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procedures for determin-ing maximum dynamic errors

Ocena propagacji niepewności modelowania przez procedury 
wyznaczania maksymal-nych błędów dynamicznych

Abstract
The paper discusses the method for modelling linear analogue systems of the second order in the time 
domain. As a  result of such modelling, the parameters of the model and the associated uncertainties are 
obtained. Procedures for determining the absolute error and the integral-square error are presented. These 
procedures make it possible to determine precisely such an input sig-nal with one constraint that maximizes 
an error at the output of the system. Values of the parameters of an example model are determined and 
the propagation of the uncertainties of modelling results is assessed by the procedures for determining the 
maximum dynamic errors. The results of calculations presented in the paper were carried out in MathCad15.
Keywords: uncertainties of model parameters, time domain modelling, maximum dynamic error

Streszczenie
W artykule omówiono metodę modelowania w  dziedzinie czasu liniowych systemów analogo-wych 
drugiego rzędu. Jako wynik takiego modelowania uzyskano parametry modelu oraz związane z  nimi 
niepewności. Przedstawiono procedury wyznaczania maksymalnych błędów dynamicznych dla przypadku 
kryteriów błędu: bezwzględnego i  całkowokwadratowego. Procedury te pozwalają w  sposób precyzyjny 
określić taki sygnał wejściowego z  jednym ograniczeniem, który maksymalizuje błąd na wyjściu systemu. 
Wyznaczono wartości parametrów przykładowego modelu oraz oceniono propagację niepewności wyników 
modelowania przez procedury wyznaczania maksymalnych błędów dynamicznych. Wyniki obliczeń 
przedstawionych w artykule przeprowadzono w programie MathCad15.
Słowa kluczowe: niepewności parametrów modelu, modelowanie w dziedzinie czasu, maksymalny błąd dyna-miczny
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1.  Introduction

An analysis of errors generated by analogue systems intended for processing 
undetermined dynamic signals can be realized based on a  previously determined 
mathematical model of such a system. This model can be presented by means of a transfer 
function, a complex frequency response and an impulse or step function. There are mutual 
mathematical relations between these types of models, which allow them to transform 
easily from one form into another.

In the measurement technique, in automation and signal processing theory, modelling 
in the frequency domain is most often carried out based on measurement of the amplitude 
and phase characteristics [1–6]. The method for determining both the model parameters 
and associated uncertainties is determined by the relevant standards, choice of which 
depends on the type and application of the system modelled [7]. However, there are 
practical applications, for example in biomedical measurements, for which it is impossible 
to apply the abovementioned modelling. In such cases, modelling in the time domain is 
applied on the basis of measurement of the response to step stimulus signal [8, 9]. For 
the order of model dynamics which is assumed according to the type of modelled system, 
the characteristic parameters of the step response are determined on the basis of its time 
recording. In order to minimize the error of modelling method, it is desirable to perform 
a series of readings of the response to successive switches of step stimulus signal. In this 
way, an accurate determination of the model parameters and associated uncertainties is 
possible. In this paper, modelling was performed on an example of a serial RLC circuit with 
the output signal from a capacitor. This system has the properties of a second-order model. 
The choice of such a system results from the ability to easily check the effectiveness of the 
applied modelling.

The mathematical model reflecting the dynamics of the system constitutes the 
basis for a series of theoretical studies that include, among other things, procedures for 
determining maximum dynamic errors. These errors are the response to an input signals 
with the constraints imposed on them, that is, the amplitude or both the amplitude and 
the rate of change [10, 11]. In [11, 12], it has been shown that any other input signal 
generates an error less than or at most equal to the maximum value. Depending on purpose 
of the dynamic system, one uses different error criteria. The most popular are the absolute 
error and the integral-square error.

In this paper, above criteria of the error for the case of input signals constrained only in 
amplitude, which have the ‘bang-bang’ shape are considered. For this type of input signal, it is 
possible to determine precisely the switching times for both error criteria. In the case of two 
simultaneous constraints, it is only possible for the absolute error [12, 13]. For both criteria, 
the values of maximum error are determined and the propagation of uncertainties associated 
with the parameters of the model is assessed using the procedure for determination of the 
errors. This was realized by checking all possible cases of increases or decreases of the model 
parameters by the values of associated uncertainties. Such research has been carried out so 
far on the basis of modelling in the frequency domain and only for the absolute error [14].
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2.  Modelling of second-order systems in the time domain

For the systems described by the following transfer function
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where a is the amplification coefficient, ω0 is the non-damped natural frequency and ￼  is the 
damping factor, the step response is presented by
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in which
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is the damped natural frequency.
The step response becomes extreme at times when its derivative vanishes, that is, when 

the impulse response
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is equal to zero.
The response k(t) reaches zero if

	 sin( )�d nt �0 	 (5)

that is, for the following case
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Based on (3) and (6), we have
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Substituting t1 into
	 h t h t a( ) ( )� � 	 (8)

one obtains the ratio of the maximum value of the step response to the steady state value 
which is called the overshoot and is calculated by
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Transformation of (9) gives
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Let us present the damped natural frequency in the form
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where Td is the period of damped oscillations.
Comparing the right-hand sides of (3) and (11), we finally have
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Figure 1 shows the step response and the principle of determination of the parameters a, 
∆y and Td which are the basis for determination of parameters of the model (1).

The parameters a, ∆y and Td are calculated as arithmetic means from a series of measurements 
obtained for the positive step responses. Fig. 2 shows the a voltage step stimulus signal and the 
positive and negative responses.
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Fig. 1.	 Step response and its associated parameters
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3.  Determination of uncertainties associated with model parameters

The standard uncertainties u(a), u(∆y) and u(Td) associated with the parameters a, ∆y and 
Td as well as the expanded uncertainties related to the parameters of model (1) are calculated 
based on methods A and B [15, 16].

Utilizing method A, we have
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where M is the number of measurement data, and

	 x
M

xm
m

M

�
�
�1

1

. 	 (14)

Value of M corresponds to the number of positive step responses.
Uncertainty of B type is calculated based on
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where
	 B c Mf x1 � �� 	 (16)

and cf and σx are the coverage factor and the standard deviation calculated for measurement 
data, respectively.

The variable B2 calculated for a and ∆y is
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Fig. 2.	 Successive step responses
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where: ua, ug and uo are the absolute, gain and offset uncertainties, respectively.
The uncertainties under the root in (17) are calculated by

	 u R u R u ua V g V o n� � � � � 	 (18)

	 u u g t r tg rg t chlic t chlec� � � � � , 	 (19)

	 u u o t uo ro t chlic INL� � � � , 	 (20)

where: RV, un, urg, gt, tchlic, rt, tchlec, uro, ot and uINL are the reading voltage range [V] the noise uncertainty 
[μV] the residual gain uncertainty [ppm of range] the gain tempco [ppm/°C] the temperature 
change from last internal calibration [°C], the reference tempco [°C], the temperature change 
from last external calibration [°C], the residual offset uncertainty [ppm of range] the offset 
tempco [ppm of range/°C] and the integral nonlinearity uncertainty[ppm of range], respectively.

The noise uncertainty is calculated, as follows

	 u rn n= , 	 (21)

where rn is a standard deviation of random noise [μV]
In the case of parameter Td the variable B2 is

	 B sr2 1= . 	 (22)

where sr is the sampling rate.
The standard uncertainties u(a), u(∆y) and u(Td) are calculated based on (13) and (15), 

utilizing the following formula
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The combined uncertainties associated with β  and ω0 are calculated utilizing the total 
derivative, as follows
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and
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Finally, the expanded uncertainties associated with parameters of the model (1) are

	 U a c u af( ) ( ),� � 	 (26)
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and
	 U c uf c( ) ( ).� �0 0� � 	 (28)

4.  Procedure for determining the absolute error

The absolute error represents the maximum possible value of the output signal y(t) over the 
interval [0,T] for the linear system described by the total impulse response

	 k t k t k tr s( ) ( ) ( ),� � 	 (29)

where kr(t) and ks(t) are the impulse responses of the real system and its standard.
The standard is represented by a high-order low-pass filter with a transfer function defined by
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where L is the order of the filter.
The impulse responses kr(t) and ks(t) are obtained as the inverse Laplace transform of (1) 

and (30), respectively.
The maximum transient value of y(t) can be achieved only for t=T. However, it is necessary 

to determine the input signal x0(t) of “bang-bang” type which generates the output y(T). This 
output signal represents the absolute error denoted below by D.

The signal that maximizes the error D is determined based on a simple formula, as follows

	 u t A sign k T t0 ( ) ( ) .� � �� � 	 (31)

The absolute error is calculated by means of
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T
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where A  denotes the magnitude constraint of signal x(t)  [12–14]. This constraint was 
assumed as equal to the amplification coefficient of the model (1).

5.  Procedure for determining the integral-square error

Let us define by
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the energy transfer ratio over the interval [0,T] and corresponding to the linear system 
described by the impulse response k(t) defined by (29), input signal x(t) and output y(t).

The energy of the output signal y(t) is represented by

	 E y y t dt t x d x t dt
T TT
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where
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is the energy kernel which is the autocorrelation function calculated based on the impulse 
response k(t).

It is obvious that there is such a signal x0(t)∈L2 that maximizes ς. This signal has the “bang-
bang” shape and satisfies the Fredholm integral equation of the second kind, as below
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with the kernel defined by (35) [17].

The procedure for determining the signal x0(t) is carried out in three main steps:
1.	 Calculate the autocorrelation function
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2.	 Determine the initial input signal

	 x t A sign t0 ( ) [K( )].� � 	 (38)

3.	 Determine the signal x0(t) which has one constraint and maximizes the output energy 
based on the iteration algorithm, as follows
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This output energy corresponds to the integral-square error I2 of a linear system [18].

The iteration algorithm is terminated when any switching times of signals xi+1(t)  and 
xi(t) differ by the value of the assumed discretization step ∆. Based on the maximizing signal 
x0(t) the integral-square error can be calculated by
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6.  Results

The parameters of the model (1) were determined based on measurement of 34 positive step 
responses for a equals 1[V]. The step stimulus signal was generated by NI-6221 measuring card 
with a sampling rate sr equals 100[kS/s]. This card was also used to determine the responses 
shown in Fig. 2.

Table 1 includes the values of the parameters a, ∆y and Td obtained in accordance with Fig. 
1. The values of these parameters were tabulated with an accuracy of three significant digits 
M=1, 2, ..., M, where M was assumes as equal to 34. The last row in Table 1, denoted as Mean, 
contains the mean values of all three parameters.

These values are assumed to be the estimates of parameters a, ∆y and Td and are indicated 
below as a , ∆�y and Td  The standard uncertainties associated with these parameters, determined 
based on (13), are as follows: u a VA � � � � �27 � ,  u y VA �� �� � � 45 �  and u T sA d� � � � �1 5, � .

Table 1.	 Parameters based on successive step responses

m a
[mV]

∆y
[mV]

Td
[ms]

m a
[mV]

∆y
[mV]

Td
[ms]

1 994.026 440.113 1.290 18 994.288 439.689 1.290

2 994.041 439.613 1.280 19 994.302 439.513 1.280

3 994.051 440.250 1.280 20 994.311 439.666 1.280

4 994.056 439.760 1.300 21 994.337 439.478 1.290

5 994.076 440.063 1.290 22 994.349 439.628 1.280

6 994.115 439.862 1.280 23 994.362 439.453 1.270

7 994.113 440.025 1.280 24 994.387 439.267 1.290

8 994.113 439.703 1.290 25 994.397 439.257 1.300

9 994.151 440.150 1.290 26 994.406 439.410 1.270

10 994.163 439.652 1.290 27 994.428 439.710 1.290

11 994.158 439.657 1.300 28 994.430 439.548 1.280

12 994.202 439.452 1.280 29 994.465 439.512 1.290

13 994.200 439.616 1.290 30 994.488 439.489 1.270

14 994.232 439.422 1.270 31 994.493 439.484 1.280

15 994.260 439.556 1.290 32 994.506 439.148 1.280

16 994.261 439.554 1.300 33 994.533 439.283 1.300

17 994.261 439.393 1.290 34 994.559 439.418 1.280

Mean 994.280 439.612 1.286
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The coverage factor cf was assumed as equal to 2, according to a 95% confidence level. The 
standard deviations calculated based on Table 1 are: σa=0,16 mV, σ∆y=0,26 mV and σTd

=8,8 μs.
The following values: tchili=1[°C] , tchle=25[°C] , urg=95[ppm of range], gt=25[ppm/°C], 

rt=5[°C], uro=25[ppm of range], ot=79 [ppm of range/°C], uINL=76 [ppm of range] and 
rn=30μV are provided by the manual of measuring card [19].

For the above data and based on (15–22), the uncertainties calculated by method B are: 
uB( a )=1.984 [mV], uB(∆�y)=1.985 [mV] and uB(Td)=11 [μs]. Then the standard uncertainties, 
calculated based on (23), are as follows: u( a )=1.984 [mV], u(∆�y)=1.985 [mV] and u(Td)=11 
[μs]. It can be seen that these uncertainties are affected by the uncertainty determined by 
method B. The combined uncertainties associated with β and ω0 are: uc(β)=0,0014 [mV] and 
uc(ω0)=42 [rad/s]. Finally, the expanded uncertainties associated with the model parameters 
are calculated. These uncertainties and the model parameters are tabulated in Table 2. The 
parameter a   corresponds to the mean value included in Table 1. The parameters β   and 
ω0  were calculated on the basis of relations (24) and (25).

Table 2.	 Estimates of the model parameters and associated uncertainties

Model parameters Associated uncertainties

a
[mV]

β
[–]

ω0

[rad/s]
U(a)
[mV]

U(β)
[–]

U( ω0)
[rad/s]

994.280 0.2514 5050 3.968 0.0029 83

Table 3 contains the values of errors D and I2 determined based on (32) and the iterative 
procedure executed utilizing relations (37)–(40), respectively. The fifteenth-order low-pass filter 
with a cut-off corresponding to a 10% decrease of the amplitude-frequency characteristic relative 
to its value for ω=0 was adopted as a standard. This characteristic was determined based on the 
model (1) for the parameters contained in Table 2. The order of the model adopted constitutes the 
maximum value for which it is possible to carry out the calculations in the program MathCad15. 
The value of the amplitude constraint A was assumed to be equal to the value of estimate a .

The first row of Table 3 contains the errors without taking into account the influence of 
the uncertainties, whereas other rows include the errors for any case increase or decrease in 
the parameters by the values of the associated uncertainties.

Table 3.	 Parameters of the model and the maximum values of errors D and I2

Change of parameters D
[Vs]

I2
[mV2s]

a β
ω0

4.001 24.499

a–U(a) β –U( β )
ω0–U( ω0) 3.995 24.586

a–U(a) β+U( β )
ω0–U( ω0) 3.944 24.015

a–U(a) β –U( β )
ω0+U( ω0) 3.996 24.747
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Change of parameters D
[Vs]

I2
[mV2s]

a–U(a) β+U( β )
ω0+U( ω0) 3.944 24.065

a+U(a) β –U( β )
ω0–U( ω0) 4.060 24.981

a+U(a) β+U( β )
ω0–U( ω0) 4.007 24.401

a+U(a) β –U( β )
ω0+U( ω0) 4.061 25.145

a+U(a) β+U( β )
ω0+U( ω0) 4.007 24.452

The highest values of both errors are obtained for the case when the estimates of parameters 
a   and ω0   are increased by the values of associated uncertainties, while the estimate of 

parameter β  is decreased by the uncertainty. These values are 1.50% and 2.64% higher than the 
values without taking into account the uncertainties for the errors D and I2 respectively.

7.  Conclusions

The paper presents an assessment of the propagation of modelling uncertainty in the time 
domain by the procedure for determining both the absolute error and the integral-square 
error for the input signals constrained only in amplitude.

Based on 34 identification tests, the estimates of the model parameters are determined 
and the associated uncertainties are calculated. Then, the maximum dynamic errors were 
determined both for the model parameters only and for all cases of increases or decreases 
in the model parameters by the values of associated uncertainties. These errors were 
determined based on modelling of a serial RLC circuit as an example of a second-order 
system. As a standard that constitutes the reference for determination of the errors, the 
fifteenth-order low-pass filter was adopted.

The results showed that modelling uncertainty has an influence on dynamic errors, 
particularly for the integral square criterion. In comparison with modelling results in the 
frequency domain presented in [14], the time-domain modelling increases the uncertainty 
of parameter a  more than 16-fold, but decreases the uncertainties of the parameters β  and 
ω0  more than 100-fold. Thus, in the case of modelling in the time domain presented in 

this paper, the influence of uncertainties on the absolute error was approximately 80 times 
lower. This is due to the fact that the method of modelling in the time domain is more 
accurate but cannot always be used, in particular for examination of sensors intended for 
measurement of vibration. However, the most important conclusion is that for both 
methods of modelling, the uncertainties associated with the model parameters have an 
essential influence on the value of errors and this effect should be taken into account 
during the calibration process based on the maximum dynamic errors.
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