ua—us)=-na(€3-€3) (3.106)

a

Substituting (3.103),(3.104) and (3.83) to (3.105),(3.106) and (3.86) constitutive equations were

obtained:

1 w a
o=G(e—38vmj+ Hm+ i L+(1-x) Jeym+ rf[xC+{1-x)N]e2m (3.107)
R = Ve, —n'ley - mCej (3.108)
p=M -G -rNed (3.109)
where:
GV
H= —XW-(L-X)M
Y XW-(L-X) (3.110)
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K"A

W=- 5 +n'L+n’C (3.111)
M=~ KDB+nWC+ N (3.112)

LKt me e ke (- o )|

D
(3.113)
N = K| '+ Kwt()nfmﬁv- msmy’)| (3.114)
c= K" K fong - mm") (3.115)
A gt k{ ning'- mint') (3.116)
B g+ K{ ning'—nin) (3.117)
B gt gimll PR K+ Prithi (3.118)
S — 3(1_ 2\/5)
2HVG (3.119)
and with the equations: (3.84), (3.85), (3.101) received:
nd = (-t (3.120)
nf'=xni -nj (3.121)
=g =xn. (3.122)

Substituting the constitutive equations in the equations of motion (3.80), (3.81) and (3.82)
received:

(H +2G+n"W+ i Mgract} — G(grad —[0° i ¥
n"[XL+(-x)C~ 'L~ if C|gracty +
n*[XC+@-Xx)N- rf N~ rf Clgract] + (3.123)
o( ),
K,

(0° -u*)-(1-n)pii* =0
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-n"Wgrac; +( nW)2 Lgrad; + ' if Cgraef

)2 (3.124)
_—g(nkz pW(uW—US)—anWUW:O
-n*Mgrad; +(na)2 Ngrad] +n°n"C grag}’
2 (3.125)
— g(nkz_pa (Ua —US) —napa[j a— 0

In the case of a two-phase fully water saturated soil model with incompressible grains (Biot

model) the relevant parameters af&: =1, I‘ﬁ: r’é: ﬂi":fﬁZN Three above equations reduce to

two equations:

2G(1-v® w
—1E 2\)\: )+(1— n)ZKT grad; - G( gra; -0%u°)+
(3.126)
w w n2gp W .S .S
(1-n)K"grad,’ + kWW(u -0°)-(1-n)p* =0
(1—n)K7gradzj+KWgradVW—%(uW—us)—pWUW=O (3.127)

3.3.3. Dilatational and shear wave propagation.

The theory of discontinuous wave propagation in an unsaturated soil was used (Coussy,
2004). In this theory displacement and velocity are described by continuous function and acceleration
by discontinuous function (skip function). The velocity of wave propagates depend on the soll
parameters. There are three cases of phase motion:

a) air and water move independently relative to skeleton,

b) air moves relative to skeleton, water and skeleton move with the same velocity,

c) air, water and skeleton move with the same velocity, this case corresponding to undrainage
problem of porous material.

Casea)

In this case wave propagation problem is described by equations (3.123), (3.124) and (3.125).
To solve the wave propagation problem, the jump Hadamard operator is used, marked with double

square brackets [[ ]|, where a discontinufiig?], [i1"] and[i?] means (Kosiski, 1986):
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[6°] = éiSn + ist; [@¥] = i¥n + it [@°] = itSn + ift (3.128)

wheret is a unit vector located in a plane tangent to the wave fiaata unit vector normal
to the surface of the wave front in the direction of propagation. Taking into acgaulaf =
[n-@®]n, gradey = [n-u"]n, grade? = [n-i%Jn, equations (3.123), (3.124) and (3.125) can be

written as:
(H+2G+n"W +n?*M)[n-i’]n+
+n¥[xL+ (1 —x)C —n"L —nC][n-ia*]n +

+n%xyC+ (1 — )N —n"C —n®N][n-i%n+

+[G — c2(1 — n)p,][is] = 0 (3.129)
—a*W[n - iTn + (0*)2L[n - @¥]n + n¥n?Cln - i%n — n¥p,, [i*] = 0 (3.130)
—n®M[n - i¥]n + n®n*Cn - ¥ + (1*)2N[n - i%Jn — c2n%p, [i19] (3.131)

wherec is velocity of wave propagation.

Substituting (3.128) to (3.129), (3.130), (3.131) and multiplying by the veateeeived:

[ —c2(1—n)p,Jif =0 (3.132)
c*n¥p i’ =0 (3.133)
c*np iif = 0 (3.134)

from which it follows that

WS#0 — 2=V2= (1_‘;» (3.135)

us = us = 0. .
Y = 4i% =0 (3.136)

Equation (3.135) describes a shear w&avave propagating in a plane tangent to the wave
front at a speed d£. Substituting (3.128) to (3.129), (3.130), (3.131) and multiplying by the vector

n, obtained:
iy

(K=c?M){i¥:=0 (3.137)
iin
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[H+2G+ JxL+-x)c- L(XC+{@-x)N -]
+ "W +nM, [— n“L-n°C J (— n"C-n®N j
K=| -n'w, (L, N"neC (3.138)
-n°M n*n"C, (na )2 N
(1-nps, O 0
M=| 0 no,, 0 | (3.139)
0 0, n%,

K is a symmetric matrix (Wrana, 2016). Equation (3.137) presents three different dilatational

waves P- wave}, which propagate in the normal direction to the wave front. From condition of zero

determinant of matrik —¢M) we can obtain wave speeds:
defK -cM ) = ¢ (3.140)
where G =V .
Equation (3.140) leads to equation on variafge
(3-(a+ 2+ Bl9f+(8 4+ ddrgdrara-alis
‘( & & &+ Ads+ Aap, _ASaf)l_AD):O (3.141)

where:

2 = H+2 G+ t'W+n®M

3.142

P (1_n)ps ( )
, _n"L

= (3.143)
, _N°N

.- (3.144)
Pa

_[x+ra-pc-nL-rc] it MC+[x Gl-x) - HG hN hhw (3.145)

(-1 po.p. A=nepup.
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_ HWxL+ @-x) C-n'L-1f]

3.146
A g, (3.146)
i I\,{Ix G-(@-X) N-'C-r°N
= 3.147
& -np.p, (3.147)
n"rfC?
= . 3.148
& PuPa ( )

In eq.(3.141) we have variab\é, hence the solution of this equation is the value of positive

and negativé/p, which correspond to the propagation according to the velocity vector, and contrary

to the vector. Similar results obtain from eq. (3.135) where there is a véézable

Caseh)
In this case there is no relative water to skeleton displacem&nt u® = 0, thus the

equations (3.123), (3.124) and (3.125) reduced to form:

[H+2G +nYyL+n"(1—x)C +n*(M — n"C)]grade; —
—G(grades — V2u®) + n*[xC + (1 — Y)N — n®N]grads? +

ay2
+ 820 (0 — %) - [(1 = mp, + ¥, Jie® = 0 (3.149)
na 2
—n*(M — n"()gradsj + (n%)?Ngrade? — (?C—pag (a%* —-u’) -
a
—n%p_ii® = 0. (3.150)

As in the case a) to solve the wave propagation problem the Hadamard jump operator [[]] is
used, which leads to the determination of one shear wave and two dilatational waves. Velocity of

these waves are determined:

) _ G (3.151)
°  (@-n)p,+n"p,

and vz =2l(bg02) 2 (K- ) <48 | (3152

where:
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_ Alx o @-x) N- i N|(M-nC)

. f (3.153)
0 [1-n)p, +n"p, [ps
p2 = HF2Gr i L+ i"(1-x) C+ na('V' - nWC) (3.154)
pl (1-n)p, +n"p,, |
a
7, - N (3.155)
Pa

Similarly, when there is a lack of air to skeleton displacemeht: us = 0, received one shear

wave speed/, and two different dilatational wave speeds

.. G (3.156)
S (1_ n)ps+napa
and =2 (6 v e (o - e rac | (3.157)
where:
c, =- it x Lt @-x) & fv U(w-n°c) (3.158)
|_(1_ n) Ps N paJ Pw
- 20 Ax Gr A (-x) N+ i'(w-rec) (3.159)
(1-n)p, +np,
, _n"L
o= " (3.160)
Casec)

In this case there is no water to skeleton and no air to skeleton displacement, undrained case,

u? — u¥ — u’ = u. Equation of motion simplifies to the form:

dive = pii (3.161)

wherep = 1- np, + S,np,, + L- S, )np, . (3.162)

Taking into account the constitutive equations from 3.3.2 in the above equation the following

were obtained:
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[26(1—1}5)

K% A K%B .
e TX 5 T A0 T] grade, — G(grade, — V*u) — pii = 0 (3.163)

In this case, there is the one shear wave propagation at the speed of:

V2 = . (3.164)

and the one dilatational wave propagation at the speed of:

v | 260~ V) /-2v%)|+(d,y /d )

5 (3.165)
where:

= K REX+ i/ nf)+ nxK(1-5 ) +(1-x)” ke s rmp (3.166)
dpo =n|$ K2 +(-S)K"|[-x7+ @ W)+ ASEA-)/m. (3.167)

When the pores are completely filled with air (dry saj|, = 0 ) or if the pores are completely
filled with water (irrigated soil,s. =1S, = 0) the shear wave velocity is defined by the formula
(3.163) taking account of the volume densgity
withS, =0, p=(1-n)p,+np, (3.168)
withS. =1, p=(@A-n)p, +np,,. (3.169)

Hence the dilatational wave velocity will define, in accordance with the equation (3.164):

_|esa-v)1a-2v)|+ (k2 1n)
- (1_ n) Ps + NP,
_|26a-v)ia-2v)|+(k" /n)

with S, =1, V& 0o, +mp . (3.171)

with S, = 0, V& (3.170)

Comments

1. The above considerations apply to the low-frequency.

2. The above consideration does not include energy dissipation caused by the laminar water motion
in the pores. It should be emphasized (Brutsaert, 1964), that in the low frequency range relative
water to skeleton motion in the pores is negligibly small. In the high frequency range water moves
freely in the pores and energy dissipation may be omitted.

3. In paper (Miura, et al., 2001) shows the wave speed depend on frequency for variety irrigated
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soil, from clays to soft rock. The authors showed that the coefficient of permeability is the main
parameter of soil, which determines the bandwidth of low frequency. Reduction of permeability
coefficient causes the extension frequency bandwidth. From in situ soil geophysical measurement
to a few hundred kHz carried out by (Santamarina , et al., 2001) and (Miura, et al., 2001) shows
that the largest components of soil response are in the low frequency range.

4. Two phase medium — equations of motion.

4.1. Introduction.

The following section is concentrated on further description of the two-phase media, which
was also described in Section 3.2. and expended hereunder for the thesis’ purpose.

The behavior of saturated porous soil-structure systems subjected to dynamic or static loads
should be defined by taking into consideration the coupling between flow and deformation. The Fig.

4.1 shows the schematic of such a soil-structure system.

The behavior of the mixture of soil and water is affected by the deformation of the solid
particles (skeleton), the relative motion (sliding) between particles and water, the deformation of
pore water, and the movement of pore water through pores. A general formulation for such an
interacting system is presented in this section, in which static case, consolidation and a variety of
dynamic behavior can be obtained as special cases.
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Fig. 4.1: Schematic of structure-foundation system (Desai & Zaman, 2014)

Biot theory describes the wave propagation in saturated porous media as a soil skeleton
fully saturated with fluid. Biot (Biot, 1956) assumed that the motion of porous media on the micro
level can be described by continuum mechanics of material. He used Lagrange postulate and

Hamilton's principle to derive the equations of wave propagation.

The main assumptions of Biot theory are as mentioned in 3.4.1. The formulation of porous
media dynamics is based on the kinetic energy equation, dissipation function and it leads to the

equations of motion using Lagrange's postulate.

Again — as in all the following equations in the introduced indications: "m" - refers to the

skeleton, "s" - refers to the skeleton particles and "f" - refers to the liquid phase in the pores.

4.2. Stress-strain relations.
Before the formulations presented by Biot will be used, various terms relevant to saturated

porous materials will be depicted. Fig. 3.9 shows the schematic of a porous material consisting of

solid (particles) and fluid (water) and the diagram. The porosgydefined as:
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n=—v (4.1)

whereV, is the volume of pores equal to the volume of flud/ ) andV, is the volume of

solids. The densityp, of the mixture is expressed as

p=(1-n)p, +rp; (4.2)
a)
>
fluid - U
B
—>
—»
solid —
b) Ui Wi
~ ST —>—>
V\/fé,\filﬂ’{ —>—>
Sempis LA o=
/( \ ,V}/—‘;f{/ ——>
e .
A

Fig. 4.2: Displacements in element with two phases. a) Displacement of different phases; b) relative displacement of fluid
(Desai & Zaman, 2014)

The symbolic deformations of solids and fluids are shown in Fig. 4.2 . The terms in this
figure are as follows; (i=1,2,3) are the displacement components for the solidx)) 2 ), and 3
(2) directions, andl; (i=1,2,3) denotes displacement components of the fluid. Relative
displacements can occur between the solid and the fluid for loadings such as dynamie. Then,
(i=1,2,3) denotes such relative displacements between solid and fluid, averaged over the face of the

solid skeleton, given by

V\(:%:n(q ~y) (4.3)

I
where A is the area normal to tligh direction. The volume of fluid moving through an area of the

skeleton normal to thieh direction,Q , is expressed as

Q=An(Y-y) (@)
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For small strains, the strain tensaﬁ,, is given by

1
€ :E(Ui,j tup;) (4.5)

where U; ; denotes derivative of solid displaceméht (i=1,2,3) and so on. The change in the

volume of fluid in a unit volume of the skeletan, is given by

E=W, (4.6)
where (,i) denote the summation, that \&f; =W+ W, ,+ W, .

Biot (Biot, 1941; Biot, 1956) has developed the formulation for coupled, solid-fluid
behavior by assuming linear elastic material behavior. For those solid (soil)- fluid (water) media
which behave nonlinearly, and may experience elastic, plastic, and creep deformations. Zienkiewicz
and Shiomi (Zienkiewicz & Shiomi, 1984; Zienkiewicz, 1982) have presented equations by
assuming incremental plasticity, which account for the nonlinear behavior. Accordingly the total
incremental stresg; is divided into two components as
do—ij = Cb-lij + d@ 4.7)

where yg | is the incremental effective stress tensiy,denotes the incremental pore water

pressure an@u- is the Kronecker delta. Similarly, the total strain increnﬁi}t,, can be expressed

as:

de; =(dg; ), +(;), (4.8)

where (dsij )0. denotes the incremental strains caused by the deformation of soil or rock grains and

skeleton due to the effective stress, z{d&ij )p denotes the strain caused by the deformations of

solid grains due to pore water pressure.

The constitutive equations for an elastic-plastic material in terms of the effective quantities

can be expressed as

do’, =GF + (4.9)
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do'=C*+ (4.10)

The first equation (4.9), is expressed in tensor notation, while the second one, eq.(4.10), is expressed
ep —

in matrix notation. HereCgi = Gy, — G where the first term relates to elastic behavior while the

second term arises from inelastic or plastic behavior. The latter is derived based on the particular
yield criterion or function chosen (e.g., conventional plasticity: von Mises, Drucker-Prager and Mohr
Coulomb) or continuous yielding (e.g. critical state and cap), and related flow rule (Desai, 2000).

The bulk elastic behavior of solid grains (skeleton) can be expressed as

d
(d&,), =Kp§, 4.11)

where K, denotes the bulk modulus of the solid grains. The substitution of equations (4.8) through

(4.11) in eq.(4.7) leads to

. d
do; = Gy dg _[%j Cya + dpd; (4.12)

S

The common terms withoufpin the last two terms can be expressed as

ep

Ci'kl _
6ij —?5“ = Géij +I3|j (4.13)

S

whereq is a scalar term. Assuming that the deviatoric partan be neglected (Zienkiewicz &
Shiomi, 1984), eq. (4.12) reduces to

do; =G c +ard (4.14)

e

For elastic materialsC§ reduces tdCjy as

Clﬁd =219, 6jl +7\dp§] & (4.15)
whered andA are Lame’s constants. Now, by using equations (4.13) and (@.1&n be deduced
as
A+(2/3 K
=123 K (4.16)
K K

where K is the bulk modulus of the soil-water mixture, which for elastoplastic material can be
derived as
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ep
k=% C}g. % (4.17)

The following four items (given below in order of importance) can influence the volume change
behavior of the mixture (Zienkiewicz, 1982):

» the increased volume due to a change in strainleg.= §;;de;; = m’e,
» the additional volume stored by compression of void due to water pressure incigpg$6:

« the additional volume stored by the compression of grains by the water pressure increase:
(1 —n)dp/K,, whereK; is the bulk modulus of skeleton

« the change in volume of the solid phase due to a change in the intergranular effective contact

1
E(Sijdoi

stresw’ =0+ §;;p : 1< L = (K/K;)(dey + dp/K;) , whereK is average bulk modulus of the

soil-water mixture anédy the total volumetric strain.

In view of the above four contributions, the volume change of the mixture, the continuum

condition, can be expressed as

,.dpn_dg;;

4.18
K, 3K (4.18)

d¢ = de, +%)(1— n)

S S

The substitution of equation (4.7) and (4.14) into the above equation leads to (Zienkiewicz &
Shiomi, 1984):

dp=Qad,, + d) (4.19)
wherea was defined previously ar@ is expressed as

_ Kst
- K+ K, (a-n)

Q (4.20)

Equation (4.14) and (4.18) can be applied for both elastic and elastic-plastic material behavior
assuming that the bulk modulus for solid grains and fluid are invariant.

If the bulk modulus for the solid grains is much higher than that for the soil skeleton, that is,

if K, >>Kthe values ofd tend to unity. Than eq.(4.14) can be expressed as
do’, =do, —d® = ¢ & (4.21)
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The above equation denotes the effective stress concept (Terzaghi, 1943; Terzaghi, 1960),
implying that the deformation of the solid skeleton is affected by the effective stress.

4.3. Equilibrium equations.

As noted before, the solid and fluid components of the mixture are coupled. Equations of
motion of fully saturated porous soil model include set of three equations: linear momentum
balance for the mixture, mass balance for the water phase and mass balance for the mixture.
Unknowns variable are three values: skeleton displacement, water displacement and water pore
pressure. According to (Zienkiewicz & Shiomi, 1984; Zienkiewicz, 1982; Biot, 1962; Shao , 1997;
Desai & Galagoda, 1989; Wathugala & Desai, 1990; Desai, 2000), those equations are given by:

1. Linear momentum balance for the soil-water mixture.

o;; +@-np.h+mb- (- Np, G- p, =0 (4.22)
where b, denotes the components of body force per unit masand u® are the displacements of

the fluid and the skeleton, respectivefiy,and Py are the densities of fluid and solid grains,

respectively.

If we substitute equations (4.2), (4.3) and (4.21) into eq.(4.22), include convective element

and assume that; is the vector of relative velocity of pore water & w;” — u;° = w,” — ), it
simplifies to
;,; P4 —p (W+ww )+pb=0 (4.23)
or
LTo — pii + p/ (W+ wVTw) + pb =0 (4.24)
where

9 45 o 9 9

0% 0x, 04
Telo 9 o 9 0 w25)

0X, 0%  0Xg
o o 2 o 92 9
i 0X4 0%, 0%,
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W1Wl,1+ WoW + WaW, 5

T .
WO W =19 WW, 1+ WpW, , + WaW, 5 o - convective vector

WWay + VW, 5+ W335
w=uf-ws=ul —u - vector of relative velocity of pore water with respect to velocity
of skeleton
w - vector of relative acceleration of pore water with respect to

acceleration of skeleton

Equation (4.23) is an extension of the linear momentum balance for the soil-water mixture
including convective vector. Overall density of the soil-water mixture is given by eq.(4.2).

2. Linear momentum balance for the water.

-p; ~R-p; F-p; (W+ wyy)/ mrp ;b=0 (4.26)
or
—Vp —R—p/its — pf (W+wVTw)/n+ p'b =0 (4.27)

whereR, represents the viscous drag forces, which assuming the Darcy seepage law, can be written

as

kR =w (4.28)

In eq.(4.28) the permeability coefficierﬁg? is used with dimensions of [lengtftime]/[mass]

which is different from the usual soil mechanics convention which has the dimension of \}é'lpcity

i.e., [length]/[time]. Their values are related k% K/p, g wherep; are the water density and

gravitational acceleration at which the permeability is measured. When thesEﬁuhi&ls,the

dimension of force.

Equation (4.26) is an extension of the linear momentum balance for the pore water

including convective componefWW, . The other components aret[p;) -is the gradient pore
water pressurep; (- is the inertia force of skeletor;W - is the inertia force of pore watddl -

is the water body forceR - is the viscous drag force.
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3. Mass balance for the mixture.

Mass balance equation for the soil-water mixture balance the flow diver§énds the

augmented storage in the pores of a unit volume of soil occurring in tifibisl storage is

composed of several before mentioned components given below in order of importance:

Adding all the storage increase contributions from eq. (4.18) together with a source term

which represents temperature changesnd a second-order term due to the change in fluid density

in the proces$1P, /p; we can finally write the flow conservation equation

W, +E, +n_p+(1_ n)—.p——K(SV+£)+&+SO:0 (4.29)
’ Kf Ks Ks Ks pf
or
K. n (1I-n K |.  no |
W, +(1‘_J€v o LN p+—+§=0 (4.30)
Ky Ke Ky KK py
The following designation is used:
1 n 1-n K n a-n
—_— =t =—+ (4.31)
Q Kf Ks KsKs Kf Ks
Given above notation, the Equation
Vvii+év +n_p+(l_ n) p__K(éV+£)+&+S0:O (429)
' Kf Ks Ks Ks pf
can be written:
W, +0§, +—p+&+'§):0 (4.32)
f
or
O'w+ame, + P+ P s =0 (4.33)

oF

The set of three governing equations for the two-phase media gathered together are as follows:
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[ 0, +(1-Mp,h +Tpb— (1-Thp, G-, Y=0
1 =P =R=p G-p (W+ww)/ rrg ;b=0 (4.34)

w, e, + 2 EEDP K Py Brog —g
* K. K K’ p

L f s s s f

4.4. Boundary and initial conditions.

Behavior of two-phase medium (skeleton and water in the pores) in dynamic analysis is
described by equations (4.23) — linear momentum balance for the soil-water mixture ; (4.26) —
linear momentum balance for the water; (4.32) — mass balance for the mixture and (4.7) —
constitutive equations. Unknowns in these equations are:

P - pore water pressure
W ={W1 W, W3}T - average velocity vector of water flow inside inside the pore with respect to
skeleton

T . .
u ={ul U, u3} - displacement vector of soil skeleton

We can divide the boundary conditions to those regarding the soil skeleton and those

regarding the pore water :

« the boundary conditions for the pore water are: known relative flow velocity with respect to
skeletorw through the boundary, and pore water pressuf¥=C on the boundary},, where
F=T,Ul,.

« the boundary conditions for the soil skeleton are: known displacanenthe boundary, and

known normal stresse =t on the boundarl; , wherel' =T, U T}.

The above information can be symbolically presented as in Fig. 4.3.

Skeleton phase Pore water phase
r=r,Ur, r=r,Ury,

t=no=t onl; p=q onl,
u=1u onl, w =W onl,
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Fig. 4.3: Boundary conditions of two phase fully saturated soil model (Wrana, 2016)
The initial conditions, similarly as the boundary conditions, can be divided into those

regarding the soil skeleton and those regarding the pore water:

« the initial conditions for the soil skeleton are: known displacement atgimét = t,) = u, and
known velocity at time,, u(t = ty) = U,.
« the initial conditions for the pore water are: known the relative flow velocity with respect to

skeleton at time,, w(t = t,) = w, and known pore water pressure at tige (t = ty) = po-

5. Solution methods. One dimensional problem of consolidation and

dynamics.

Simplified set of equations (4.23), (4.26) and (4.32) after eliminating the relative flow velocity,

body forces P =p, H=0) and implementing the following simplifications:

« omitting in equations (4.23) and (4.26) memti)pl'VYV,\g , Which is very small when related to

soil skeleton displacementor pore water pressupe

« omitting the water density changes in tifye

« omitting the effects of temperature changes in tine
can be presented as follows:

0;; ~PY —pW=0 (5.1)

—p, —R—p; U—p; W/ =0 (5.2)
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~ p —
[ HOE, +— =0 5.3
W; Q ( )

Unknowns in these equations are:

p - pore water pressure,

w ={W1 W, W T - average velocity vector of water flow inside the pore with respect to
skeleton,

u= { u,,u,, u3}T - displacement vector of soil skeleton.

The boundary conditions from Fig. 4.3 imposed on these variables complete the problem.

5.1. Comparison of fully dynamic, partly dynamic and quasi static model.

5.1.1. Fully dynamic idealization - Biot model.

For the one-dimensional case we asstpil U= U= (and1/Q=n/K, . For an
isotropic material, D is given by and for small strains the stress relation is

6=c¢"-p=De- p=Du, - p, inthe next relation we introdusg =u" whereu' is the

displacement of fluid.

From Equation (5.3) we have relatiopzﬁ(usx +U' X). Substituting this relation into the
o\ :

two remaining equations we obtain (Wrana & Pietrzak, 2013):

K K
(D+—fjusxx+—f ut  =pu+p, U (5.4)
n ’ n
K p ogw
—{u_+u" )=p P+— U+ 5.5
n( XX xx) pf n k ( )

For a periodic applied surface load= Qe®t a periodic solution arises after the dissipation

of the initial transient in the form® = U(x)e!®t, u/ =v = V(x)el®t.

With following notations
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Kt
n

= =Pt _ TRLg _ Pem =X
K_D+ﬁ’ B_p' a_kVL_ZFk’ Z_L'
where: L — depth of soil layer
D+t

VL, = p" - compression wave velocity in porous soil,

f=— - frequency of excitation,

f= % - reference frequency,

f wL . . S

N=:=om frequency ration as proportion of excitation to reference frequency, one
can obtain Biot equations in the form of
U,,+KV ,=-n*mU -n’mBv (5.6a)

2.2,
KU, +KV = -n?mBU —{m-ina}v . (5.6b)
' ‘ n

5.1.2. Partly dynamic idealization - u-p formulation.

In this case , the coupled equations of flow and deformation consider only the acceleration
of solid skeleton and not that of pore fluid. It is called u-p formulation as in this case the governing

equations can be represented only in terms of solid displacement, u and pore fluid pressure, p.

The reduced system in general form when omitting inertia forces of the fluid becomes:

O-ij,j —pq =0 (5.7)

P ~R-p 4 =0 (5.8)
+0€ +—p_0

W,i asll Q_ . (5-9)

The appropriate equation set for one-dimensional problem (5.6a) and (5.6b) , after
substituting new variables introduced in the previous section, becomes (Wrana & Pietrzak, 2013):

U,,+KV ,,=-n*m’U (5.10a)
KU ,,+KV ,, = -n*m*BU+inaV . (5.10b)
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5.1.3. Quasi static idealization - consolidation model.

If we ignore all second time derivatives, in other words all inertial terms, the equations

simplify to :

g, =0 (5.11)
—-p;,~R=0 (5.12)
W, +0($11+6p =0 (5.13)

The resulting system corresponds to quasi-static case , which is used frequently in soil
mechanics. If the phenomena is sufficiently slow the full set of equation is considerably reduced

and after similar transformations as in previous cases, we obtain :
U,, + KV,, =0, (5.14a)
KU,, + KV,, = inaV (5.14b)

We solve all the aforementioned (in 5.1.1, 5.1.2, 5.1.3) differential equations analytically

reducing them to two uncoupled differential equations of fourth order.

5.1.4. Numerical example.

The one-dimensional soil layer subjected to a periodic surface force is considered as shown
in Fig. 1. To complete the solution, boundary conditions must be apple@ ahdz=1. These

conditions are:
with z=0: pore pressurne=0, stress on external surface= q = ge'“?,

with z=1: displacement of skeletor0, displacement of fluisi=0.
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qt)=0oe'“!
VR R A
z=0 p=0 O=q

z=1 u=0 v=0
Vv

Fig. 5.1: Soil layer subjected to periodic loading

Numerical analysis is performed with typical parameters for a wide range of sands: porosity
n=1/3, coefficient K=0.973, angk=1/3. The calculations of skeleton displacement — u and fluid
displacement — v are carried out for three sets of models: FD- exact solution (Biot's model), PD- u-
p model and QS- quasi-static model. All the calculations are done using the dimengionless
parameter which is the ratio of the excitation frequency to the comparative frequency which is 10Hz

in our casey = jc—c = ﬁ . The value of 10Hz is a typical excitation for soil vibrators. There are

generally considered five valueswf 0.1, 0.8, 1.0, 1.2, 5.0. These values comply with soll

vibrators.

The three figures below (Fig. 5.2, Fig. 5.3 and Fig. 5.4) show the displacement of the
skeleton and of the fluid and also the fluid pressure for Biot's model, versus normalized depth.
There are varied values and shapes of the aforementioned unknowns for differedifferent

excitation frequency in other words).
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Fig. 5.2: Displacement
skeleton displacement u(z) of the soil skeleton
versus normalized depth
for FD analysis for five
differentn

Fig. 5.3: Displacement
of the fluid versus
normalized depth for FD
analysis for five
differentn

‘-!II
1 o &
o
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. . Fig. 5.4: General
variety of fluid pressure p(z) variation of the fluid

pressure versus
normalized depth for FD
analysis for five
differentn

The set of figures below (Fig. 5.5, Fig. 5.6 and Fig. 5.7) on the contrary, present the

comparison of the skeleton and the fluid displacement for analyzed formulations and for three
exemplaryn.

w2 ul)

Fig. 5.5: Skeleton and fluid displacement versus normalized depth for Biot's, u-p and consolidation nedel for
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09 \//g)
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Fig. 5.6: Skeleton and fluid displacement versus normalized depth for Biot's, u-p and consolidation mpdel for

0,7 0,5
u(z)
...... FD —PD - -QS V(Z)

06 | N0 e FD —PD - -Qs

Fig. 5.7: Skeleton and fluid displacement versus normalized depth for Biot's, u-p and consolidation mpdel for

Forn=>5 (Fig. 5.7) there is a different type of graph used, because it shows the oscillations
and the violent changes much better than the column graph.

When it comes to the fluid pressure, the disparity between analyzed models is also bigger
for higher frequencies as shown in Fig. 5.8 presenting the pressure as a function of depth.
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Fig. 5.8: Fluid pressure versus
normalized depth for Biot's, u-
p and consolidation model for
n=0.1, n=1 andn=5
respectively

0,03
0,025
0,02
0,015
0,01

0,005

n=5 —--FD
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The analytical study described helps us to determine the limits of applicability of the
various assumptions in the particular case of a linear one-dimensional and periodic problem. An
extrapolation of the conclusions can be made to other more realistic problems of soil mechanics
giving some quantitative basis for the recommended analysis procedure and avoiding a priori

assumptions.

The main question which is raised in the thesis is when the PD or even QS model is
sufficient and whether FD analysis is necessary to conduct. There are three main conclusions which

can be done after calculations in previous sections :

. for low excitation frequencyh(< 0.1) the three analyzed models have similar results, so

there is no point in doing expanded calculations accompanying the PD or FD idealization ;

. the influence of the fluid inertia forces is very low evernrfer 1, so it is not an error to

neglect them fon < 1 (PD idealization is sufficient) ;

. if the skeleton displacement is of main interest, it is possible to conduct the PD idealization

(which neglects the fluid inertia forces) even for relatively high excitation frequgre).

5.2. Influence of soil physical parameters on harmonic response.

5.2.1. Introduction.

The Equations (5.4) and (5.5) for the fully dynamic idealization can be written as follows (Wrana &
Pietrzak, 2013):

[D * l;n D Jusvxx +D fuf,xx = (l_ n)ps'us +np, U (5.15)
1-n s MP¢Q/. ¢ .
D, |=—u_+u' |=p, U+ u-ud 5.16
f( n XX xxj pf k ( ) ( )
where
D, = — - bulk modulus of the air-fluid mixture
n
n - porosity

and introducing the following
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D 1 D, .
X:_:B:—,C\N: — ,W=n uf—[f = Ve 'Gs:_s
D, n+(1-n)G Ps ( ) r( L) Pt

the above equations (5.14) and (5.15) become:

Lo vw= CZW((LfX]UxﬁlWxxj (5.17)

B n ‘ n -

i+ w= czw(luxﬁiwxxj (5.18)
n Kk n - n -

The above equations (5.16), (5.17) present the transfer of energy between solid and fluid phases,
which result from the viscous forces of interaction between the solid and fluid phases. Biot showed

that the energy dissipation per unit volume is :

E, = 05521 ()’ (5.19)
f

5.2.2. Steady state response of the Biot column.

5.2.2.1. Analytical solution.

The Biot column (Fig. 5.9) is fixed and undrained at the botterh)(but it is free to
displace and drained at the tog@). It is subjected to normal, harmonic pressure at the top having

the angular frequenay.

Solutions of the steady state response of the Biot column are written in the form:
u(x,t) = U(x)elwt (5.20)

w(x, t) = W(x)el®t (5.21)
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{24

q() = ope’ /& g % {J(O,z):o-oefm

x=0 (0.9)=0

u(L,t)=0
E & _Al {W(L,I) =0
Fig. 5.9: Geometry and boundary conditions of the Biot column
wherei = v/—1 andU(x) andW(x)are
U(x) = Ae™* (5.22)
W (x) = Be?*, (5.23)

When substituting them into the equation of energy transfer (5.17) and (5.18) between solid and
fluid we obtain (Bardet, 1995)

A(wz(x+%)+%)+3(%2+1)=o (5.24)
A +1)+B(L+i-iL)=0 (5.25)
where

P =2

Cw — wave velocity in the fluid defined in section 5.2.1

A — unknown, number characterizing the wave length corresponding to the frequency
A,B —unknowns.

If we want to have a nontrivial solution, the determinant of the above equations must be equal to

zero, which gives the characteristic equation :

77



Zpt+ayp’®+b=0 (5.26)

where
_ 1,1 _2_,9/(1

a_(X+n)n+nB n lkw(n+x) (5.27a)
-1 _q1_;491

b= B 1 lkwﬁ’ (5.27b)

The above characteristic equation always has four complex roots:

—an—n%a%-4bny
P13 = i\/ ¥ (5.28a)
—an+\n%?a%-4bny
Yo = i\/ 2x 6.289
After calculating these rootkl(x) andW(x) can be found from:
U(x) = Aje?™ + A,e’2* + Aze 1% + A e™hX (5.29)
W(x) = K;AeM* + K,A,e?* + K  Aze ™% + K, A e~ 2% (5.30)
where the complex constants are:
Yia+np+g
Kl = —W (5.31:’:1)
Y3+n)+3
- _ B
K, = - 6.31h

In order to calculatd,, A,, A; andA, it is necessary to analyze the boundary solutions for the
aforementioned Biot column. As we can see in Fig. 5.9, the applied stress is harmonic with a
frequencyw and amplitudeo. The D is given and defined in Appendix 1 by (Z1.10). The boundary
conditions are :

Uo i ot

g'(0,9)=0,e” - u,, =—-2¢

"D
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o
O,t :0—>W, =-=0
p(0,t) x D

uL,t)=0- U(L)=0

w(lL,t)=0- W(L)=0 (5.32)
When substituting the formulas 0{x) andW(x) we have :

AjeMl + Ayetel + Aze ™Mb + A el =

A KieMt + A K e?2l + AsKe ™Mb + A Ke 2k = 0

O
All’{l + Azl’{z - A3/11 - A4-A‘2 = EO

0o

AlKll’{l + Asz}{z + A3K1A,1 + A4K2/12 = _F (533)

After solving this set of equations we obtain:

Loy, K,+1 1
D (K, — K;)A L1 + e2Ml

A1=

Loy K +1 1
27D (K — Ky)A,L 1 + e242l

A3 = _AleZ/llL
Ay = —A,e?t2l (5.34)

As a consequence the amplitud¢x) of the solid phase displacemei(x,t) is

U=t 1 ((K2 +1)sinh, (x— L)] _ (K, +1)sinhp, &L )]j (5.35)

D K,-K, A,Lcoshp,L] A,Lcosh]p,L]

and the amplitudgy ( x) of the solid phase displacemev(kt) is

W(x) = Lo, 1 (Kl(Kz + Dsinh[A,(x - L)] _ K, (K, + 1)sinh[A,(x - L)]J (5.36)

D K,-K, A,Lcosh[A,L] A,Lcosh[A,L]

Knowing the expression for change in the fluid pressure and the meaning of relative displacement

we can write :
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ow

o) (5.37)

_ Dy du
Ap T n (Bx +
For harmonic solutions, the above becomes

Ap(x,t) = DTf (Z—Z + Z—Z) e'@t = AP(x)e'®t (5.38)

If we substitute into the above expression the formuldyfandwW(x) , we obtain:

AP(x) = 0, K+ DK, + 1) cosh[A(x—L)] _cosh[A,(x—-L)] | (5.39)
ny K, - K, cosh[A, L] cosh[A,L]

5.2.2.2. Variations of parameters.

In order to make the calculations more clear, it is appropriate to introduce the dimensionless circular

frequencyA and dimensionless permeabilKy:

A= C;’_L (5.40)
0
_ gL
K= P (5.41)
where

Co = Cy /,8()( +) (5.42)

In terms ofA andK eq.(5.26a), (5.26b) becomes

1\ 1 1 2 LK (1
a=(x+3)r+mr-in(i+7) (5.432)
1 K1
b _ﬁ_l _lZE (5-42b)

As a consequence the analytical solutiondfow and AP depend on five dimensionless
parametersn, B, ¢, A andK which depend on soil properties G, k andD , the water properties

Sandp, the geometry, and the circular frequenaey:.
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5.2.2.3. Water properties.

As it was mentioned before we take into consideration only nearly saturated soils, which consist of
the skeleton and the homogenous fluid made of water and dissolved gas. The bulk modulus of the
fluid strongly depends on the degree of saturgfidhis equal to 2200MPa f@=100%, 100MPa

for S=99.9%, 10MPa fo5=99%, 2MPa foiS=95% and 1MPa fa$=90%.

5.2.2.4. Soil properties.

The ranges of variation of typical soil properties are quite wide. The approximate values for gravel

are summarized below.

n=0.12-0.46
Gs=2.6-27
k=10-10 cm/s
D =200 MPa

The thesis does the calculations for the average coefficients. Knowing the extent of fluid bulk

modulusDs, we can summarize that the coefficikntanges from 0.1 to about 50.

5.2.3. Examples of spectral response for gravel.

5.2.3.1. Amplification factor of solid displacement.

As it was mentioned before, the Biot column is analyzed, which might be considered as a
layer of saturated soils that underlies the porous base of a structure or a piece of machinery. Its

dynamic properties are characterized by the amplitl(geof the solid phase.

L

% g(a, ¥) (5.44)

U(x)= 5

An amplification factorG(A) can be easily obtained from eq.(5.35)

G() = _ iK ((K2 -l)-\ll)_sinhp\1 x-L)] (K, +1)sinhp, k- L)]J (5.45)
,— K, ,Lcoshp,L] A,L coshp,L ]

If we are interested in the amplitudes at the top of the column, we have toxetpu@tend as a
consequence we achieve the following graphs Fig. 5.10 and Fig. 5.11 showing the variety of the
spectral response for different degrees of saturation and dimensionless permeability. The same
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relations but in three dimensions are presented in Fig. 5.16 and Fig. 5.17. Irrespective of the soil
parameters, the Biot column experiences a large dynamic amplification with very sharp peaks when
A =n/2, 31/2 and =/2. It can be deduced, tha® is a fundamental period of the column and for

these frequencies the solid phase is in resonance. The peaks gradually decrease as the degree of
saturation increases. What is more, for lower dimensionless permeability the peaks became less
attenuated and their number increase$fdi00%. Fig. 5.12 and Fig. 5.13 present a range of

variety of the same factor but versus the depth of the coluneondrdinate) for different

frequencies and permeabilities. As it was expected, the amplitudes would decrease as we go deeper

in the ground.

— 5=100% |
— 5=59%
5=95%

401

(=]
[~]
.
=
=)

10

dimensionless frequency

Fig. 5.10: Amplification factoG(A) versusA for conductivity coefficienK=50 and different degrees of saturat®n

a0f — 5=100% |
— 5=99%
5=95%
0 2 p 6 5 10
dimensionless frequency

Fig. 5.11: Amplification factoG(A) versusA for conductivity coefficienK=1 and different degrees of saturat®n

82



40 T T T T
— $=100%

&l — 5=99% |
$=95%

_60F 4

_80 L L | L
0 4 6 8 10

x [m]

L]

Fig. 5.12: Amplification factoGG(A) versus depth for conductivity coefficienkK=50 andA =1.4 and different degrees
of saturatiors

40 T T T
— 5=100%
20F — 5=99%
5=95%
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Fig. 5.13: Amplification factoGG(A) versus depth for conductivity coefficienkK=1 andA =1.4 and different degrees
of saturatiors
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Fig. 5.14: Absolute value of amplification fact®¢A) versus dimensionless frequentyor conductivity coefficient

K=50 andx=0m, and different degrees of saturat®n

Fig. 5.14 presents the absolute value ofG(® for K=1 and two different degrees of

saturation. This graph has an important physical interpretation, for ¥&0s 1 the dynamic

response becomes smaller than the static AreandG(0) = 1 for the static case). FG(0) > 1

there is always a dynamic amplification. The next Figure shows the same relation but for a different

value ofK.

100

10

1G]

0.1

0.01

3 I I

110~
-10 -5 0

dimensionless frequency

10

Fig. 5.15: Absolute value of amplification fact®(A) versus dimensionless frequentyfor conductivity coefficient

K=1 andx=0m, and different degrees of saturat®n
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dimensionless frequency

Fig. 5.16: Amplification factoG(A) versus dimensionless frequentyand|og D . for conductivity coefficienK=50
andx=0m

6 e
dimensionless frequency 8 10

Fig. 5.17: Amplification factof5(A) versus dimensionless frequentyand logDs for conductivity coefficienK=1
andx=0m
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5.2.3.2.

The velocity of the fast compressional wave is defined as :

Cy

Velocity of compressional wave.

Ccqa =
17 mmqyy)
where
D
Cy = e A
Pr
Uy

Fig. 5.18 and Fig. 5.19 show the veloaityversus dimensionless frequency for different degrees of
saturation S and K. In Fig. 5.18 the velocity strongly depends on the frequency of applied load. It

- wave velocity in the fluid

- defined in 5.2.2.1.

means that for K=50 the soil is a dispersive media, while for K=AatdFig. 5.19) the soil is an

elastic media, which on the contrary means that the applied load frequency does not affect the wave

velocity.
K=50
0 = T
g~ e e e — $=100%-
\ — - 5=90%
— -100f N
. 2
E
z T
= \\_7\7\
e} .
<% T S ———
> _200f e ]
_300 . . .
0 2 4 6 8 10
dimensionless frequency

Fig. 5.18: Velocityc; versus dimensionless frequentyor two different degrees of saturation f6r50
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Fig. 5.19: Velocityc; versus dimensionless frequentyfor two different degrees of saturation Forl

5.2.3.3. Solid phase displacement.

As we can see in Fig. 5.20 (according to eq. (5.44) and (5.45)), the amplitude is the highest
at the top of the Biot column, which is obvious, because that is the place where the extortion is

applied. As it was mentioned beforesn/2 is the column’s fundamental period and as the result the

solid phase displacement violently increases around this value. The Biot column is clamped at the
bottom, which explains the zero displacementsddOm.
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Fig. 5.20: Solid displacement versusoordinate for three different extortions for K=50

5.2.3.4. Relative displacement of the fluid.

At first it is appropriate to introduce an amplification factor for the relative displacement of

the fluid. Similarly as for the solid phase, we can write

W(x) = =26, (4,x) (5.47)
where

1 K1(K2+1) sinh[4,(x—L)]  Kp(K;+1)sinh[A;(x—L)]
Gw(4,x) = K,—Kq ( AqLcosh(A{L) AzLcosh(Ayr) ) (5.48)
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Fig. 5.21 Amplification factorGw(A) versusA for conductivity coefficienkK=50 and three different degrees of
saturatiors

log Gw

|
[
L
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dimensionless frequency

Fig. 5.22:Amplification factoGw(A) versusA and logDr) for conductivity coefficienK=50

Fig. 5.23 shows the variation of an amplitMix) versusA for various values df andS.

The relative displacemekt(x) is more chaotic thed(x). There are local drops and pickups. For
S=99% and lesdM(x) for the resonance frequency is about ten times bigger from other amplitudes.
This occurrence does not happen for fully saturated soils contrary to solid displacement, where the
differences of the displacements for the resonance frequencies and the remaining ones are

substantial. For the static cage=0) the relative displacement is the biggest, which means that

fluid damping is considerable.
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Fig. 5.23: Fluid relative displacement versus
coordinate for four different extortionsand
for variousK andS
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5.2.3.5. Amplitude of the pore pres

sure.

We apply the same approach as previously. We can write :

_ %
AP = 22 Gap(8,%)
where
_ (K1+1)(Kp+1) cosh[Ay (x—1)]  cosh[A,(x—1)]
Gap(4, %) = K,—K, ( cosh[A,L] cosh[A,L] )
K=50 x=1m
20! T T T .
}14 | — 5=100%
jl Fi /—- 5=99%
T it | -2\ -7 -~ 5=95%
s ; e "\ 5
' }// v (f 7Y /_/'
-10ff Y \‘./ \\._/_,; 4
=y ) \
= | R il
= \
5 -2 /\ " .
o \ = N\
> \\ /
_40 \\// \ i
-55F 1
7% 2 s 6 s 10
dimensionless frequency
K=1 Xx=1m
% L —— $=100%
\ i — - 5=99%
5 ;'11 2 oot n\x ST - 5=95%
72l e Gl O e e et
| ST N A \ﬂ//‘ ]
. -10 8N / /\ ‘i/
o) i
= b N/_// \ / \\
a -2 "} 5
CR A \
\f\/\f
T A 4
_55[\/ 1
% 2 s 6 s 10
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(5.49)

(5.50)

Fig. 5.24: Amplification factor Gu(A)
versusA for two different conductivity

coefficients and fok=1m for different
degrees of saturatid®
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Fig. 5.24 presents an amplification facty, versus dimensionless frequency. The above

graph is for a deptk=1m, because for=0m, as it is expected, the fluid pressure is equal to zero.
Water can freely drain from the soil. It is noticeable that for high permeability, the amplification
factor has lots of local drops and pickups. As shown in Fig. 5.25 the water pressure is quite

turbulent for high permeability, while it increases evenly with depth for lower permeabilities.
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Fig. 5.25: Pore pressure amplitude versasordinate for four different extortions and variguandS

As we can see in Fig. 5.26, for fully saturated gravels at the fundamental frequency, the

water pressure is much higher than in nearly saturated soils.

K=50 A:W/Z
- 106 I ' T T
— 5=100% [T
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/]
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Fig. 5.26: Pore pressure amplitude versasordinate fokK=1 andA=r/2 and for variousS
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5.2.4. Conclusions.

The chapter included the analytical solution of the harmonic response of a column made of
nearly and fully-saturated poroelastic materials using the Biot’s theory. The study revealed the
relative influence of the degree of saturation, permeability, and matrix rigidity on the fundamental
period , the maximum amplitude and the dissipated energy. Parameters used in the article concern

gravels. In the future work it is needed to find the solution for an undrained case, which is clay.

As it was proved in previous sections, the water diffusion plays an important role in the
dynamic behavior of nearly and fully-saturated gravels, which vary from undar@pet) ({o

overdamped @|<<1) depending on the degree of saturation.

6. Solution methods. Two dimensional problem of consolidation and

dynamics.

6.1. Basic equations.

For the two dimensional problem the partly dynamic idealizatidad formulation) is
applied described in Section (5.1.2). Simplified set of equations (4.24), (4.27) and (4.33)

eliminating the members of relative veloaityof pore water with respect to skeleton.
The following simplification in the equations used:

+ omitted in equations (4.24) and (4.27) memidet wV'w = 0, as small with respect i = u

— displacement of skeleton and with respegttopore water pressure.
e assumed the linear Darcy seepagek®n= w,
« omitted the water density changes in tirrfe,= 0,
« omitted the effects of temperature changes in fgre 0.
Equation (4.24) takes the form

LT6 —pus+pb =0 n (6.1)

wherelL is the differential operator defined in Appendix 1.
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From the eq.(4.27) determine the foRe= —Vp — p/ii* + pb = 0, hence Darcy seepage
law can be written akR = k(—Vp — p/ii* + p/b) = w. Then, substituting to (4.33) received

VTk(-Vp — p/its + p/b) + amé + %p +5,=0. (6.2)

Equations (6.1) and (6.2) are dynamics consolidation equations which take into account the

inertia forcegpii*and p/ii°.

Omitting members of inertia forces we can obtained the two phase soil equations for static

consolidation problem

Lo + pb=0

VTk(-Vp + p’b) = 0. (6.3)

Initial conditions

The initial conditions for the soil skeleton are: known the displacement at tjm&t =

t,) = u; and known the velocity at timg, u’(t = t,) = u.

The initial condition for the pore water is - known the pore water pressure &t time

p(t = to) =Do-

Boundary conditions

The boundary conditions for the soil skeleton are: known the displacafmentthe

boundanyf,, and known the normal stress = t on the boundaryy, wherel' =T, UTZ

The boundary conditions for the pore water are: known the pore water pressyiren

the boundary,, and the water flow/ through the boundady}, wherel’ = T, U T}

Determined values of the boundary conditions:

» displacement of skeleton u® =u®, onl, (6.4)
e normal stresN”¢ = t, onr;}, (6.5)
* pore water pressurg = p, onl,. (6.6)
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» water flow condition

f
S—Wk(—gradpf +p'b— pfiiS)Tn =q"on I, (6.7)
whereg” — known the external water flow normal to the boundary{ni, nz, ng} " .

6.2. Weak formulation.

In case of the two-dimensional task, it is impossible to solve it analytically. The Finite
Element Method is applied for thé—p formulation. In order to discretize the momentum equation
(strong form) (6.1), (6.2), a weak form, often called a variational form or the principle of virtual
work (or virtual power) will be developed. The weak form will be used to approximate the strong
form by finite elements; solutions obtained by finite elements are approximate solutions to the

strong form.

A weak form will now be developed for the momentum equation and the traction boundary
conditions. For this purpose we define trial functiaifsif) which satisfy any displacement
boundary conditions and are smooth enough so that all derivatives in the momentum equation are
well defined. The weight functionv(p) are assumed to be smooth enough so that all of the
following steps are well defined and to vanish on the prescribed displacement boundary. The weak
form is obtained by taking the product of the momentum equation expressed in terms of the trial

function with the test function. This gives
Jo WwT(LTe —pit* +pb)dQ+ [ wT(NTe —t)dl, =0 (6.8)

where for displacement of skeleton, trial functihonce differentiable, adopted so as to satisfy the
boundary conditions (6.4) and (6.5) By, and weight functiomv satisfy vanish and prescribed

condition on boundary

W=-w narl}}. (6.9)
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Fig. 6.1. Boundary conditions of two phase fully saturated soil model, more precisely discussed in Fig. 4.3.

Use of the Green theorevj‘rq)g—“’dg = —jg—(pwdg + [@y n dI" with respect to the equation
Q X o OX r

(6.43) one can receive

— [, Aw)TedQ + [, wNTedl - [, wTpii®dQ + [, wpbdQ +

+ Jra wI'(NTe —t)dr =0 (6.10)
and after taking into account eq.(6.9) finally obtained

Jo @W)TedQ = [, wTpbdQ — [, wTpii*dQ + fFZ wTtdl' = 0. (6.11)

Now the weak formulation to mass balance equation for the soil-water mixture (6.2) is used

and to boundary condition (6.7), obtained

Jo WV [ (-9p — o + p/b)| + am™Li® + (T + 5) 5o} da +
© e e e =

where for pore pressure, trial functipntwice differentiable, adopted so as to satisfy the boundary

condition (6.6) orl},, and weight functiom* satisfy vanish and prescribed condition on boundary

(6.13)

w =0 nal;,

. . q
W= —w nal, (6.13)
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Use of the Green theorem to equation (6.12) finally obtained

. K K f.s, Kk . . T (0 a
Jo [—(Vw )T (—H—WVp - u—wpfus + u—wpfb) + w*TamTLus + w*T (aKsn + Klw) 6—7:] dQ +
+ frgw*TZ—:dF =0 (6.14)

6.3. Finite Element Method formulation.

6.3.1. FEM discretization.

FEM discretization was used, for the skeleton displacement the following approximation

was introduced

u® = N*u (6.15)

and for pore water pressure

ps = NPp (6.16)

Similarly, in place of the weight functiom the shape functioN* used, and in place of

weight functionrw™ the shape functioN? introduced.
Discretization of the linear momentum balance for the soil-water mixture

After implementation of the above approximation functions, the Equation (4.24) can be

written:

Jy(NT LTedQ — [ (N*)T pN¥itdQ + [ (N*)7 pbdQ2 = 0. (6.17)

l—y—l

Green theorem

After transformations we obtain

Jo N 6dQ + [ [ p(N)T N*dQ]it = [ p(N*) bdQ + [ p(N*)T tdT; (6.18)
\ J t J

M )

When introducing the differential operator:
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B = LN“ (6.19)

one can receive :

Mii + [ B" 6dQ = f() (6.20)
where

o - total stress defined by eq.(4.7) or similarly:

¢ =c+am’p (6.21)

when using it, one can obtain:

Mii + [ (B ¢’ — B am™p)dQ = f*) (6.22)
Mii + [ B” ¢'dQ — [, (B"am™N?)dQp = f) (6.23)
| Y J
Q

In case of small straints’ = D(Bdu — d&®) and neglecting all the thermal strains the

above equation can be written in a form:

Mii + [/ B" DBdQ]u — Qp = () (6.24)
K

Eventually :

Mii + Ku— Qp = f® (6.25)

where:

M= [,p(N*)" N*dQ — mass matrix,

K= fQ BT DBdQ — stiffness matrix,

Q = [,(B"am"NP)dQ — water coupling matrix

The mass matriM and the stiffness matrik are symmetrical because of chosen weight

functions. Unfortunately the water coupling ma@xproved to be asymmetrical.
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Discretization of the linear momentum balance for the water including mass balance for the

mixture

Equation (6.2) if neglecting the ii* term and the term representing the temperature

changes, , as being negligible for the thesis’ purpose, and implementing the differential operator

(6.19):

V'k(=Vp + p/b) + am”a + 3 = 0.

(6.26)

Similarly, after introduction into eq.(6.26) the shape functions (6.16) in place of weight

functions and integration over tlearea, received

JoONPYTVTKR(=Vp + prb)dQ + [ (NP)T amLudQ + fQ(N”)T%dQ =0

After further transformations :

H qQ
A |
LI 1
[ f (VNP)TK(VNP)dQ|p + f (NP)T amTLN*dQ |0 +
Q Q
MTINP4QIH = £
+UQ(N ) vQ N dQ]p f
S

where
f@ = [ (NP)TVT(kpsb)dQ + frw(Np)T qdr,, .
Finally:
Q"u+Hp+Sp=f®
where:
H= fQ(VNp)T k(VNP)dQ — water permeability matrix;
S= fQ(N?’)T%NPdQ — compressibility matrix

Again all of the matrices are symmetrical exo@pt

(6.27)

(6.28)

(6.29)

(6.30)
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6.3.2. FEM set of equations.

6.3.2.1. Partly dynamic formulation.

Full set of Finite Element Method equations, called Partly Dynamic Formulatiorp(or

formulation), regarding the aforementioned matrices is as follows:
M O0jfu 0 O]f[a K—Qu_f(l)]
[0 ollsl*lor sllsl+[o wllel=[fe (6:31)
The unknowns are:

. pore water pressugeand rate of change of the pore water presgure

. soil skeleton displacements velocitiesu and accelerationis

Most of the literature, for example (Zienkiewicz & Shiomi, 1984) and (Smith & Giriffiths,

2006), omit the water compressibility matBxas beingrrelevant, see eq.(6.32).

o ollsl*lor olll+[o Wbl [fe) (62

This thesis examines the influence of this matrix on the displacements and pore water
pressure. The matrix is responsible for storage increase. It describes the energy storage and it is

associated with water compressibility.

o ollsl*lor sllsl*[0 Wbl =[5
T e e

dynamic part consolidation part static part

B~ porous disk

Harmonic Loading Consolidation

Fig. 6.2: Components of the FEM set of equations if harmonic loading is applied

6.3.2.2.  Partly dynamic formulation without consolidation.

Consolidation is a process by which soil decreases in volume (Fig. 6.2). According to Karl

von Terzaghi consolidation is any process which involves a decrease in water content of saturated
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soil without replacement of water by air. In general it is the process in which reduction in volume
takes place by expulsion of water under long term static loads. When this occurs in soil that is
saturated with water, water will be squeezed out of the soil. If we analyze the fast short-term period,

the consolidation part from eq.(6.31) can be omitted.

In case of harmonic loading we can predict the solution of the FEM set of equation in the

following form

£ ®)

[u(t)] _ [Ilﬂ piot, [u(t)] . [Ilﬂ piot [;Eg = 2 [Ilﬂ piot, o0

p(®) p(®)

D1 .
_ [E(Z) et (6.33)

Equation (6.31) omitting the consolidation term can be expressed:
M 07fi K —-Qimuy _ [f®
o o [ﬁ]+[0 i lpl _[f@)] (6.34)
and after introducing the relations (6.33):

orls oI+l Whlel=[5e) (6:35)

The above approach allows for the omission of integration over time domain. The results obtained

are for a specific frequency only.

6.3.2.3. Partly dynamic formulation - omitting the change of water pressure with

time.

It was mentioned in the previous section, thatwater compressibility matri® is sometimes
omitted (Zienkiewicz & Shiomi, 1984). This approach excludes the change of water pressure with
time, in other words, the significant part of storage increase terms are excluded from the equations. It

is then possible to eliminate the pore water pregsasefollows:
From the second eq.(6.31) we obtain:

QTu + Hp = f®

p=H1(f?-QTa) (6.36)
Afterwards we put this formula into the first eq.(6.31):

Mii + Ku — (-QH'QTa) — QH @ = f® (6.37)
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or  Mii+QH 'QTu+Ku=f® +QH1f®? (6.38)

The above formula is relatively easy, symmetric and valid for both linear and nonlinear
cases. What is most important is that it outlines a very relevant fluid parameter, which is damping.

Unfortunately this approach is problematic. The inverse ofithaatrix or the solution of the

equationH~1f?) needs to be calculated.

Regarding the harmonic loading, the eq.(6.38) can be written in this form:
{—w?M + iwQH™ QT + K}u = F® + QH 1F® | (6.39)
6.3.2.4. Set of equations for the consolidation model.

If dynamic loading is slow enough, it can be assumed that quasi static formulation (the
consolidation model in other words) is sufficient. Unfortunately the boundary is not very clear and

its range is planned to be estimated in a future study.

The Finite Element Method set of equations for the consolidation model (all inertia forces

are omitted) are as follows:

0 O]fu K_Qu_f(l)]
[QT S] [p] + [0 H ] [p] B [f@) (6.40)
In Section 6.3.3 the comparison of some of the above formulations can be found in
numerical examples. In Appendix 1 all the matrices introduced above are presented in a more

detailed way for an eight-node Serendipity quadrilateral finite element in a plane strain

condition.

6.3.3. Examples for individual formulations.

6.3.3.1. Introduction.

The example presented in this section is a limited region of the plane strain elastic model as
shown in Fig. 6.4. The eight node Serendipity finite element is introduced for the skeleton, which is
a higher order element with only exterior nodes. For the pore water pressure the four node

Lagrangian finite element is used (Fig. 6.4).
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RN

Y

?‘- ? gsinwt

Elements =5
Nodes =28
DOF =56

Elements =5
Nodes =12
DOF =12

—
—
—
—

B - pore pressure equal to zero

. normal derivative equal to zero

pore water

7\ 7 A

= i 4 3
p=0 i .6 o5 p i 3
6p/6n=0

:( £
8 4l 3
1 T i il
i -1(2 3 3 -1 2
skeleton displacements pore pressure

Fig. 6.3: Schematic of the example — geometry and
boundary conditions for the solid skeleton and the fluid;
finite elements

Fig. 6.4: Finite elements used in the example for the
solid displacements and pore water pressure

Fig. 6.5 presents the discretized region for the
skeleton connsisting of 28 nodes. Each of the nodes can
move in botlth horizontal and vertical direction, which
implies 56 dlegrees of freedom if boundary conditions are
disregarded.]. Fig. 6.6 on the contrary shows the
discretizationn for the pore water pressure. This time the four
node finite eelement is introduced. Each of the node has only
one degree o of freedom (which is pressure), which implies

12x1=12 deegrees of freedom if not considering the
boundary cconditions.

Fig. 6.5: The rregion after discretization (skeleton) consisting of 5
elements, haviving 28 nodes and 56 degrees of freedom

Fig. 6.6: The rregion after discretization (fluid in the pores) consisting of
5 elements, haiaving 13 nodes and 12 degrees of freedom

Generally tthe results in the following sections are presented
for two types of soil — clay and sand, which parameters’ are
shown in T¢able 6.1. The harmonic loading with various

frequenciesSv is applied at the top with an amplitude of

q=100kN.

104



SOIL TYPE 1 -CLAY | SOIL TYPE 2 -SAND
IL/Ip 0,2 0,5
Modulus of Elasticity E [MPa] 25 80
Poisson Ratio 1/ 0,37 0,25
porosity n 0,35 0,35
permeability coefficient k [m/s] 107(-10) 107 (-4)
Biot constant Q [GPa] 6,2 6,7
density o [kg/m”3] 2000 2000

Table 6.1 Soil parameters used in the computational examples.

In order to make it more clear and precise, all the formulations from Section 6.3.2 are

named:

lor sllsl+ 6 W=

51+l bl =[fe)

[0 ollsl+lor sIll+lo Wil =[fe
[0 ollsl*lor ollsl+[o Wllbl=[fe

6.3.3.2.

Model 1 (Equation 6.40)

Model 2 (Equation 6.34)

Model 3 (Equation 6.31)

Model 4 (Equation 6.32)

Comparison of partly dynamic idealization including and omitting the

change of water pressure with time.

Hereunder, the results of the Model 3 and Model 4 - equations (6.31) and (6.32) are
presented and compared. Model 4, which omits the change of water pressure with time, is the
simplified version of Model 3, which is equivalent to eliminating the compressibility nSafrom
eq.(6.30). Direct numerical integration of the equations over time is introduced, which means, that
integration step-by-step is performing, where the word "direct" means that there is no
transformation of the equation of motion. The Humethod, proposed by Hilbert, Hughes and

Taylor in 1977, is used with theparameter equal to zero (Lacoma & Romero, 2007).
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Fig. 6.7: The results for soil Type 1, including compressibility m&ifior the excitation frequency equal to 20Hz a) load
multiplier b) displacementyu[m] c) effective stress’y, vs. pressure and total stress [Pa] d) effective stra§s, vs.
pressure and total stress [Pa]
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Fig. 6.8: The results for soil Type 1, omitting compressibility maiar the excitation frequency equal to 20Hz a) load
multiplier b) displacementym] c) effective strese’,, vs. pressure and total stress [Pa] d) effective stre§s, vs.
pressure and total stress [Pa]

The calculations are done for soil Type 1 and soil Type 2 from Table 6.1. At first, the study
concentrates on soil Type 1 (clay). The excitation has two exemplary frequencies — 20Hz and 40Hz.
The graphs below (from Fig. 6.7 to Fig. 6.13) present the nature of loading applied at the top of the
area, the displacements, effective stresses, pressure and finally total stresses for the exemplary point

shown in green in Fig. 6.5 and Fig. 6.6., where time is on x- axis.

displacement uy

a) | b) |
-3 -3 |
x <10
! |
0 | 0 i
— I [
5 ! : > 5 >
0 0.02 0.04 0.06' t[s] © 0.02 0.04 0.061 " t[s]

Fig. 6.9: The comparison of displacement$na] for soil Type 1 for excitation frequency equal to 20Hz a) including
compressibility matrixS b) omitting compressibility matri$

a)
) <105 l
0} /ifit\>>< _
2 l
0 0.02

pressure p

effective stress G 'x

total stress Oxx

Fig. 6.10: The comparison of effective stress, vs. pressurg and total stress [Pa] for soil Type 1 for excitation
frequency equal to 20Hz a) including compressibility ma@® omitting compressibility matris
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o 0.02 0.04 0.06

pressure p

effective stress o'yy

total stress oy

Fig. 6.11: The comparison of effective stregs vs. pressurg and total stress [Pa] for soil Type 1 for excitation
frequency equal to 20Hz a) including compressibility mai® omitting compressibility matri$

As we can see in Fig. 6.9 the compressibility matrix, which involves the change of water
pressure with time, has a huge impact on the displacements. If we include it in our equations, the
settlements are much higher (over ten times). However, for the pore water pressure, the values are
smaller, whereas the effective stress in the skeleton is higher. For the Model 4 on the contrary, the
vertical effective stress',,, (for the analyzed short time interval) is close to zero, see Fig. 6.11b

and Fig. 6.16b. The total applied at the top stress is carried by pore water.

All of the aforementioned tendencies can be observed for higher frequencies, but the
proportional relationship between the effective stress and the pressure in Fig. 6.15 and Fig. 6.16 is

even higher.

What is also worth mentioning here is, if we omit the change of water pressure with time,
values of the horizontal total strass, are higher for both lower (Fig. 6.10) and higher frequencies
(Fig. 6.15).
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Fig. 6.13: The results for soil Type 1, omitting compressibility m&ior the excitation frequency equal to 40Hz a) load
multiplier b) displacementym] c) effective stress,, vs. pressurg and total stress [Pa] d) effective stregs vs.
pressureo and total stress [Pa]
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Fig. 6.14: The comparison of displacementfn for soil Type 1 for excitation frequency equal to 40Hz a) including
compressibility matriX8 b) omitting compressibility matri$
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Fig. 6.15: The comparison of effective stress, vs. pressurp and total stress [Pa] for soil Type 1 for excitation
frequency equal to 40Hz a) including compressibility ma&i® omitting compressibility matri$
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Fig. 6.16: The comparison of effective stre§g, vs. pressurg and total stress [Pa] for soil Type 1 for excitation
frequency equal to 40Hz a) including compressibility mai® omitting compressibility matri$
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The same calculations were done for soil Type 2 (medium sand). The outcomes are

presented in Fig. 6.17 through Fig. 6.23. There are two relevant differences between the results for

two types of analyzed soils. Firstly, the pressure for the Model 3 in Fig. 6.21a) and Fig. 6.26a) is

almost equal to zero for soil Type 2 if compared relatively with the vertical effective stress.
Secondly, this time not only pore water, but also the skeleton takes part in carrying the applied

loading for Model 4. The vertical effective stres’,, in Fig. 6.21b) and Fig. 6.26b) is definitely

different from zero.

load history
a) 1 T >
0% -
A | | | 5
0 0.05 0.1 0.15 0.2
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4l 1 L | i
0 0.05 0.1 0.15 0.2
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0.15 0.2

- pressure

effective stress
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Fig. 6.17: The results for soil Type 2, including compressibility m&for the excitation frequency equal to 20Hz a)
load multiplier b) displacement, {m] c) effective stress,, vs. pressurg and total stress [Pa] d) effective stress

vs. pressure and total stress [Pa]
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Fig. 6.18: The results for soil Type 2, omitting compressibility m&ifior the excitation frequency equal to 20Hz a) load
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pressureg and total stress [Pa]
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Fig. 6.19: The comparison of displacementfn for soil Type 2 for excitation frequency equal to 20Hz a) including
compressibility matribXS b) omitting compressibility matri$
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Fig. 6.20: The comparison of effective streSs, vs. pressurp and total stress [Pa] for soil Type 2 for excitation
frequency equal to 20Hz a) including compressibility mé&i® disregarding compressibility matr$«
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Fig. 6.21: The comparison of effective stre§s, vs. pressurg and total stress [Pa] for soil Type 2 for excitation
frequency equal to 20Hz a) omitting compressibility me®b) disregarding compressibility matr$
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Fig. 6.22: The results for soil Type 2, including compressibility m&for the excitation frequency equal to 40Hz a)
load multiplier b) displacement, {m] c) effective stress,, vs. pressurg and total stress [Pa] d) effective stress
vs. pressure and total stress [Pa]
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Fig. 6.23: The results for soil Type 2, omitting compressibility m&ifior the excitation frequency equal to 40Hz a) load
multiplier b) displacementym] c) effective stress,, vs. pressure and total stress [Pa] d) effective strags vs.
pressure and total stress [Pa]
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Fig. 6.24: The comparison of displacementfmw] for soil Type 2 for excitation frequency equal to 40Hz a) including
compressibility matriX8 b) omitting compressibility matri$
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Fig. 6.25: The comparison of effective stress, vs. pressurg and total stress [Pa] for soil Type 2 for excitation
frequency equal to 40Hz a) including compressibility ma&i® omitting compressibility matri$
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Fig. 6.26: The comparison of effective stre§g, vs. pressurg and total stress [Pa] for soil Type 2 for excitation
frequency equal to 40Hz a) including compressibility mé&i® disregarding compressibility matr$

115



6.3.3.3. Comparison of partly dynamic formulation with and without consolidation

part.

The Equation including the consolidation part (Model 3 — eq.(6.31)) and the one omitting it
(Model 2 — eq.(6.34)) are hereunder discussed and compared. Additionally Model 4, which assumes
the water being stiff and uncompressible, is also compared in the figures, but only for the Soil Type
2 (medium sand). Regarding Soil Type 1 (clay), the comparison can be done analogously when
analyzing the figures in Section 6.3.3.2. Only a short-term period is analyzed. The purpose of this
section is to estimate if the consolidation part does have any impact on the results even if a long-

term period is not considered.

The results from Model 2 are the individual values (the displacement or the total stresses in
both directions) for the specified value of the frequency. In accordance with the set of equations
(6.34), as there is no loading applied to the pore water, the fluid pressure is equal to zero. The
figures below (Fig. 6.27 through Fig. 6.29) show the comparison of the values which resulted from
Model 2 and the extreme values which resulted from Model 3 and 4 for the medium sand (soil Type
2 from Table 6.1).

Comparison of displacement uy [mm] for Model 2, Model 3 and Model 4
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Fig. 6.27: The comparison of Soil Type 2 displacements for the sample point for four arbitrarily chosen frequencies -
10,20,30 and 40Hz, for three analyzed models.
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Comparison of stress oxx [Pa] for Model 2, Model 3 and Model 4
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Fig. 6.28: The comparison of Soil Type 2 stresses in the horizontal direction for the sample point for four arbitrarily
chosen frequencies -10,20,30 and 40Hz, for three analyzed models.
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Fig. 6.29: The comparison of Soil Type 2 stresses in the vertical direction for the sample point for four arbitrarily chosen
frequencies -10,20,30 and 40Hz, for three analyzed models.

In Fig. 6.27 the displacements of the point shown in green in Fig. 6.5 are compared for four
arbitrarily chosen frequencies. The results from Model 2 are shown in blue, the results from Model
3 are shown in orange, and results from Model 4 are shown in grey . As we can see Model 3 is the

most vulnerable to frequency increase. The values of the displacement for this model grow faster
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with the frequency. Model 4 on the contrary, which reflects the uncompressible skeleton, is almost
frequency independent and the displacements are not only much smaller but also do not react
dynamically. The confirmation of this conclusion is in Fig. 6.29 which shows the stresses in the
vertical axis (the external load direction). It can be seen that the effective stress for Model 4 is much
smaller, if compared with other models, and almost does not change with the growing frequency.

The total stress is also almost frequency independent.

Fig. 6.28 presents the comparison of the stresses in the horizontal disgction
(perpendicular to the external harmonic loading). For Model 3 and 4 not only the total stress, but
also the effective stress is presented. As it was mentioned before, for Model 2, there is only one
type of stress shown in blue in the figure. Since the applied loading is in the opgadittection,
the effective stresses,, hardly change with the increasing frequency. Only the water pressure
reacts, which has its reflection in the form of the growing total streggder both Model 3 and 4.
This phenomenon does not occur in the veryiaditection (Fig. 6.29), where both tota},, and
effective stress’,,,, increase with the growing frequency except for the frequency-independent

Model 4.

To sum up it can be observed that there are noticeable differences in displacements and
stresses between the models. The differences between Model 2 and 3 can also be seen for Soil Type
1 (clay) in Fig. 6.30, Fig. 6.31 and Fig. 6.32. One should be aware that the single phase model
(Model 2) implies an apparent difference in the results.
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Comparison of displacement uy [mm] for Model 2 and Model 3
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Fig. 6.30: The comparison of Soil Type 1 displacements for the sample point for four arbitrarily chosen frequencies -
10,20,30 and 40Hz, for two analyzed models.

Comparison of stress oxx [Pa] for Model 2 and Model 3
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Fig. 6.31: The comparison of Soil Type 1 stresses in the vertical direction for the sample point for four arbitrarily chosen
frequencies -10,20,30 and 40Hz, for two analyzed models.
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Comparison of stress oyy [Pa] for Model 2 and Model 3
250000

213000

200000

164970

150000

152000
135410

©
=3
m
$ 120500 Model 2
a
o; 102950 Model 3 total stress
100000 114910 Model 3 effective stress
102100
82000
69200
50000 44000
29300
0
0 5 10 15 20 25 30 35 40 45

frequency [Hz]

Fig. 6.32: The comparison of Soil Type 1 stresses in the vertical direction for the sample point for four arbitrarily chosen
frequencies -10,20,30 and 40Hz, for two analyzed models.

7. Conclusions and future development plans.

7.1. Conclusions.

The analysis portion of the thesis is divided into two parts. The first part of the thesis
(Chapter 5) concerns the one dimensional problem, whereas the second part (Chapter 6) refers to
the two dimensional problem, for two-phase media under harmonic loading. The objectives for each
part are defined in Section 1.2.

The first objective (A.1) for the one dimensional problem was to define the three possible
formulations for two phase media - fully dynamic, partly dynamic, and quasi-static. After deriving
the equations, the author moved forward to the second objective (A.2) for one dimensional problem,
which was the comparison of the abovementioned models. The discrepancies between the different
models vary depending on the excitation frequency and soil parameters. The dissertation proposed
the limits of validity for each model in Section 5.1.4. The last (third) objective for the one

dimensional problem (A.3) was to examine the influence of the physical parameters and degree of
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saturation on the fundamental period, the maximum amplitude and dissipated energy. The evident

dependence of these parameters can be seen on all desired results.

Regarding the two dimensional problem, firstly, the possible simplifications were
introduced and implemented into the Finite Element Method , than presented in Section 6.3.3.1.
This was a prelude to the second objective of the thesis (B.3), which was the comparison of the u-p
model including (Model 3) and omitting the change of water pressure with time (Model 4). It was
observed that the compressibility matrix does have a significant influence on the results, especially
on the displacements, which are over ten times higher if incorporating the compressibility of the
fluid. It can be deduced that Model 4 is not appropriate for the short-term period dynamic analysis.
The last but not least (B.3) objective was to highlight the divergences of the very common single
phase model (Model 2) with the two phase model including the compressibility term (Model 3). The
strong influence of the frequency was noticed in the results. The higher the frequencies, the bigger
differences between the models can be observed. Additionally in Section 6.3.3.3 the comparison of
Model 4 with already discussed Model 2 and 3, for Soil Type 2, (sand) was done. It revealed that

Model 4 is almost frequency independent and should be avoided in dynamic analysis.

To sum up, the main goal of the thesis was to show the influence of inertia forces on the
amplitude of soil displacement, velocity, and acceleration when exposed to harmonic loading. An
inertia force in soil for the two-phase media model, is the product of mass (skeleton or water) and
acceleration (skeleton or water respectively). Consequently, the magnitude of inertia forces is

affected by mass or acceleration change.

For the one dimensional case the comparison of the FD model, where all the inertia forces
are included, with a simplified model was presented. This is the PD model, where water inertia
forces are excluded from the equations. Additionally, the above results were compared with the
consolidation model. The results presented proved the increasing divergence between the models

with the increasing frequency of extortion.

For the two dimensional case, the influence of the inertia forces was also investigated.
Similarly, the results proved the significant impact of the inertia forces. The comparison revealed
significant differences in skeleton acceleration and pore water pressure results with the constant

skeleton mass. A detailed analysis for the two dimensional case can be found in Chapter 6.
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7.2. Future research plans.

The thesis concentrated on linear elastic material. Hooke's Law for the effective stress is
defined by eq.(4.21). This approach is reasonable if we encounter small strains when designing
turbine, pump or ventilator foundations. Unfortunately, it will not be adequate when analyzing, for
example, the process of pile driving or impact loading, where the strain is relatively high. Then it is
necessary to apply the nonlinear stress-strain relations, which is obviously a topic of research for the

future.

In the thesis, the one and two dimensional problems were analyzed using adequately
analytical solutions for the former and finite element method implementation for the latter. Firstly, a
future study will widen the problem to three dimensions. Moreover, the nonlinear stress-strain

relationships will be introduced.

In the study only short-term intervals were analyzed. This is the reason why the
consolidation process itself was not deeply considered. It needs much more time for the water to be
squeezed out of the soil. For clay soil this activity can take up to a few years. The purpose of a
future study will be a profound investigation of the consolidation process. The soil settlements will
be compared using two models. The first model will be a pure long-term consolidation, whereas the
second model will additionally consider the harmonic loading at the first stage of the process. The
initial dynamic loading can possibly shorten the consolidation mechanism and therefore it may have

a significant impact on the construction industry.
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APPENDIX 1

Finite Element Method Matrices for the Plane Strain Condition.

The finite elements used for the soil skeleton and the pore water pressure in the thesis are
presented in Fig. 6.4.

Soil skeleton displacements in both the horizondatlirection and verticalyj direction are

as follows:
U (§,1m) = Ni'tlyg + N3'tyy + N3tz + Nyl +

+N s + Ny + Nty + Ng'tiyg (Z1.1a)
uy (§,m) = N{'tyq + N3' iy, + N3'tly3 + Ni'tiy, +

+N3'tlys + Ng'ilye + Nj‘tly; + Ngilyg (Z1.2a)

where the shape functions :

N =2(1-HA-M(E—n—1) (Z1.3a)
Ny =-(1-8H(1-n) (71.3b)
NE=1(1+HA-ME-n—1) (Z1.30)
Ni =21+ -1?) (21.3d)
NE =21+ +nE+7-1) (Z1.3¢)
N¢ =2 (1= &) (1+1) (21.30
N =2(1=HA+M(E+1-1) (21.39)
N¢ =2(1-6(1-n?) (z1.3h)

Pore water pressure is defined as:

p(&n) = N{py + NJpp + N3 p3 + N; Da (Z1.4)
where :
N =2(1-6(1-1) (21.52)
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NP =-(1+8)(1-n) (Z1.5b)
NP =2(1+&)(1+n) (Z1.5¢)
NP =2(1-HA+7) (21.5d)

In the equations of strong and weak formulation (eq.(6.1), (6.18) and (6.28)) the differential

operatorL, is used which has the following form far, X2, xscoordinate system:

o 0 0
)
0 a—xz 0
0 0 %
L=|, 5 3 for 3D tasks
2 2
dx, 0xq
d d
0 3%
d d
7 O oxl
d
F 0]
L=]|0 ail for 2D tasks
le
9 9
0x, Bxlj

SHAPE FUNCTION MATRIX

The shape functions in matrix notation are as written below. This notation is necessary to

derive all the finite element matrices.

[N* 0 N} O NY O Nf 0 N 0 NY O NY 0 N¢ O

N* = 0O N O N}Y 0 N} O N*Y 0 NY O N¢ 0 NY 0 Ng (21.6)
N? =[NP NP NP NP (Z1.7)
ELEMENT STIFFNESS MATRIX
The stiffness matrix for the plane strain condition is defined as:
K = [, B"DBdQ (Z21.8)

WhereB andD represent the strain-displacement and stress-strain matrices respectively:
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B = VN*

whereV=1|0

9
on

M= [ (N)TpN*dQ

(Z1.9)
[ 1 = 0
1-v
EA-v) X 1 0
a+v)(1-2v) |1~V (21.10)
0 0 1-2v
[ 2(1—v)J
ELEMENT MASS MATRIX
(z1.11)

Thep is the mass of the element per unit volume and ajfainolds the shape functions. In

further calculations, in order to make the notation clearer, the shape functions regarding the skeleton

displacements are written withawtndex. After multiplication we obtain the following matrix

ready to be integrated:

M=
N2 0
0 N2
N,N, 0
0 NN,
N;N; 0
0 NN,
N,N, 0
0 NN,
Ja N;Ns 0
0 NNg
N,Ng 0
0 NN,
NN, 0
0 NN,
N,Ng 0
0 NyNg

N, N,
NE
N,N;
N,N,
N,Ns
N, N,
N,N,

N3 Ng

N;N,
NE
N,N,
N,N,
N, Ns
N, Ng
N, N,

N3 Ng

Q = [,BTam™(N?)TdQ

wherem=[1 1 0].

NN O NN, O NN, O NN, O NN, 0 NN, 0
0 NN; O NN, O NN, O NN, O NN, 0 NN,
NNy 0 NN, O NoNs O NyNg O NN, O N,Ng 0

N2 0 NN, 0 N;Ns O NsNg O NN, O NNy O
0  N? 0 NN, O Ns;N;g O NgNg O NsN, O  NsNg
N;N, 0 N2 0 NN, O NN, O NN, O NgN, O

0 N:N, O N2 0 NsN, O NN, O N,N, O Noal o

N;qNg O NN, O NNy O N2 0 N,Ng O NgNg O

N3N, 0 NN, O NN, O NgN, O N? 0 NgN, 0O
0 NN, O NN, 0 NN, 0 NN, 0 N2 0  Ngh,
N;Ngv 0 NyNg O NgNg O NNy O N,Ng 0O Ng 0

(Z1.12)
ELEMENT WATER COUPLING MATRIX

(Z1.13)

After multiplication we obtain the following matrix [16x3]:
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[ON1 £rD
a& N
aNl Np
an
6N2 p
a& N
aNZ Np
an
aN3 Np
¢
ON3 Np
on
aN4_ 14
a& N
ONy Np

— an

Q= fn aNg Np
23
ONs Np
an
aNs 14

N;
23

ONs Np
an
6N6 p
a& N
ONe A1
an N
aNS Np
23
ONg P

L On

6N1 D
E N,
dN.
1 NP
an
BNZ p
I3 N
dN.
2 NP
an
ON3 D
23 N

%NP

on
ONs D
I3 N

6N4- Np

on
6N5 P
k3 N

%N?’

on
aNs 14
N,
9

%N?’

an
dN,
6 NP
9¢
ONe nrp
an N
ONg D
23 N

ONg \.p

6772

6N1 D
9¢ Ny
ON.

1 NP
an
BNZ p
X3 N
dN.

2 NP
an
ON.

7773 Np
¢

%N?’

on
ONs i1
(X3 N

6N4- Np

on
6N5 P
I3 N

%N?’

on
aNs 14
—=N;
23

%N?’

an

6N6 p
X3 N
ONe A1
an N
aNB Np
23

ONg . p

on

%N?’

6N4— Np

%N?’

%N?’

6N8 Np

6N1 D
a& N,
aNl Np
o
aNz p
23 N
6N2 Np
o
aN3 Np
9

on
ONy i1
(X3 N

on
ang Np aQ

9

on
3N5 14
N,
23

an

6N6 p
X3 N
ONg a1
an N
aNS Np
23

The Q matrix, in contrast to other matrices, is asymmetrical.

ELEMENT COMPRESSIBILITY MATRIX

As it was stated in Section 6.3.1 the matrix is as follows:

_ Tl
S= fQ(Nl’) aNl’dQ

After multiplication we obtain::

[NipN1p
1 |N2pN1p
B Q QlNBlep
[N4pN1p

NipNyy,
N3, Ny,
N3, Ny,
Nyp Ny,

NipN3p  NipNap)
NypNsp,  NypNay, IdQ
N3pN3p N3pN3p|
N4pN3p N4pN4pJ

(Z1.14)

(Z1.15)

(Z1.16)

where the inverse Biot const%ntaccording to (4.31), if we assume tloat= 1, is defined as:
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1_n 1-n
Q0 kf KS

K*- bulk modulus of skeleton phase in soil
K’ - — bulk modulus of fluid phase in soil.

ELEMENT PERMEABILITY MATRIX
H = [ (VNP)TKNPdQ

where

ke 0
k= [ 05 k ] - water permeability coefficients for each direction
n

an?  on? ony on?
G
N’ an? on? onT|’
o oam  an  om

VNP =

After detailed writing we finally obtain the following matrix [4x4]:

[ an? an? an? an? K an?P an? ONY Ny

| "¢ 0 2 T "M oy oy $ag o¢ ' "Mooy an |
H= | : X :

Ilk an? on? ONy ONY an? an? an? aNfJI

$ag a¢ " "Mooy oy $ag o¢ ' "Mooy oy

(Z1.17)

(Z1.18)

(z1.19)

(Z1.20)
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STRESZCZENIE
1. Wprowadzenie, motywacja oraz cele pracy naukowej
Wprowadzenie oraz motywacja

W pracy doktorskiej podejmowane jest zagadnienie dynamiki gruntow jgkodka
dwufazowego z zastosowaniem teorii mieszaniny. Réavgg zachowanie gruntu przy olgeniach
szybko zmiennych w czasie uwgdhiagc zmianepredkosci oraz zmianegorzyspieszenia. Obgienie
tego typu, to obagizenie dynamiczne, w ktdrym uwzglniana jest sita ttumienia oraz sita bezwtado

sktadnikéw mieszaniny.

W zaleznosci od stopnia doktadnek rozréinia sk trzy rodzaje modeli gruntu z uwagi na liczbe
faz w analizie dynamicznej. Modelem obecnie najdokladniejszym jest model tréjfazowy gruntu
sktadajcy sk ze szkieletu i ptynu z gazem w porach gruntu. Uadigia on ich wzajemne relacje i
Wwcigz jest rozwijany i stanowi pole badawcze w wieluaskkach naukowych. Model ten prowadzi do
ztozonego uktadu rownmaruchu co wymaga spgis obliczeniowego o def mocy. W modelu
jednofazowym wysfpuje jeden materiat gruntu, jako mieszanina o &&ngch parametrach fizycznych
i mechanicznych w kalym punkcie ofdka. Model ten stosowany jest gtownie do analizy
rozchodzenia gifal sejsmicznych i parasejsmicznych w gruncie z zad@m liniowo-spgzystego
prawa fizycznego. Model dwufazowy stosowany jest giéwnie w przypadku gruntu w petni nasyconego
wodg, np. w analizie zapér wodnych, skarp lub zboczy oraz w przypadku gruntu suchego. W
zagadnieniach propagaciji fal adbdta drga do punktu odbioru drda jakim jest budynek, najezciej
stosowany jest model jednofazowy.sldlewymagana jest analiza dngagruntu wokoét obiektu
budowlanego, to odpowiedni jest model dwufazowy. Model tréjfazowstostosowany jest w analizie

zjawisk zachodacych lokalnie.

Praca naukowa zawiera analimumeryczngodpowiedzi gruntu na ohbgiania harmoniczne
(cykliczne). W pracy rozwiany jest problem wptywu poszczegoélnych sktadnikow obhowgcych
rowna (w tym sit bezwtadnasi szkieletu i wody w porach), przy zakiu gruntu w petni nasyconego
wodg, jako osodka dwufazowego. Uwzgliniany jest wptyw deformacji szkieletu gruntowego na
zmiangcisnienia wody w porach. Problem tego rodzaju jest @&&ng, jako ,coupled problem”, gdzie
woda w porach powoduje odksztalcanie szkieletu gruntu. W rownaniu ruchuedniagse zatozenie
laminarnego (zgodnie z prawem Darcy) przeptywu wody. Ponadto, w rownaniu ruchu zaklada si
przemieszczenie, gukosé i przyspieszenie @stki wody g rézne od przemieszczenie,gdkos¢ i
przyspieszenie szkieletu. Roziaia prowadzonegsw zakresie teorii dynamicznej konsolidacji Biota
przy uwzgekdnieniu wptywu sit bezwladnad Analizowany jest przypadek jednowymiarowy

(rozwigzany analitycznie) oraz przypadek dwuwymiarowy (ecitj MES).
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Cele pracy naukowej

W pacy doktorskiej rozwane jest zagadnienie wptywu definicji poszczegoélnych faz modelu
dwufazowego gruntu, fazy szkieletu, jego bezwtddnoraz fazy ptynnej, wody, jej bezwtadio i
tlumienia drga. Praca doktorska dotyczy zagadnienia modelowania gruntu w zakresigefbci

dynamicznych. Rozwane § nastpujace sformutowania:
A) dla problemu jednowymiarowego:

1. Wplyw przygtego modelu gruntu w sformutowaniu przemieszczeniowym: a) modelu dwufazowego
doktadnegoflly dynamic FD uwzgkdniagcego przemieszczenia szkieletu, wodyshi@nie wody w
porach; b) modelu dwufazowego ugmftly dynamic PD) przemieszczenia szkieletu §cienia wody

w porach, oraz c) modelgyasi-static QF stosowanego w zagadnieniach konsolidacji gruntu, bez
udziatu bezwladnai szkieletu.

2. Przedstawienie réic wynikow trzech powsszych modeli oraz okgékenie dopuszczalnych

zakresOw zastosowikazdego a nich.

3. Analiza wptywu stopnia saturacji, parametrow fizycznychesttliwosci wymuszenia na

wspotczynnik amplifikacji drga
B) dla problemu dwuwymiarowego:

1. Okrelenie udziatu szkieletu i @mienia wody w porach w modelu u-p, oraz analiza stosowanych
obecnie uproszcagego modelu polegaiego na pomigtie zmiany cinienia w czasie na tle
powszechnie stosowanego modelu jednofazowego.

2. Przedstawienie raic wynikow obliczé komputerowych (przemieszazepredkosci i

przyspiesz#&), przy zastosowaniu wkasnego autorskiego programu komputerowegis, pomedzy
modelem u-p z uwzgtinieniem i bez uwzgtnienia cénienia w czasie.

3. Zaprezentowanie rbic w przemieszczeniach,goikosciach i przyspieszeniach pogdizy modelem

dwufazowym z powszechnie stosowanym modelem jednofazowym.

W pracy ograniczono sido analizy gruntu w zakresie matych odksztategatozenie to
stosowane jest w zagadnieniachyimzrskich, np. w dynamice gruntéw pod fundamentami maszyn.
Przedstawionegswyniki osiadania, énienia, hapgzenia gruntu na przykladzie zadania ptaskiego

stanu odksztalcenia.

Jak wspomniano wczeiej faza szkieletu i wody jest ze saawigzana. Réwnania ruchu w

petni nasyconego oddka gruntowego to uktad trzech rovirgpetniajcych trzy zasady:

- Zasada gdu mieszaniny szkieletu i wody

- Zasada gdu cieczy
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- Zasada zachowania masy przeptywu

W tych réwnaniach uwzgtinia sg: ps - gestas¢ cieczy (wody); p = np+ (1 —n); p - gestosc
catkowita; p, - gestosészkieletu p — wektor sit masowych (w ogolncisgrawitacja);n — porowatos¢
w — wektorsredniej pedkosci przeptywu wody (Darcy’ego); &—modut odksztatcenia
objetosciowego cieczy w porachy; - macierz operatorow réiczkowaniaR wektor wiskotycznej
sity oporu przeptywu zgodnie z rownanignikR = w. Macierz wspotczynnikow

wodoprzepuszczalioi k okreslona jest w jednostkach [dtugdédczas]/[masal].
Niewiadomymi dla powyszego uktadu réwness:

- przemieszczenia szkielets,
- przemieszczenia wody

- cisnienie wody w porach p.
2. Zakres pracy
Rozdziat 1 obejmuje wprowadzenie, motywagjaz cele pracy naukowej.

Rozdziat 2 pracy zawiera kroétki opis historii rozwojuamka porowatego. Wspomina

najbardziej wptywowych naukowcdw oraz przedstawia zarys trzech epok w tej dziedzinie.

Rozdziat 3 przedstawia szczegoty propagacgsmtych fal w potprzestrzeni mddka
gruntowego beacego pod wptywem obgien dynamicznych. Rozwany jest ododek jednofazowy
(szkielet), dwufazowy (szkielet i woda) oraz trojfazowy (szkielet, woda i powietrze). Rozdziat gtbwna

uwag; poswigca rownaniom fal dylatacyjnych oraz poprzecznych.

Rozdziat 4 jest wgpem do czsci obliczeniowej pracy doktorskiej. Przedstawia szczegotowy
opis obowjzujacych rowna, ktére g baz dla dalszej analizy. W ich sktad wchaddwnania
konstytutywne, rownowagi, przedstawiorerdwniez na potrzeby pracy warunki patkowe oraz

brzegowe.

Rozdziat 5 wyjania ronice medzy trzema mdiwymi sformutowaniami dla przypadku
jednowymiarowego. Oprécz roic teoretycznych, przedstawioneréznice w wynikach na podstawie
przyktadu obliczeniowego rozezanego analitycznie. Rozbigsi te $ szczegotowo
przeanalizowane i zestawione ze sdbip kazdego modelu ok&one g dopuszczalne zakresy
poprawno€i rozwigzan. W ostatni podrozdziale Rozdziatu 5 analizowaneartgici wspotczynnika

amplifikacji dla ronych rodzajéw gruntu, estotliwosci wymuszenia oraz stopni saturacji.

Rozdziat 6 razem z Zgdznikiem 1 przedstawia rownania w przypadku dwuwymiarowego

ptaskiego stanu odksztatcenia. Podobnie jak dla przypadku jednowymiarowego wyprowadzone s
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rézne modele (uproszczenia), ktore gpsaie § ze sobgzestawione i poréwnane. Obliczenia
prowadzonegw ramach aproksymaciji metody elementdw skonczonychcZaik 1 prezentuje
macierze MES dla odioweztowego elementu skonczonego dla szkieletu oraz cztegtowego

elementu skonczonego dlamienia.

Rozdziat 7 zawiera podsumowanie calgdracy oraz przedstawiono dalsze kierunki rozwoju

naukowego.
3. Whnioski z pracy

Obliczenia prezentowane w pracy doktorskiej podzielono na dwéeicPierwsza (Rozdziat
5) dotyczy przypadku jednowymiarowego, a druga (Rozdziat 6) dotyczy przypadku
dwuwymiarowego. Obie gZci dotycz opisu zachowaniaebsrodka dwufazowego pod dziataniem

obcigzenia harmonicznego.
A) W ramach analizy zadania jednowymiarowego wyniki pracy doktorskiej obgjmuj

» W ramach celu A.1 przedstawiono analizlyskusg wptywu poszczegéinych sktadnikéw rownania
dynamiki gruntu jako agodka dwufazowego.

* W ramach celu A.2 dla przypadku jednowymiarowego przedstawiono wynikigzafwi

analitycznych poréwnania wyprowadzonych modeli. Rozinéci w wynikach dla poszczegodlnych
sformutowa roznig sie w zaleznosci od czstotliwosci wymuszenia oraz parametrow fizycznych
gruntéw. W pracy zaproponowano zakresy praktycznych zastagmeaczegélinych modeli w
podrozdziale 5.1.4.

* W ramach celu A.3 przedstawiono wyniki wptywu parametréw fizycznych oraz stopnia saturacji na
podstawowy okres drgauktadu, ekstremainamplitudedrgar oraz wspétczynnik amplifikacji drga

Wpltyw kazdego z czynnikdw zostat zaprezentowany na zamieszczonych w pracy wykresach.

B) W ramach analizy zadania dwuwymiarowego w sformutowaniu MES wyniki pracy doktorskiego

obejmug:

* W ramach celu B.1 przedstawiono analidyskus¢ wptywu poszczegélnych sktadnikéw réwnania
dynamiki gruntu w ramach petnego modelu u-p, ¢gpse modelu u-p z pomigtiem zmiany

cisnienia w czasie oraz powszechnie stosowanego modelu jednofazowedp zkgch modeli
zapisano w postaci uktadu rowWn®IES i zestawiono w podrozdziale 6.3.3.1.

» W ramach celu B.2 przedstawiono wyniki oblitZ@mputerowych tzw. zadania ,kolumny Biota”
w ktérym wykazano znagee ronice pomgdzy petnym modelem u-p (Model 3) a modelerasta
stosowanym w praktycznych obliczeniach, w ktérym pomijasiianecisnienia w czasie (Model 4).
Udowodnionoze macierz gisliwosci w rownaniu MES ma znagey wptyw na wyniki, w

szczegoblnasi na przemieszczenia, ktorgakoto 10 razy wiksze w przypadku jej uwzgldnienia. Na
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podstawie zamieszczonych wynikow mazawywnioskowd, iz Model 4 nie jest odpowiednim

modelem dla krétkiego w czasie zjawiska @benia dynamicznego.

» W ramach celu B.3 przedstawiono wyniki oblitzla ,kolumny Biota”, ktére wskazujna

znacace rénice w wynikach midzy modelem dwufazowym uwzginiajgcym zmianecisnienia

wody w porach w czasie (Model 3) a powszechnie stosowanym modelem jednofazowym (Model 2).
Wystepuje dua rozbienosé wynikow migdzy tymi modelami z uwagi na ¢totliwosé¢ wymuszenia
harmonicznego. Im wagza czstotliwos¢ wymuszenia, tym wksze rénice w wynikach. Dodatkowo

w podrozdziale 6.3.3.3 dokonano poréwnania Modelu 4 oraz dotychczas omowionych Modeli 2 i 3,
dla gruntu typu 2 (piasekedni). Zamieszone wyniki wskazujiz Model 4 jest praktycznie

niezaleny od czstotliwosci wymuszenia, a wtc powinien by unikany przy analizie dynamicznej.

Podsumowujc, gtéwnym celem pracy doktorskiej byto wykazanie wptywu sit bezwlaginos
na wielkoci amplitud przemieszczenia (osiadania) gruntu orediosci | przyspieszenia przy
obcigzeniu dynamicznym typu harmonicznego. Sita bezwladneystpujgca w gruncie w ramach
modelu dwufazowego, to iloczyn masy szkieletu gruntu i wody w porach z przyspieszeniem szkieletu

i wody. Zatem na wielkoséit bezwtadnéci ma wptyw zmiana masy i zmiana przyspieszenia.

W zagadnieniu jednowymiarowym poréwnano wyniki obliceeodelu PD, w ktérym
wystepuja sity bezwtadnosi szkieletu i wody z modelem uproszczonym bez sity bezwianimazsdy.
Wyniki obu modeli przedstawiono na tle modelu opisapo zjawisko konsolidacji gruntu.
Przedstawione wyniki wykazagnaczace rozbienosci wraz ze wzrostem egtotliwosci wymuszenia

dynamicznego

W przypadku dwuwymiarowego podobnie jako w przypadku jednowymiarowego wyniki
obliczer wskazuj na znacgce rénice wptywu definicji sit bezwladnai. Poréwnanie wptywu tych
sit przedstawiono przez pokazanie zryggzh ronic w wielkogiach przyspieszenia szkieletu i
cisnienia wody w porach przy zaleaiu niezmiennej masy szkieletu gruntu. Szczegglamaliz

zamieszczono w Rozdziale 6.
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