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Abstract
The aim of the study was the estimation of the ability of hyperelastic material models for the fitting of 
experimental data obtained in the tensile testing of silicone liners used in lower-limb prosthetics. Three 
groups of liners were analysed: I – silicone liner, II – part of the liner in which the silicone has a fabric 
reinforcement, III – silicone liner with an outer covering material. Both longitudinal and circumferential 
samples were taken. The Neo-Hookean, Mooney-Rivlin and Ogden parameters of constitutive models of 
hyperelastic materials were calculated.
Keywords: prosthetic liners, constitutive models, hyperelastic material, tensile test

Streszczenie
Celem badań była ocena przydatności modeli materiałów hipersprężystych do dopasowania danych do-
świadczalnych uzyskanych w próbie rozciągania dla silikonowych linerów ortopedycznych stosowanych 
w protezach dolnych. Przeanalizowano trzy grupy: I – liner silikonowy, II – liner silikonowy z wewnętrznym 
wzmocnieniem, III – liner silikonowy z zewnętrznym wzmocnieniem. Wyróżniono dwa kierunki pobrania 
próbek: podłużny i obwodowy. Zidentyfikowano parametry określonych funkcji modeli konstytutywnych 
materiałów hipersprężystych: Neo-Hookean’a, Mooney-Rivlin’a i Ogden’a.
Słowa kluczowe: linery protetyczne, modele konstytutywne, materiał hipersprężysty, próba rozciągania
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1. Introduction

When observing the development of prosthetic technology, it can be seen that for a long 
time, a significant problem has been the biomechanical compatibility of a lower limb prosthetic 
with the residual limb - together, these constitute a new appendage after an amputation [11]. 
The direct contact of the patient’s living tissues with the materials used for the comprising 
the prosthesis remains an important issue with regard to creating optimal solutions. A limb, 
as a new appendage which meets the load-bearing function requires characteristics aimed 
at eliminating, or at least limiting, the concentration of loads localised in sensitive areas. 
A prosthetic socket is one of the most important elements of the lower limb prosthesis. It 
transfers the load to the limb and therefore must meet the strength requirements with respect 
to the loads for which it is designed to transfer [3].

Today, the closest that is achieved to the ideal solution is to provide prosthetics with 
innovative sockets and silicone liners. Modifications to the liners has led to the development 
of a new type of suspension system of the prosthesis which provides comfortable attachment 
to the person’s residual limb, and with care and soothing additions, this has a positively 
influence on the skin of the limb [2, 14]. Due to the good see above note adhesion of the 
silicone liner to the residual limb, this causes the reduction of friction presented on the skin; 
thus, it is often called the ‘second skin’. Silicone liners may be used alone in the prosthesis 
as comfortable inserts or as an element of a total-surface bearing fit suspension for patients 
with a higher degree of mobility. There are three commonly used solutions using silicone 
liners in the suspension systems: shuttle lock, suction and vacuum [4, 6]. These solutions 
provide: comfort; the reduction of vertical movements of the limb in the socket, which 
stabilizes the walk; increases in the mobility of the person. The person’s comfort depends 
on the precision of the socket and selection of an appropriate fit [2, 13]. Therefore, the 
modelling of problems of strength as an engineering tool is an important issue that enables 
the simulation of the behaviour of materials and structures in the selected load conditions. 
One of the methods of analysis for the selection of parameters is a static tensile test which 
provides the experimentally obtained material constants. This data provides the possibility 
to predict the stress characteristics at different levels of deformation. This can be a measure 
of the usage comfort evaluation of the product and the criterion of durability with regard to 
repeated attachment and removal. It can also be potentially useful for assessing prosthetic 
compatibility by providing quantitative information on the similarities and differences of 
these products.

The aim of this study was to evaluate selected mechanical characteristics obtained during 
the static tensile testing of longitudinal and circumferential samples taken from two types of 
the prosthetic liners (M and W). The results of tests were used to identify the parameters of the 
constitutive equations of selected hyperelastic models (the Neo-Hookean, the Mooney-Rivlin and 
the Ogden) to determine the material constants of the tested liners. The tested materials exhibit 
non-linearity and anisotropy; however, the assumption was made that its tensile behaviour can 
be predicted with the use of hyperelastic material models. From the point of view of clinical 
applications, the tested liners should show similar mechanical behaviour to skin. For skin, 
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which is an anisotropic material, hyperelastic material models are used in the modelling of the 
mechanical behaviour with assumption of its isotropy [16]. We can hypothesise that data from 
uniaxial stretching tests can be used in the simulation and modelling of the material parameters of 
orthopaedic liners – this is important from the point of view of obtaining a better match between 
the properties of the liners and the properties of the skin on the residual limbs. The usefulness of 
the hyperelastic material models for silicone liners was thus investigated in this study. 

2. Material and methods

Samples were prepared from two models of orthopaedic liners produced by the leading 
manufacturers of prosthetic supplies, MediLiner FIRST® (M) and Willow Wood® Express 
AKLiner (W) (Fig. 1). The circumference dimension at a distance of 4 cm from the distal point is 
in the range of 32–47 cm, and the proximal dimension at the proximal end at a distance of 30 cm 
from distal point is in the range of 44–80 cm. The total length of the liners was approx. 370 mm. 

Fig. 1. The locations from where samples were taken: groups I and II from the liner M, group III from the liner 
(W); the directions of sampling have been marked (for all groups the same)

The first group (I) of samples was cut from the proximal part of the liner (M). The second 
group (II) of samples was cut from the distal part of the liner, where the silicone had a fabric 
reinforcement (M+). The third group (III) of samples was cut from the second type of liner 
(W). For all three groups (I–III), longitudinal (L) and the circumferential (C) samples were 
taken. The locations and orientations of samples taken are shown in Fig.1. All samples had 
the same dimensions: length 100 ± 1 mm and the width 10 ± 0.1 mm; however, these were of 
different thicknesses. The average thickness, the average cross-sectional area and the number 
of samples are presented as average values with standard deviations in Table 1.

For the prepared samples, the mechanical properties under static tension were determined 
with the use of the Instron 4465 testing machine with a force sensor of 5 kN. The samples 
were mounted using flat clamps and they were extended at a speed of 25 mm/min. The test 
was carried out in room conditions at a temperature of 22 ± 1°C. The measurement base of 
the samples was 60 ± 1 mm. The calculated values of maximum stress, stretch and energy of 
deformation are shown as the arithmetic average values with a standard deviation of (X ± SD).
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Table 1. The characteristic parameters of samples

Liner type M M+ W

Group of samples G I G II G III

Direction of taken C 
n = 4

L 
n = 4

C 
n = 3

L 
n = 3

C 
n = 4

L 
n = 4

Average thickness 
(SD) [mm]

2.45
(0.11)

2.39
(0.04)

4.49
(0.13)

5.60
(0.05)

3.99
(0.02)

3.94
(0.03)

Average cross-
sectional area [mm2] 24.5 23.9 44.9 56.0 39.9 39.4

For all tested groups of samples, the analysis of experimental data was conducted by 
plotting the stress (σ) against the stretch (λ). The average experimental curves were then 
determined and on their basis, model analyses were carried out. In the process of fitting 
the tension experimental data with the use of constitutive hyperelastic laws, OriginPro 
7.5 software was applied.

3. Constitutive material models

To describe the non-linear stress versus stretch relationship of hyperelastic materials, 
several constitutive models can be employed [1, 2]. These models assume that hyperelastic 
material behaviour may be characterised by the strain energy density function (W) expressed 
in terms of the three invariants of the strain Cauchy-Green tensor I1, I2, I3, given as (1):

  W f I I I= ( , , )1 2 3  (1)

Hyperelastic materials are special kinds of elastic material. For many engineering materials, 
including especially vulcanized elastomers, linear elastic models have poor accuracy in 
predicting the non-linear behaviour of the material. 

The dependence of stress-strain for the material is referred to as isotropic non-linear 
elastic – it is independent on the strain rate. It is assumed that the material is also non-
compressible. The response to the load applied on an unfilled silicone often shows the 
behaviour of a  perfectly hyperelastic material. For filled elastomers, as well as for soft 
tissues, hyperelastic models are also used with the assumption of homogeneity of the 
material [7, 16].

The three invariants of the stretch tensor I1, I2, I3, are given as (2), (3), (4):
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Thus, equation (1) can be given by formula (5), where Cijk are the material constants:

  W C I I Ii jk
i j k

i j k
� � � �

� � �

�� ( ) ( ) ( )
( ) 1 2 31

3 3 1  (5)

Considering the conditions of the uniaxial tension of incompressible materials, the 
principal stretches λi are describe by the formula (6) and (7):
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therefore, the expression of the invariants of the stretch tensor become simplified and it is 
written as the principal stretch (8):
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In the literature, hyperelastic models (Ogden, Money-Rivlin and Neo-Hookean) are 
widely described in order to determine the relationship of the stress-stretch of hyperelastic 
materials such as polymers, rubber-like materials or biological tissues [1, 7, 8, 12, 16]. 

Neo-Hookean material model
For the Neo-Hookean model, the strain energy density function is expressed as the 

principal stretch function (9), and the stresses are given by equation (10):
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Mooney-Rivlin material model
The strain energy density function for the Mooney-Rivlin model is expressed as the 

principal stretch function in the form (11):

  W C I C I( , , ) ( ) ( )� � �1 2 3 1 1 2 23 3� � � �  (11)

therefore, for the uniaxial tensile, the stresses can be expressed as (12):
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The necessary and sufficient conditions for to be positive are given by the inequalities  
C1 ≥ 0; C2 ≥ 0 [16].
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Ogden material model
The strain energy density function for the Ogden model is given as (13):

  W( , , )� � �
�
�

� � �� � �
1 2 3 2 1 2 3

2
3� � � �� �  (13)

where α and µ are the material constants: the shear modulus and the strain hardening 
exponent [2]. 

For the uniaxial tension conducted by the load in the direction of the long axis, the 
nominal stress can be given as (14):
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In order to compare the quality of the fit of a theoretical model to experimental data, the 
coefficient of determination R2  is defined by formula (15):
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where yi is the actual value of the variable, is the theoretical value of the variable on the basis 
of models,  is the arithmetic mean average of the experimental value of the variable.

4. Results

On the basis of the tensile test, the stress-stretch curves for both circumferential and 
longitudinal samples for all three groups were obtained. For each group, the average 
stress-stretch curves were determined and the analysis of the results was performed. 
Circumferential samples taken from liners had lower values of maximum stress (Table 
2). These values were: for group I (liner M), 0.15 MPa at a stretch of 3.08; for group II 
(liner M+ with reinforcement in the distal part), about 0.2 MPa at a stretch of 2.88; for 
group III (liner W) 0.16 MPa at stretch of 3.11. In the case of the longitudinal samples, 
the values were: for group I (M), the maximum stress was 0.16 MPa at a stretch of 3.23; 
for group II (M+) it was 0.23 MPa at a stretch of 2.36; in group III (W), the stress reached 
almost 1.54 MPa and the stretch was 1.57. The higher stress values were obtained for the 
knitted fabric reinforced silicone in comparison to the silicone without reinforcement for 
the longitudinal samples (Fig. 2). 
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Group I showed no significant differences in the stress values between the circumferential 
and longitudinal samples confirming the homogeneous composition of the liner without 
reinforcement in the proximal part. The addition of a knitted fabric reinforcement in the 
distal part of the liner had an influence on the tensile test results, raising the tensile stress 
and varying the slope of the stress-stretch curve. The orientation of the samples (whether 
circumferential or longitudinal) in groups with the fabric-reinforced silicon (groups II 
and III) also significantly influenced the stress-strain curves (Fig. 3). For the circumferential 
samples, the curve had a lower slope and a larger stretch. In group II, this was about 25% of 
the value relating to the longitudinal samples; in group III, it was over 40%.

Table 2. The characteristic mechanical parameters of tested liners

Liner type M M+ W

Group of samples G I G II G III

Direction of taken C L C L C L

Maximum stress 
[MPa]

0.15 
(0.02)

0.16 
(0.01)

0.20 
(0.003)

0.23 
(0.01)

0.16 
(0.04)

1.54 
(0.54)

Stretch at maximum 
stress [–] 

3.08 
(0.17)

3.23 
(0.05)

2.88 
(0.11)

2.36 
(0.02)

3.11 
(0.14)

1.57 
(0.54)

Energy of deformation 
[10-3J] (SD)

252.61 
(33.72)

297.62 
(37.48)

547.81 
(21.98)

400.46 
(24.26)

380.93 
(80.05)

711.34 
(57.05)

Fig. 2.  Stress (σ) – stretch (λ) representative curves: a) circumferential, b) longitudinal

a)                                                                                                             b)

This confirmed the importance of the weaving direction in a fabric reinforcement for 
a silicone liner.

A highly accurate fit can be observed between the models and experimental stress when 
analysing the constitutive modelling (Fig. 4).

Analysis of the determined material constants in the constitutive modelling revealed 
strong agreement of values of the shear modulus (µ) obtained by the Mooney-Rivlin and 
the Ogden models in groups I and II for both circumferential and longitudinal samples and 
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in group III for circumferential samples (Tables 4 and 5). A strong fit between experimental 
data and these models is also confirmed in Figure 4. The exception was the shear modulus 
(µ) for group III in the longitudinal samples. For the Mooney-Rivlin model, it was a value 
of 0.67 MPa, and for the Ogden model, it was 0.397 MPa. The Neo-Hookean model was the 
least compatible with the experimental data – the constant μ was almost 2.5 times lower in 
the first group for both circumferential and longitudinal samples, and in the second group, for 
circumferential samples (Table 3). Knowing the requirements of orthopaedic surgeons and 
therapists, an orthopaedic device can be designed in such a way that will support the residual 
limbs, e.g. by controlled pressure.

1 2 3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
Gr I

circumferential direction

longitudinal ditrection

�
[M

P
a
]

� [ ]–

1 2 3

0.00

0.05

0.10

0.15

0.20

0.25

�
[M

P
a

]

� [ ]–

Gr II

circumferential direction

longitudinal direction

1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

�
[M

P
a

]

� [ ]–

Gr III

circumferential direction

longitudinal direction

a)                                                                                                           b)

c)

Fig. 3. Comparison of stress-stretch (σ-λ) curves for three groups of samples for both circumferential  
and longitudinal samples
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Fig. 4. Fitting to the tension data using three hyperelastic material models
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Table 3. Parameter values for the Neo-Hookean model

Group of samples Gr I (M) Gr II (M+) Gr III (W)

Direction of samples taken C L C L C L

C1 [MPa] 0.0091
±0.0004

0.0095
±0.0005

0.0145
±0.0006

0.0230
±0.0001

0.0091
±0.0001

0.3354
±0.1637

R2 0.8394 0.8017 0.9133 0.9981 0.9975 0.9319

µ	[MPa] 0.018 0.019 0.029 0.046 0.018 0.671

Table 4. Parameter values for the Mooney-Rivlin model 

Group of samples Gr I (M) Gr II (M+) Gr III (W)

Direction of samples taken C L C L C L

C1 [MPa] 0 0 0.0014 
±0.0004

0.0230 
±0.001

0.0081 
±0.0004

0.3354 
±0.1878

C2 [MPa] 0.0238 
±0.0006

0.0259 
±0.0011

0.0320 
±0.0011

0 0.0021 
±0.0001

0 

R2 0.9986 0.9955 0.9979 0.9981 0.9981 0.9318

µ [MPa] 0.048 0.052 0.067 0.046 0.020 0.670

Table 5. Parameter values for the Ogden model 

Group of samples Gr I (M) Gr II (M+) Gr III (W)

Direction of samples taken C L C L C L

µ [MPa] 0.049 
±0.006

0.056 
±0.001

0.067 
±0.001

0.053 
±0.001

0.024
±0.001

0.397 
±0.030

α 1.9392 
±0.0245

1.8691 
±0.0378

2.1128 
±0.0382

3.4016 
±0.0346

3.1253
±0.0466

6.3136 
±0.2704

R2 0.9986 0.9975 0.9978 0.9993 0.9986 0.9923

5. Discussion

Eshragi et al. [4] investigated the pressure distribution in orthopaedic liners for the lower 
leg and demonstrated that the highest values occur from the anterior, followed by the posterior 
and the lateral and the medial (0.02–0.12 MPa). Our research indicates that the pressure 
generated remains in the safe range of loads for the strength of the liners (0.15–1.6 MPa).

Analysis of the results of the experiment demonstrates the non-linear nature of the load-
deformation curves. As with the work of Ali et al. [1], similar values of the model constants 
for the Ogden and the Mooney-Rivlin models were obtained. Comparing the levels of 
model fit with the experimental data, a strong agreement of both the Mooney-Rivlin and the 
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Ogden models can be observed for all analysed cases across the whole range of considered 
stretch [5, 7]. By contrast, the Neo-Hookean model showed a strong fit in only two cases 
–for liner (M+) for longitudinal samples, and for liner (W) for circumferential samples. 
These samples of silicone were reinforced with fabric, for which the weaving direction was 
in line with the direction of the applied load. However, in the case of samples taken from 
liner (W) for longitudinal samples, a weaker fit was evident for the experimental curve 
for the Ogden model in the range of stretch between 1 and 1.25. Comparing the obtained 
values of the model parameters with the study conducted by Martins et al. [7], similar 
values of C1 for the Noe-Hookean and C1 and C2 for the Mooney-Rivlin model for the 
group III in the longitudinal direction can be seen. The Ogden model with six parameters  
(C1–C6) makes it difficult to compare values. In the investigation of Ali et al. [1], the 
application of the constitutive models of hyperelastic materials for rubber was also made. 
However, they obtained nominal stress values of 25 MPa and nominal strain above 6; 
furthermore, a visible mismatch in the graph of the Neo-Hookean and the Mooney-Rivlin 
models can be seen. This makes the results difficult to discuss. However, the weakest fit of 
the Neo-Hookean model can be confirmed. 

Sasso et al. [15] made a comparison and numerical simulations using a multi-parameter 
model for different compressions and the uniaxial and biaxial tensile load cases (the Ogden 
with six parameters, the Mooney-Rivlin with five parameters); again, observing the weakest 
fit with the Noe-Hookean and a better fit with the multi-parameter models.

Shergold et al. [16] used the Mooney-Rivlin and the Ogden models to analyse silicon 
Sil8800 and B452 as well as pig skin tissue by studying uniaxial stretching and compression 
at different strain rates (0.004, 0.4, 40. 4000/s-1). They reported: µ = 0.4–7.5 and α of 1.2 
for pig skin; µ = 0.4–2.8, α = 3, C1 = 0.5 and C2 = 0 for B452; µ = 2.1–8.0, α = 2.5, C1 = 1.0 
and C2 = 0.9 for Sil8800; C1 = 0.3 and C2 = 0 for human skin. They indicated that the value 
of constant µ depends on the strain rate. It is considered that the value of α is related to the 
geometric evolution of the collagen network, and is independent on strain rate. In contrast, 
the resistance to rearrangement by deformation of the collagen fibers influence on value of µ	
and these deformation mechanisms are sensitive to the strain rate. The results were analysed in 
a context comparable to human skin parameters [16]. The substitute materials of human skin 
(rubber-like materials and pig skin tissues) are often used in medical engineering; therefore, 
knowing the basic mechanical properties of these substitutes is important for the comfort of 
the person and for strength requirements.

6. Conclusions

The mechanical properties of the rubber-like material can be described by constitutive 
models of hyperelastic materials, such as the Mooney-Rivlin and the Ogden models, at low, 
medium and large deformations, despite the fact that they are represented by the energy 
density function based on the principal strain invariants (the Mooney-Rivlin) and on 
three principal stretches (the Ogden). For two of the three analysed constitutive models 
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of hyperelastic materials, a strong fit of tension experimental data (correlation coefficient  
R2 > 0.99) was obtained. For the Noe-Hookean model, a weaker fit was observed.

The procedure used to optimise the material parameters for three models has been 
successfully used for silicone materials designed for orthopaedic liners. Silicone liners are 
made from materials which exhibit a hyperelasticity with elastic stress-strain dependence 
for high deformation levels – they also exhibit a strong non-linear relationship. Hyperelastic 
material models can be used to determine the non-linear properties of the RTV-silicone and 
TPE liners with the assumption that material is homogenous, incompressible and isotropic. 
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