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Abstract
In this paper, a modified bat algorithm with fuzzy inference Mamdani-type system is applied to the problem 
of document clustering in a semantic features space induced by SVD decomposition. The algorithm learns 
the optimal clustering of the documents as well as the optimal number of clusters in a concept space; thus, 
making it suitable for a  large and spare dataset which occur in information retrieval system. A  centroid-
based solution in multidimensional space is evaluated with a silhouette index. A TF-IDF method is used 
to represent documents in vector space. The presented algorithm is tested on the 20 Newsgroup dataset. 
Keywords: document clustering, unsupervised machine learning, BA, fuzzy logic 

Streszczenie
W publikacji zmodyfikowany algorytm nietoperzowy z  rozmytym kontrolerem typu Mamdaniego 
został zastosowany do problemu analizy skupisk dla danych tekstowych. Proces uczenia odbywa się 
w przestrzeni skompresowanej, otrzymanej z dekompozycji SVD zbioru uczącego. Prezentowany algorytm 
uczy się jednocześnie optymalnego pokrycia klastrami przestrzeni oraz liczebności klastrów. Do oceny 
jakości rozwiązania zastosowano wskaźnik Sillhouette. Dane w  reprezentacji wektorowej otrzymano 
z wykorzystaniem transformacji TF-IDF.  Prezentowany algorytm przetestowana na zbiorze „20 Newsgroup”. 
Słowa kluczowe: klasteryzacja dokumentów, uczenie nienadzorowane, BA, logika rozmyta
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1.  Introduction 

Unsupervised learning, also known as cluster analysis or classification, is a  process 
of exploring the unknown structure of the data by separating a  finite data set into clusters. 
Partitional unsupervised learning in particular divides the data object into a  predefined 
number of clusters. Formally, in mathematical terms partitional unsupervised learning can be 
stated as follows [11]: given a set of m objects X={x1, …, xj, …, xm}, where xj=(xj1, xj2, …, 
xjn,)∈Rn, find a K-partition of X, C={C1, …,CK}(K≤m) such that Ci≠Ø for (i=1, …,K) and 
UK i=1Ci=X and Ci∩Cj=Ø for i,j=1,…,K and i≠j. The problem of unsupervised learning can be 
stated as the optimisation of a predefined criterion function so that data objects belonging to 
cluster Ci are more similar to each other than objects belonging to cluster Cj. In principal, such 
optimisation can be performed by a ‘brute force’ methods; however, in practice this is often 
unfeasible. An alternative approach is to use a heuristic algorithm like K-means. However, 
such a  hill-climbing-like algorithm suffers from being sensitive to the initial starting point 
and is likely to get stuck in local minima. To overcome these limitations, it is advisable to use 
a more sophisticated metaheuristic algorithm. 

In principal, metaheuristics algorithms can be divided into a few groups, e.g. algorithms 
based on an evolutionary approach that model evolutionary processes and algorithms 
exploring the phenomenon of swarm intelligence [6].

Another approach, such as algorithms for modelling the response of a human immune 
system (e.g. artificial immune system algorithms) might be considered as a separate category 
due to the multiplicity of these proposed solutions.

Metaheuristics methods which are focused on exploring models of natural evolution 
generally, although not exclusively, take the following forms: genetic algorithms (GA) [10], 
genetic programming (GP) and differential evolution (DE) [20, 21]. Algorithms based on 
swarm intelligence are broadly presented by particle swarm optimisation (PSO) [13], ant 
colony optimisation (ACO) [4] or some of its modifications.

In recent years, unsupervised learning based on natural inspired metaheuristic algorithms, 
including PSO [7, 14, 22] and ant algorithms [5] has attracted attention as a  result of its 
demonstrated effectiveness in solving complicated optimisation problems. 

The recently introduced method, based on the group of solutions which explore the 
phenomenon of swarm intelligence was presented by Yang [22] in 2010 and is called the 
bat algorithm (BA). In [22], by modelling the behaviour of bats hunting for prey and by 
exploring phenomena of their echolocation capabilities, the author managed to incorporate 
methods for balancing the exploration phase, as well as the exploitation phase of modern 
swarm based algorithms.

The BA have already been applied to solve numerous hard optimisation problems such as 
multi-criteria optimisation [23] or optimisation of the topology of microelectronic circuits 
[9]. The growing popularity of the BA has encouraged researchers to focus their work on 
its further improvement. Most work was done regarding the hybridisation of BA with other 
metaheuristics or local search methods [8]. Some other solutions were involved in the context 
of adding self-adaptability capabilities to algorithm [1]. Some work has also been done in the 
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area of the adaptation of the standard BA to binary problems [19] and in modifying scheme 
of acceptance of a new solution [16]. 

Unfortunately, most of these modifications not only improve the quality of the obtained 
solutions, but also increase the number of control parameters that need to be set to obtain 
solutions of an expected quality. This makes such solutions quite impractical. More recent 
work [15] introduces a fuzzy logic control system built on a Mamdani-type inference method 
to control the exploration and exploitation phases of an evolutionary system based on 
a modified BA [15]. The application of fuzzy logic to control the exploration and exploitation 
phases frees the user from explicit specifying control parameters and only requires the 
defining of expected behaviour in a knowledge-based form of if-then sentences that is readable 
for humans.

Section 2  describes a  modified BA (MBA) used as an optimisation algorithm. Section 
3 provides information about incorporating a fuzzy logic controller to dynamically adjust the 
behaviour of a MBA and define linguistic variables used in if-then sentences in the knowledge 
base. Section 4 describes used solution encoding as a Bat positing in the search space. Section 
5 describes the used cost functions (Silhouette Coefficient index) that are used to evaluate 
a  given solution. Section 6  provides information about inducing semantic feature space 
from raw data point space using singular value decomposition (SVD). Section 7 discusses 
methods to transform the raw text-based representation of documents to vector space used 
by the unsupervised learning algorithm. Section 8 provides experimental results conducted 
on subsets of the well-known 20 Newsgroup. Section 9 concludes this paper. 

2.  Modified Bat Algorithm (MBA) 

 The BA has been recently proposed as a bio-inspired metaheuristics method for solving 
hard real-valued optimisation tasks. It tries to mimic the behaviour of bats hunting for their 
prey. The algorithm was introduced by Yang in 2010 [22]. BA is based on a population of 
bats, which fly through and explore the solution search space in order to find interesting 
areas. Each single bat represents one solution in multi-dimensional search space. Solutions 
are evaluated in terms of their fit value by provided a fit function. The full discussion of BA, 
its shortcomings, and some proposed modifications to form a modified bat algorithm (MBA) 
can be found in [16]. A MBA is presented as pseudocode in algorithm 1:

1: Randomly initialise position xi and velocity vi of i-th bat in the population. A bat is an 
encoded solution as described in section 4.

2: Initialise pulsation frequencyQ i∈[Q min, Q max], pulsation ri and loudness Ai of i-th bat 
in the population.
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3: while not termination conditions are satisfied:
 Q = fuzzy inference system (diversity, error, iteration) Q adaptation using FLC

4:  for_each bat in population:

5: vi(t) =αivi(t–1)+Qi(x*-xi(t–1))+Qi(x*
ever– xi(t–1))

xi(t)= xi(t–1)+ vi(t)

6:  if randn(0,1) >rt
i :

x'i ← generate new solution around current bat xi

7:  if f(x'i)<f(xi) or randn(0,1) < At
i :

xi← x'i
 Update values of pulsation and loudness, rt

i  and At
i , respectively, as:

At+1
i  ←α At

i  ; r t+1
i  ← r t

i (1–exp(–γt))

8:  Evaluate bat population using the fit function f described in section 5.

9:
10:

Find the best bat in the population and mark it as x*

if f(x*)<f(x*
ever):

11: x*
ever←x*

Algorithm 1. Modification of bat algorithm to form MBA
where:
 vi(t)	 – real-valued velocity vector of i-th bat,
xi(t)	  – real-valued position vector of i-th bat,
Q i	  – pulsation frequency of i-th bat,
α, γ, Q min, Q max 	 – constant.

The equations used for the bat position and the velocity update used in algorithm 1, step 
5, were introduced in [22].

 The modifications to BA introduced by Kiełkowicz and Grela in [16] are twofold: the 
scheme of acceptance of a  new solution; a  modified velocity equation to overcome some 
limitations of the original BA introduced in [22] and a memory of the best solution found 
during the process of optimisation by the algorithm is also introduced.

Modifications introduced in [16] also change the bat position and the velocity update 
equations. In comparison to equations presented in [22], the use of an archive component to 
help direct the bats towards the area where good solutions have previously been found and 
the concept of cognition coefficients instead of using upper bounds limits are used in [16]. 
Finally, equations (1) and (2) show the introduced modification:
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	 vi(t) =αivi(t–1)+Q i(x*–xi(t–1))+Q i(x *
ever– xi(t–1)),	 (1)

	 xi(t)= xi(t–1)+ vi(t).	 (2)
where:
αi	  – cognition coefficient of i-th bat,
x*–xi(t–1)	 – social component,
x *

ever– xi(t–1)	– archive component,
Q i	  – pulsation frequency of i-th bat.

In contrast to equations proposed by Yang in [22], modified velocity equation (1) uses 
cognition coefficients to limit the influence of past direction (taken at time t  – 1) in the 
decision taken at current t iteration. There is also an archive component that helps bats build 
social knowledge of the previously found globally best solution.

The proposed modifications to the scheme of acceptance of new solutions tend to 
limit the probability of acceptance of the worse solution. Comparing the original BA with 
the modification in [16], the worse solution is accepted with probability Ai ,  where in the 
modified algorithm, the worse solution is accepted only with probability (1– ri)Ai . There is 
an obvious relation, that given ri>0 and Ai>0, the following is true (1– ri)Ai<Ai . Moreover, 
modifications introduced in [16] also include the form of memory x *

ever which represents the 
best solution ever found.

It is important that the introduced modifications do not change the computation complexity 
of the algorithm in the context of the big Ο notation since these modifications are linear in 
nature and are not based on additional computation or the evaluation of a fitness function.

3.  Parameter auto-adaptation using fuzzy logic controller

The dynamic of the MBA is defined by the position and velocity update equations (1) 
and (2). Pulsation frequency Q i was chosen to be dynamically adjusted using a fuzzy logic 
Mamdani-type inference system since this parameter has the most influence on the movement 
of bats in the colony. Dynamic changes of this parameter can improve the overall performance 
of the algorithm. However, it is not always possible to derive clear mathematical formula 
describing how parameters should be adopted during the optimisation process. It is easier 
to describe an expected behaviour of an algorithm in the form of an if–then human-readable 
sentence describing the situation and expected behaviour, e.g. “If the iteration is small, then 
exploration is intensive” or “if diversity is small and iteration is big, then exploration is less”.

In the paper, a  fuzzy logic Mamdani-type inference system is used to control the 
exploration/exploitation phase of a  MBA through dynamic modification of the pulsation 
frequency Q i, as it was introduced and analysed in the author’s other publication [16]. 

To build a Mamdani-type inference system, it is required to define the input value range, 
the linguistic variable and the knowledge base in the form of an if–then sentence and define 
the output value range (and their defuzzification method). In the paper, as introduced in 
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[17], we also use diversity of the colony, the error of the flock and the number of iterations as 
the input parameters. As our output parameter, we choose Q max. We expect all our input and 
output parameters to be in the range of 

The diversity (dispersion) of the flock is defined by the following equation (3):

	 diversity t
n

x t x tij jj

D

i

n� � � � �� � �� ��� ��1 2

11
* 	  (3) 

It can be considered as the average Euclidean distance between each bat and the 
bat representing the best solution at the i-th iteration. Diversity measures the degree of 

dispersion in the flock. When bats are close to each other, the diversity is small. Diversity 
needs to be normalised before it can be considered as input to a fuzzy inference system, 

since input must be in  Equation (4) was used to normalise diversity:
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For iteration to be considered as input to a  fuzzy logic inference system it needs to be 
normalised, we used formula (5):

	 Iteration
currentIteration

imumNumberOfIteration
=

max
	 (5) 

From now on, normalised Diversity(t) will be referred to simply as diversity(t) and Q max 
as Q. Membership functions defining input and output linguistic variables over crisp [0, 1] 
interval are the triangular functions shown in Figs. 1 and 2.

The knowledge base for Mamdani-type inference is in the form of a set of if–then sentences, 
where the if part is a premise and the then part is the conclusion. Each sentence is constructed 
using linguistic variables and (possibly) ‘and/or’ connectors and hedges. In the paper, the 
author considers two linguistic variables (diversity and iteration) as inputs to the inference 
system and one output linguistic variable (Q). Each variable can take linguistic values from 
the set {small, big}. Input and output linguistic values are fuzzy sets defined on interval . Thus, 
we expect crisp input values and output to be in interval .  The used knowledge base is as 
follow:

	

KnowledgeBase:

=

and iteration is very " diversity isIf small smalll big
small big

,  Q is very 
 diversity is ,  Q is 

then
If then
IIf then

If
 iteration is ,  Q is 

 iteration is very 
big small
bbig small,  Q is very then

�

�
�
�

�
�
� 	
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4.  Solution encoding as bat position in  dimensional space

One of the major design considerations in developing unsupervised learning algorithms 
based on the bat optimisation metaheuristic is encoding the solution as bat position in search 
space. In the context of clustering N data points into K clusters with cluster centroids M={mi} 
i=1,…, K  (mi∈Rn for learning in n-dimensional space), one way is for the bat position to 
directly encode the centroid positions as bati:=(m1, …, mK) and assign a data point to the 
cluster based on similarity measures, e.g. the Euclidean distance. Which is known in literature, 
for other types of population-based metaheuristics, as centroid-based representation [18]. 
However, in this paper the author augments bat representation with thresholds and encodes 
the maximum numbers of centroids (given as inputs for the algorithm) in the bat position. 
This way, the optimisation process searches for both the optimum number of centroids and 
the optimal centroids position in the search space regarding the given cluster index (in this 
paper, the silhouette coefficient is used). The solution encoded as the bat position in the 
search space is given as bati:=(t1,…, tK ,  m1, …, mK), where threshold ti∈[–1,1], mi∈Rn. If 
ti  satisfied ti > 0 the corresponding centroid  is considered active. All active centroids form 
a valid solution which is evaluated under the given clustering index (discussed in section 5). 

5.  Cost function

In literature, there are few cluster indices that can be used to evaluate clustering obtained 
by the optimisation algorithm, for example CH-index [2] or DB-index [3]. However, in 
this work, the silhouette coefficient [24] index is used as a cost function to evaluate a given 
solution found by the MBA. Since it evaluates how a  given object (here a  document) is 
similar to other objects (documents) in a cluster, it seems reasonable to use it in a document 
clustering problem where we are interested in having similar documents within a cluster.

In order to construct silhouettes, one needs two things: the partition obtained by the 
MBA and collections of all proximities between data objects. For each data object i within the 
data, we calculate the value s(i). The mean value of all data objects is then calculated. Let us 
define s(i) in terms of dissimilarities. Consider data object i in the data set and corresponding 

Fig. 1.	 Diversity linguistic variable and 
terms {small, big}

Fig. 2.	 Diversity linguistic variable and 
terms {small, big}
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cluster A to which data point i belongs. When cluster A contains other object thatwe define  
a(i) as the average distance to all other data points in A. 

Let us define d(i,C) as the average dissimilarity from data point  to all data points in the 
other cluster C (A≠C). After obtaining all d(i,C) for all other clusters in the solution, we can 
define b(i) as: 
	 b i d i C

for every C A
� � � � �

�
min , 	 (6)

	 s i
b i a i

a i b i
� � � � �� � �

� � � �� �max ,
	 (7) 

Using silhouette coefficients is useful when seeking compact and clearly separated clusters. 

6.  Latent semantic analysis using SVD

Before unsupervised learning can take place, the learning dataset must be transformed to 
a vector space of reduced dimensionality – the latent space. The transformation is linear and 
is based on singular value decomposition [12]. SVD factorises the given learning data (in the 
form of a matrix Xmn with m  learning data points xi∈Rn, Xmn=[x1;…;xm]) to three matrices 
Xmn=Umr Σrr V

T
rn, where U and V are orthogonal matrices UTU=VTV=I and the diagonal matrix 

Σ contains r singular values of Xmn. The approximation of X is computed by setting all by the 
largest k singular values in Σ to zero (=Σ~), which is rank k optimal in the sense of L2-matrix 
norm. Once the approximation X~=U Σ~ VT≈UΣVT=X is obtained, notice that the data-to-data 
inner products based in this approximation are given by XX~T=U Σ~ 2VTand thus the rows of 
U Σ~  are defining coordinates for data points in latent space. Once latent representation of 
a training data set is induced, unsupervised learning can take place.

7.  Term frequency-inverse document frequency 

In order to perform machine learning on text documents, we first need to convert text-
based represented documents into numerical feature vector-space representation. There are 
numerous transformation methods known in the machine-learning community to perform 
such transformations of raw dataset text representation to vector representation. For example, 
‘bag of words’ methods, which can be summarised as follows: first assign an integer number 
to each word occurring in any document in a  training dataset, for example, by building 
a dictionary from words to integer indices. Then, for each document, count the number of 
occurrences of each word from the dictionary and store it in the matrices’ representation as 
the number of appearances of each word from the dictionary in the document. However, 
dictionary representation has severe limitations. Consider the space requirements for storing 
matrices that were built using a dictionary with 100,000 different words on 10,000 documents 
in 32-bit float data type; this would require more than 4GB of RAM.
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Transformation methods based on occurrence count have other severe limitations: longer 
documents have, by their nature, a larger average count than shorter documents, even though 
they might talk about exactly the same topics. To avoid these potential pitfalls, it suffices to 
divide the number of occurrences of each word in a document by the total number of words 
in the document: these new features are called term frequencies or tf for short.

Another refinement in addition to term frequencies is to weight the words that occur in 
many documents in the corpus and are therefore less informative than those that occur only 
in a smaller portion of the corpus. This weighting is called term frequency-inverse document 
frequency or tf–idf method for short. Words that are common in a single or a small group 
of documents tend to have higher tf–idf numbers than common words such as articles and 
prepositions. Search engines and modern information retrieval systems widely use tf–idf 
methods. Equation (8) represents the classical formula for tf–idf used for term weighting.

	 w tf
N
dfi j i j

i
, , log�

�

�
�

�

�
� 	 (8)

Where: wi,j is the weight for term  in the documents j, N is the number of documents in 
collections, tfi,j is the term frequency of term i in document j and dfi is the document frequency 
of term i in the collections. 

The tf–idf method evolved from IDF which was proposed by [25] and [26] with intuition 
that a term which occurs in many documents is not as good a discriminator as a term occurring 
in fewer documents and should have lower weight than the second.

8.  Experimental results

The dataset used for simulation experiments is the 20 Newsgroup. This is a collection of 
approximately 20,000 newsgroup documents, partitioned across 20 different newsgroups. 
It is a  popular collation, widely used in text application experiments of machine learning 
techniques, such as text clustering. The data is organised into 20 different newsgroups, each 
corresponding to a different topic. Some of these topics are highly related, for example ‘comp.
sys.ibm.pc.hardware’ and ‘comp.sys.mac.hardware’, while others are highly unrelated like 
‘talk.politics.mideast’ and ‘sci.crypt’.

For simulation experiments, a  few datasets were constructed. The first dataset consists 
of documents from three different topics: ‘soc.religion.christian’, ‘comp.graphics’, ‘rec.
motorcycles’ –  this is referred to as DS1. The second dataset consists of dataset from four 
topics: ‘soc.religion.christian’, ‘comp.graphics’, ‘rec.motorcycles’ and ‘rec.sport.hockey’ and 
is referred to as DS2. The third dataset consists of five topics: ‘soc.religion.christian’, ‘comp.
graphics’, ‘rec.motorcycles’, ‘rec.sport.hockey’ and ‘comp.sys.ibm.pc.hardware’ and is DS3. The 
fourth dataset consists of six topics: ‘soc.religion.christian’, ‘comp.graphics’, ‘rec.motorcycles’, 
‘rec.sport.hockey’, ‘comp.sys.ibm.pc.hardware’ and ‘sci.crypt’ and is DS4.

After being loaded into memory, the datasets were transformed from text-based 
representation into vector-space representation of documents with the aforementioned tf-idf 
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method. Latent concept space was induced with SVD decomposition. The data was then 
normalised. On the normalised dataset, the modified BA was used to perform unsupervised 
machine learning. The algorithm not only returns the optimal partitioning of the given 
dataset, but also the optimum number of clusters given used clustering index silhouettes 
coefficient. The obtained solutions were compared with the kMeans algorithm for which the 
silhouettes coefficient was also calculated. Firstly, we performed experiments to see how the 
dimensionality of the concept space influenced the quality of the solutions; we then compare 
the proposed method with the kMeans algorithm. 

During the simulation experiments, we used the knowledge base for dynamic parameter 
adjustments based on the current state of the colony for example, during the optimisation 
process using a  Mamdani-type fuzzy inference system, the diversity and iteration number 
were as follows: 

	

KnowledgeBase:

=

and iteration is very " diversity isIf small smalll big
small big

,  Q is very 
 diversity is ,  Q is 

then
If then
IIf then

If
 iteration is ,  Q is 

 iteration is very 
big small
bbig small,  Q is very then

�

�
�
�

�
�
� 	

For all experiments, the algorithm was set to stop after 5000 iteration steps; the number of 
bats was set to 1000*dimmensions; and maximum number of cluster to discover was set to 6;  
α= 0.1, γ=0.85. Each test was re-run 50 times.

Figures 3  shows the mean solution found after 50 re-runs against a  concept space 
dimensionality for a dataset containing three topics: ‘soc.religion.christian’, ‘comp.graphics’, 
‘rec.motorcycles’ DS1.

Figures 4 shows mean solution found after 50 re-run against a concept space dimensionality 
for dataset containing four topics: “soc.religion.christian”, ”comp.graphics”, “rec.motorcycles” 
and “rec.sport.hockey” DS2.

Fig. 3.	  Mean solution found for dataset 
DS1

Fig. 4.	 Mean solution found for dataset DS2



151

Figure 5  shows the mean solution found after 50 re-runs against a  concept space 
dimensionality for a  dataset containing five topics: ‘soc.religion.christian’, ‘comp.graphics’, 
‘rec.motorcycles’, ‘rec.sport.hockey’ and ‘comp.sys.ibm.pc.hardware’ DS3. Figure 6  shows 
the mean solution found after 50 re-runs against a concept space dimensionality for a dataset 
containing six topics: ‘soc.religion.christian’, ‘comp.graphics’, ‘rec.motorcycles’, ‘rec.sport.
hockey’, ‘comp.sys.ibm.pc.hardware’ and ‘sci.crypt’ DS4.

The results presented in Table 1  show how the proposed algorithm performs on used 
test datasets and it is compared to the classic kMeans algorithm, for which the silhouette 
coefficient was calculated.

Table 1.	 Mean solution and standard deviation of the proposed algorithm compared to the kMeans algorithm

Dataset Mean solution Standard deviation kMeans

DS1 0.849 0.096 0.755

DS2 0.751 0.145 0.714

DS3 0.745 0.163 0.656

DS4 0.715 0.193 0.516

9.  Summary

The first modification to the BA are briefly discussed, then Mamdani-type inference system 
is shortly introduced and used linguistic variable and linguistic values have been defined. 
A full discussion of this modification and simulation experiments using different Mamdani-
type inference systems for the dynamic modification of behaviour of a flock of bats in the 
BA can be found in the author’s other publications [15] and [16]. This paper focused on the 
application of the proposed methods in the document clustering problem of information retrieval 
systems. An appropriate solution encoding the bat position in the search space is introduced 
which allows for both optimisation of cluster as well as their number. 

Fig. 5.	 Mean solution found for dataset DS3 Fig. 6.	 Mean solution found for dataset DS4
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Simulation experiments were conducted on the well-known 20 Newsgroup datasets. Since 
datasets, in their raw form, are word-based representations, they need to be transformed to 
vector-space representation before unsupervised machine learning can take place. The tf-idf 
transformation method was used for that transformation. Since the tf-idf method produces 
a sparse matrix, the concept space is induced using SVD decomposition.

A few tests were designed and conducted on different subsets of 20 Newsgroup original 
datasets. The first dataset (DS1) consists of documents from three different topics: ‘soc.
religion.christian’, ‘comp.graphics’, ‘rec.motorcycles’. The second dataset (DS2) consists of 
dataset from four topics: ‘soc.religion.christian’, ‘comp.graphics’, ‘rec.motorcycles’ and ‘rec.
sport.hockey’. The third dataset (DS3) consists of five topics: ‘soc.religion.christian’, ‘comp.
graphics’, ‘rec.motorcycles’, ‘rec.sport.hockey’ and ‘comp.sys.ibm.pc.hardware’. The fourth 
dataset (DS4) consists of six topics: ‘soc.religion.christian’, ‘comp.graphics’, ‘rec.motorcycles’, 
‘rec.sport.hockey’, ‘comp.sys.ibm.pc.hardware’ and ‘sci.crypt’.

The obtained results are reported, as well as their mean value and standard deviation for 
50 re-runs of the proposed algorithm. The results obtained by the proposed method (MBA) 
were compared with the kMeans algorithms, which are well-known in literature. The mean 
solution found in terms of dimensionality of latent space is also considered.

The obtained results show that the proposed method is capable of finding a higher quality 
solution (in terms of the used clustering index silhouette coefficient) than the traditional method; 
therefore, it is better suited for the document clustering of information retrieval systems. 
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