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1. INTRODUCTION
Masonry is the main material mankind has exploited to 

provide itself a shelter. 

Fig. 1. a) Beam requires compression/tension stresses to be resisted; 
b Curvature of the beam does not help by itself to cancel tension; c) If the 
eccentricity e is large No-Tension equilibrium cannot subsist

Homes, temples, offi ces, markets and so on are built by 
some kind of masonry since the beginning of civilization. Walls 
are the main way loads are transferred to foundations and to 
underlying soil, but horizontal fl oor structures require some 
more skill, since masonry, due to its very poor, unreliable, in-
homogeneous and time-degrading, tensile strength, is not able 
to resist bending moments. This is the reason why masonry 
buildings are often complemented by wood or, more recently, 
steel systems to cover spaces, providing beam elements resist-
ing by pure fl exure. 

In a simply supported beam, equilibrium is sustained by 
bending moments, which in turn require that compression 
stresses are coupled with tension (Fig. 1a); so if some beam has 
ever been attempted it is soon realized that failure is inexorable. 

On the other side, early ante-literam architects learned from 
nature that it is possible to overpass empty spaces by stones: 
natural arches are encountered everywhere in the world (Fig. 2). 

a) b)
Fig. 2. Natural Arches: a) Capri (Italy); b) The “Elephant Arch” in Pantel-
leria (Italy)

Fig. 3. a) True arch: the action of the thrust force H increases the normal 
force and mitigates the bending moment. A small eccentricity e = M/N 
results; b) The same happens for a beam with horizontally contrasted 
suports, thus resulting in an architrave; c) The eccentricity is small and 
the center C of the normal force is in the interior of the cross-sections

So, the fi rst character that is acquired at glance is that the 
masonry should be “curve”. If one consider a curved beam (the 
pseudo-arch in Fig. 1b) one fi nds that the only difference is the 
insurgence of a compressive normal force on the cross-section, 
which mitigates, but does not cancel, the need for tension (Fig. 
1b). The bending moments remain the same, the normal force 
is small, the eccentricity is large and the center of the force is 
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generally out of the cross section (Fig. 1c): equilibrium cannot 
subsist unless tension is resisted where it is necessary in the 
structure. If the system is horizontally fi xed at both ends, a new 
entity is born, the horizontal thrust H, which drastically changes 
the static regime and a true arch is realized. The thrust force 
is the key for the arch statics. It acts, in fact, producing larger 
compressive normal forces and strong counter-moments (Fig. 
3a), thus mitigating the fl exure and enhancing compression. 
The effect is quite independent on apparent curvature: the 
important fact is that a horizontal force exists able to produce 
counter-moments with respecto to active load. The architrave 
is nothing else than an arch with the appearance of a beam 
(Fig. 3b). The typical condition is a composite compression-
fl exure stress, where the compression is large and the fl exure 
is small, so that the eccentricity with respect to the central 
line is strongly reduced and the center of force enters in the 
interior of the cross section: equilibrium is now possible by 
purely compressive stresses (Fig. 3c). 

So, Man learned that it was possible to cover spaces with 
stones. Anyway, he found and inhabited also large caves, so the 
attempt to reproduce nature (a strong impulse in Architecture, 
as testifi ed also in recent times by the Gaudì’s opera, see e.g. 
[1]) may be has pushed to realize double-curvature roofs. This 
activity gradually resulted in a success, with larger and larger 
spans being covered, thus leading to the early architecture and 
to its developments up to our times.

The historical development of Structural mechanics is 
exhaustively reconstructed in the book by E. Benvenuto 
[2]. A very interesting and complete historical survey on the 
conception, realization and progress in the masonry vaults 
technology can be found in [3] and in [4, 5]. Here an observa-
tion by Thomas Young is reported, namely: “The construction of 
the dome is less diffi cult than that of an arch since the tendency of each 
arch to fall is counteracted not only by the pressure of the parts above 
and below but also by the resistance of those which are situated on each 
side…..”. That double curvature surfaces are easier to be built 
than simple arches or barrel vaults is a fact that will receive 
further specifi cation in the sequel.

2. THE MASONRY AS A MATERIAL

2.1. Overall properties

Masonry is not properly a “material” in the strict sense of 
the word. It consists in the (generally man-made) assemblage 
of a basic component (the stones) simply laid on each other 
or, more often, jointed by mortar. Stones and mortar may have 
very variable mechanical properties, and the way in which the 
stones are organized in the masonry volume may (the masonry 
“texture”) may be very different, and is subject to the skill and 
the creativity of the designer and/or of the builder.

So, “masonry” has not a uniquely defi ned object, and it 
is very diffi cult to set up a mechanical model able to closely 
reproduce the properties of masonry, fi tting all the possible 
variety of masonry assortment and texture.

Anyway, in all structural analyses the engineer is forced 
to balance the trend to reproduce the material (and conse-
quently the structural behaviour) as closely as possible, with 
the practical manageability of the analytical tools. Linear 
theory of structures applied to steel, reinforced concrete and 
even to masonry, is a successful example of such effort. In all 
cases the basic theory should include the major features of the 
behaviour, possibly neglecting many details that poorly infl u-

ence structural safety assessment, and/or are uncontrollable. 
The small tensile strength in concrete, for instance, not only 
yields a poor contribution to the structure performance, but 
since it is a highly uncertain parameter in the concrete mass of 
a building, it increases uncertainty of the analysis’ results: so it 
is preferred to adapt linear theory by neglecting tensile strength 
rather than to exploit cumbersome procedures yielding results 
depending on uncontrollable parameters.

The fi rst step is then to identify the major properties, 
that are more or less common to all masonry types. The basic 
knowledge can be achieved through simple experiments. 
Uni-axial compression/tension tests can be performed on 
some Representative Volume Element (RVE) of a  typical 
masonry (Fig. 4).

After some experiments, it is possible to conclude that 
(Fig. 4a): i) the masonry has different elastic moduli in ten-
sion (Et) and compression (Ec); ii) the masonry has different 
limit stresses in tension (t) and compression (c); iii) the 
limit stress in tension is much smaller than the limit strength 
in compression (t << c); iv) the behaviour at failure in 
compression has some degree of ductility; v) the behaviour at 
failure in tension is defi nitely brittle, so tensile strength cannot 
be recovered absolutely. 

Fig. 4. a) A typical test of compression/tension on a masonry speciimen; 
b) The limit strength in compression is intermediate between the strength 
of mortar (small) and the strength of the bricks (large)

Fig. 5. Synthesis of biaxial tests on masonry prisms. Limit domain (see 
e.g. Hegemier [6] and Page [7]

Moreover, surprisingly (Fig. 4b), the limit strength in 
compression of masonry is larger than the strength of the weak 
element (the mortar) and is bounded from above by the limit 
strength of the strong component (the stones); this is due to 
some complex phenomenon of stress interaction and trans-
verse deformation of mortar with respect to stones. It is also 
easy to understand that if the axis of the stress is rotated by an 
angle, say 90°, the results of the experiment may signifi cantly 
change, in particular as regards the tensile strength. Some 
similar conclusions can be drawn from biaxial tests (see e.g. 
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[6, 7]). Experimental limit strength domains are of the type 
in Fig. 5, showing a high capacity in compression and a very 
poor limit in tension without ductility.

Summing up, masonry is a non-linear material, strongly 
hetero-resistant, anisotropic with respect to tensile strength, 
with compliance coeffi cients depending on the orientation of 
the stress axes and different in compression and tension, and 
with brittle failure at the tension threshold. 

2.2. Infl uence of the texture on masonry 
properties. The case of the masonry wall

The infl uence of the texture on the masonry performance 
can be illustrated by the following example. Assume that a 
panel is built by regular bricks with interposed poor mortar 
joints, lacking any adhesive power. Consider that bricks are set 
according to the following two patterns (Fig. 2.3a and 2.3b)

Fig. 6. Masonry element: a) Aligned bricks; b) Staggered bricks; c) Free 
lateral expansion for both panels

If there is no vertical compression both panels are free to 
expand laterally without encountering any resistance (Fig. 6c).

If a vertical compression is applied, the panel in Fig. 6a still 
can freely separate; by contrast an horizontal tensile pseudo-
strength becomes active in the panel in Fig. 6b, because of 
friction and interlocking of bricks with each other. The failure 
mechanism in Fig. 7b can be studied for the bi-dimensional 
masonry plane element in Fig. 7a having a friction coeffi cient 
f, a joints stagger s (Fig. 7c) and a row density  defi ned as the 
ratio between the number of block rows in the panel height 
H and the height H. In Fig. 7 = 7/H. 

 a) b) c)

Fig. 7. Masonry element: a) Geometrical dimensions, b) Failure mechanism 
under compression and limit tensile forces, c) Stagger parameter

The wall is subjected to vertical compression stresses y 
orthogonal to the joints direction and horizontal tractions x 
parallel to the joints. It is possible to prove [8] that the hori-
zontal tensile strength 'ox is given by (Fig. 7b)

  (1)

The ratio between the compressive stress on the joints and 
the transverse tensile strength is

  (2)

If the length of the stone is a, s is of the order a/2. Usually 
a > 2h (very often a > 4h), with h the thickness of the brick, 
and so s > h. On the other side,  ≈ 1/h, so that s > 1 (very 
often s > 2). With the help of mortar and/or of roughness 
of the interface between stones, f may possibly be rather large 
(f = 0.5÷0.8), and the ratio in Eq. (2) is frequently larger than 
1, i.e. the tensile strength in the direction parallel to joints is 
larger than the acting compressive stress.

It can be also proved that a pretty ductility is associated 
to the tensile strength 'ox . With reference to the diagrams in 
Fig. 8, applying a safety coeffi cient  to the limit resistance 'o, 
the loss in strength is balanced by a gain in ductility. In other 
words if 'a is the admissible stress and a is the maximum 
ductility, one can write

  (3)

 a) b)

Fig. 8. a) Stress vs. deformation in the tension range, b) conventional 
diagram with variable ductility

A fundamental observation is that Eq. (1) not only express-
es the tensile resistance of the masonry element, but also puts 
to evidence that the tension can be contrasted in function of the 
static needs by means of a skilled orientation of the texture of 
the masonry blocks and of the mortar joints. After recognizing 
that by the combined effect of compression and friction the 
lines of the mortar joints are probably the lines where original 
designers and builders intended to provide tensile strength in 
the masonry mass, it can be conceived that a technical prac-
tice had spread out, very similar to the modern technology of 
reinforced concrete where the structural designer inserts steel 
bars in way to balance tension along stretched lines.

Many examples proving that clever architects were aware 
of this effect when designing vault structures can be illustrated. 

3. MASONRY TEXTURE AND APPARATUS 
IN VAULT STATICS 

3.1. The cantilever stairs

In the static analysis of a vaulted staircase, like in Fig. 9, it 
is possible to recognize three basic typological components: 
the landings, the angle connections, and the fl ights of stairs 
(two or three depending on the structure morphology). The 
structure is supported by the outside walls system which 
represents the stairs box.

Looking at the section of a vaulted stair in Fig. 10a, such 
structural conformation suggests an apparent paradox: despite 
the fact that masonry is not effective in sustaining tension 
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stresses and bending, it should work as a cantilever, or however 
it is an incomplete vault which lacks the counter-thrust from 
the missing part of the arch (Fig. 10b) and so being prone to 
lose the equilibrium state (Fig. 10c). 

 a)  b)

Fig. 9. Vaulted stairs: a) Planimetric view; b) Longitudinal section

It is quite obvious that the solution of the contradiction 
goes pursued abandoning the search of improbable plane pat-
terns and by investigating three-dimensional equilibrium paths 
accounting for the space articulation of such structural organ-
isms, searching stress fi elds in equilibrium and compatible 
with the resistant abilities of the masonry material as usually 
interwoven in the case of “cantilever” stairs. 

 a) b) c)

Fig. 10. Transverse sections of vaulted stairs: a) Section and particular of 
one step; b) “Half barrel vault” model, c) Improbable “cantilever” behaviour

 a) b)

Fig. 11. Comparison of tension isostatic lines with the mortar rows. a) 
Tension lines calculated by a FEM (linear) procedure; b) Mortar rows in 
the fl ights

After identifying the basic internal force distributions 
through which the stairs can equilibrate their own weight 
and live loads, and the correlation that was intended by the 
original builders between statics and masonry tissue, it is also 
possible to design the reinforcement of the vaults, that shall 
be designed in way to sustain the possible equilibrium paths. 
Apart from complex analyses (see e.g. [9]), it is possible to 
identify simplifi ed equilibrium patterns that are compatible 
with the load-carrying capacity of the structure [10]. All these 
approaches, FEM and/or simple 3D-beam, agree in identify-
ing isostatic tension lines that approximately agree with the 
proceeding of the rows of mortar joints (Fig. 11), that are com-
pressed in the orthogonal direction, thus developing a tension 
capacity along their lines of action; thus proving that the statics 
of these stairs are strictly connected with the vault apparatus. 
It is also possible to use this argument in an inverse fashion, 

i.e. to infer isostatic lines proceeding from the observation of 
the masonry texture. Any double curvature cover, in fact, is a 
highly hyperstatic system, which means that it can select its 
own pattern in a large set of possible equilibrium paths. So 
texture and vault apparatus are a tool by which, apart from the 
shape of the vault (barrel vault, rib vault, groin vault, etc.) the 
architect can steer the structure to work in some preferred way.

3.2. Tension in spherical domes

Consider the axial-symmetric hemispherical dome with 
radius R and thickness t (Fig. 12a), supporting its own weight 
w, where it is well known that in the classical solution, tension 
should be active along the parallel lines after some degree of 
the zenith angle .

Here the meridian stress N and the hoop stress N are [11]

  (4)

with w = t and  the unit weight of the material constituting 
the shell.

The ratio is

  (5)

 a) b) c)

Fig. 12. a) Spherical dome; b)Ratio of parallel to meridian stress resultant. 
Nj is everywhere compressive for any j, and Nq is a tensile stress for j > 
51.8°; c) The friction pattern yields a admissible stress if fsw > 1

The ratio is plotted in Fig. 12b, whence one can see that 
the ratio is always not larger than 1. So, if masonry is organized 
by staggered regular bricks –as often happens tension could 
generally be faced by the friction mechanism as illustrated in 
Sec. 2.2 (Fig. 12c). 

Anyway, equilibrium can be found by some other mem-
brane surface other than the mean surface of the shell, pro-
vided it is included in the thickness between the (spherical) 
intrados and extrados. Considering a revolution membrane 
surface having an elliptic profi le with radii a and b, included 
in the interior of the hemisphere (Fig. 13a) the internal forces 
equilibrating the weight of the spherical dome can be found 
by the following procedure 

 a)  b)

Fig. 13. a) The elliptic membrane surface included in the dome thickness; 
b) Possible physiological fractures in the masonry
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Consider the spherical cap above the center angle  whose 
weight is

  (6)

The angle  is related to the zenith angle  by the rela-
tionships 

 (7)

The radii of curvature of the ellipsoidal surface are ([11], 
p. 40)

  (8)

so that

  (9)

and

   (10)

The equilibrium versus the vertical translation can be 
written

  (11)

and

  (12)

The ellipsoidal membrane shall now sustain the weight 
w of the spherical shell, that transforms in the weight w* on 
the ellipsoid setting

  (13)

whence

  (14)

The equilibrium along the outward normal to the (ellip-
soidal) membrane yields

 (15)

and

  (16)

Ellipsoidal stress surface can be active in order to mitigate 
tension hoop stresses, possibly after some fractures have opened 
(Fig. 13b), that can be considered physiological if masonry has 
some degree of ductility in the parallel direction, as in the fric-
tion strength mechanism illustrated in Sec. 2. In Fig. 14a various 
membrane stress surfaces are plotted, with different ratios a/b. 
Note that such surfaces make sense provided that they remain 
included in the thickness of the spherical shell, i.e. if t ≥ 2(R
a) and t ≥ 2(bR), with b ≥ a. The plots in Fig. 14b prove that 
the ratio of the parallel to the meridian normal force can be 
mitigated, and also be near 0.4 and smaller, with increasing the 
ratio b/a. Consider that both in the spherical and in the elliptic 
membranes, the stress surface is a complete semi-ellipsoid, with 
 = 90° at y = 0, so that the equilibrium solutions do not require 
any thrust force at the bottom support y = 0.

 a) b)

Fig. 14. a) Ellipsoidal membrane surfaces for different ratios of the ellipse 
radii a and b to the radius R of the spherical dome; b) Ratio of Nq to Nj for 
different shapes of the elliptic profi le

Anyway, it has been proved by [12] that a membrane 
surface included in the thickness of the dome can be found 
without hoop tension, provided that a adequate counter-thrust 
force can be exerted at the bottom of the dome. In Fig. 15a it 
is illustrated how the spherical and elliptic membranes only 
transfer vertical actions on the basement, vs and ve respectively, 
while a no-tension profi le requires that the base support can 
support a horizontal force hn (Fig. 15b). 

 a) b)

Fig. 15. No-thrust and no-tension stress surfaces: a) The basement of 
the dome is not subject to thrust action, but lower parallel lines are under 
tension; b) If a no-tension solution is adopted, the support of the dome is 
subject to a horizontal thrust force. Tension in the parallel lines is trans-
ferred to the basement

3.3. The effect of “masonry apparatus” 
on the statics of vaults. An help to intuition.

Reading masonry texture in a vault can help in under-
standing its equilibrium asset. The fi rst element is indeed its 
geometry, a cross vault yields a equilibrium pattern different 
than a barrel vault, and so on. But a double-curvature sur-
face, apart from its particular conception is anyway a highly 
hyperstatic system, and the equilibrium is never uniquely 
determinate. So the way the stones are jointed all together is a 
key to understand what equilibrium path would stresses run 
through, and/or what path would the builder have preferred 
to drive the vault to accommodate in. 
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So, consider for instance the two vaults in Fig. 16a and in 
Fig. 16b, having the same geometry, but in vault a) the mortar 
rows are parallel to the base perimeter, while in the vault b) 
the mortar rows are normal to the perimeter. The postulate is 
that compression normal to the mortar rows is the preferred 
equilibrium path for the vault, and that this is the tool for the 
original builder to steer the vault into a (his) objective static 
asset. If the preferred direction for compression is normal to 
the perimeter, it is expected that compression acts along the 
arrows drawn in Figs. 3.8, a) and b), so that the vault gains 
a tensile capacity in the direction orthogonal to the arrows. It is 
easy to understand that this produces an effect on the thrust the 
vault exerts on the base supports. Consider in fact that in both 
cases the vault is made by four gores. In the case a) compres-
sion is directly transferred to the sides of the basement, while 
lateral dilatation and the diffusion of stresses to the corners is 
contrasted by internal tensile strength; so two opposite gores 
tend to directly sustain each other, and the distribution of the 
horizontal thrust force tends to concentrate towards the middle 
of the sides (Fig. 16c). By contrast, in case b) compression is 
active in the direction parallel to the base sides, and the gores 
tend to support each other along the diagonal lines, while the 
orthogonal dilatation and diffusion of stress are now contrasted 
by tensile strength in the direction orthogonal to the sides; so 
all forces tend to converge in the corners, and the distribu-
tion of the horizontal thrust force tends to concentrate to the 
corners (Fig. 16d). In other words, by acting on the masonry 
apparatus it is possible that, with the same geometry, a structure 
may be realized that works like a cloister vault rather than like 
a groin vault or viceversa. Which means that it may be not 
wise to analyze the statics of a vault only on the basis of its 
geometry. Anyway, a skilled design of apparatus is also a tool 
to build vaults without formworks [13].

Fig. 16. Infl uence of the vault apparatus on the static behaviour of vaults. 
The difference in the apparatus in Figs. a) and b) yields a different equi-
librium pattern and a different distribution of the thrust force as in Figs. 
c) and d)

4. MASONRY AS A NO-TENSION MATERIAL

In the previous section it has been recognized that in some 
cases a tensile capacity along some direction can be attributed 
to masonry. Anyway Eq. (1) is conditioned by the implicit as-

sumption that 'ox is not larger than 'ob, the tensile strength of 
single bricks. If in any time in the life of the structure the stress 
s exceeds this limit, the bricks crack, and the strength decays 
to zero, with a brittle behaviour. On the other side, there is 
no doubt that the prevalent feature that characterizes masonry 
structures, and makes them dissimilar from modern concrete 
and steel structures, is quite defi nitely their intrinsic inability to 
resist tensile stresses. So, it is natural that the material model, 
that is intended to be an “analogue” of real masonry, cannot 
resist tensile stress, but, possibly, behaves elastically under 
pure compression.

No-Tension solutions for masonry structures are how-
ever a very signifi cant reference point and a powerful tool 
for reliable structural assessment, for many reasons. The 
fi rst reason is that the NT model is a stable behaviour, 
poorly subject to uncertainty and aging. Tensile strength is 
in any case small, uncertain, highly variable in the mass of a 
structure, not durable in time and so on; anyway neglecting 
tensile strength leads to a safe assessment. In other words, no 
doubt that the NT model is a simplifi ed behaviour, that in 
some cases does not give account of some surprisingly good 
performance of masonry buildings, but it is also true that if 
a masonry structure does not pass through a NT check it 
remains a suspect structure.

In the following the basics for the foundation of a NT 
material theory are illustrated, and the relevant principles for 
structural analysis, mainly identifi ed in the classic energy theo-
rems, suitably adapted to the material at hand, are formulated.

In (apparently) simple cases, closed-form solutions can be 
obtained, or, at least, the solution process can be prepared after 
a preliminary screening of the equilibrium scenario.

4.1. The standard No-Tension material

In a NT solid the equilibrium against external loads is 
required to be satisfi ed by admissible stress fi elds, which imply 
pure compression everywhere in the solid. Compatibility of 
the strain fi eld can be ensured by superposing to the elastic 
strain fi eld an additional fracture fi eld, that does not admit con-
traction in any point and along any direction; that is to say that 
the stress tensor  must be negative semi-defi nite everywhere 
in the solid, while the fracture strain fi eld f is required to be 
positive semi-defi nite.

The material shall, hence, satisfy the following conditions

  (17)

where ra is the set of directions through the generic point in 
the solid, a is one of such directions, f is the fracture strain 
that is assumed to superpose to the elastic strain e in order to 
anneal tensile stresses if possible, and C denotes the tensor of 
elastic constants. Consider moreover that on every elementary 
surface with normal a, if fa is strictly positive a must be zero; 
by contrast if a is strictly negative, fa must be zero. If o is 
the stress tensor in the point actually associated with fractures 
f, it follows that

  (18)
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The material admissibility conditions for strain and stress 
reported in Eq.(1) can be synthetically referred to by the set of 
inequalities h(f ) ≥ 0 and h() ≥ 0 respectively.

As a consequence of Eqs. (17) and (18), the classical 
Drucker’s rule holds for the fracture strain. With reference 
to the admissible domains quoted in Eq. (4.1), the normality 
Drucker’s law for no-tension material can thus be written as

  (19)

where  is the set of admissible stress tensors and  is any 
admissible stress state other than the effective one o. 

4.2. Limit Analysis and fundamental theorems

Let consider the body and surface forces, F acting on vol-
ume V and p acting on the free surface Sp, the displacement 
fi eld u, the imposed displacement fi eld uo characterizing the 
constrained part of the solid surface Su, the above mentioned 
strain fi eld = e + f = C + f, the stress fi eld .

As clear from the above, fracture strains f can be devel-
oped at the considered point only if the stress situation can 
be represented by a stress tensor  laying on the surface of 
the material admissibility domain, which is defi ned for NT 
bodies by h() ≤ 0; obviously if some fracture does exist, it is 
developed according to the NT material inequalities h(f ) ≥ 0.

4.2.1. General setup

Denoting by U the set of possible displacement fi elds, the 
class of fracture admissible mechanisms is defi ned by the subset Uf 
of U containing displacement fi elds uf that are directly compat-
ible with fracture strains f apart from any elastic strain fi eld

  (20)

  (21)

Collapse mechanisms can be defi ned as fracture admissible 
mechanisms uf such that the mechanical work developed by 
the applied loads (p,F) is positive; this condition is analytically 
expressed by the inequality

  (22)

By the Principle of Virtual Work, a necessary condition 
for the existence of any admissible stress fi eld  equilibrating 
the applied loads is that

  (23)

After Eq. (23) one can enounce the “Kinematical Theo-
rem” of Limit Analysis for NT bodies: if any collapse mechanism 
exists under the applied loads, no solution can exist for the equilibrium 
of the NT solid. In other words: If any collapse mechanism exists, 
the solid collapses.

On the other side, statically admissible stress fi elds  can be 
defi ned as tensor fi elds equilibrating the applied loads and sat-
isfying admissibility conditions, i.e. h() ≤ 0  or , where 

 is the admissible domain, everywhere in the solid. Assuming 
that under the load pattern (p,F) a statically admissible stress 
fi eld  exists for any mechanism uf, after Eq. (23) one gets

  (24)

One can, thus, enounce the “Static Theorem” of Limit 
Analysis for NT bodies: if under the applied loads any statically 
admissible stress fi eld  exists, no collapse mechanism exists and the 
structure cannot collapse.

4.2.2. The one-multiplier load pattern. The safety factor

Let assume the applied loads as given by the sum of a 
fi xed component (Fo, po) and a variable component (sFv, spv) 
depending on the value assumed by the multiplier s (actually 
one thus assumes that only the portion Fv, pv, may be desta-
bilizing and should be controlled)

  (25)

and let defi ne two fundamental classes of load multipliers s 
for NT bodies: the class of statically admissible multipliers  and 
the class of kinematically suffi cient multipliers . After denoting 
by n the unit outgoing vector normal to the surface Sp, load 
multipliers  are defi ned to be statically admissible if the fol-
lowing relations hold

  (26)

  (27)

that is to say, if a stress fi eld  exists equilibrating the ap-
plied loads with s =  and satisfying the NT material admis-
sibility conditions. A stress fi eld satisfying Eqs (26) and (27) 
is qualifi ed as statically admissible. 

On the other side, load multipliers  are defi ned to be 
kinematically suffi cient if the following relations hold

  (28)

  (29)

  (30)

(with the symmetrical gradient operator), that is to say, if 
any displacement fi eld u

f exists (a collapse mechanism) directly 
compatible with a NT admissible fracture strain f  apart from 
any elastic strain fi eld, and such that the condition stated by 
Eq.(30) is also satisfi ed. It is understood that the body is stable 
under the basic load pattern (Fo, po), and that Eq. (30) cannot 
be satisfi ed by any fracture strain fi eld for  = 0. In other terms 
it is assumed that the basic loads are suitably chosen in way 
that they cannot produce collapse. 
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Extensions to NT continua of the fundamental static and 
kinematic theorems of Limit Analysis allow individuating the 
value s- of the load multipliers s, limiting the loading capacity 
of the body.

On the basis of the static theorem, one can state that “the 
collapse multiplier  s- represents the maximum of the statically admis-
sible multipliers ”

  (31)

where Bo is the class of statically admissible multipliers.
On the basis of the kinematic theorem, one can state that 

“the collapse multiplier  s- represents the minimum of the kinematically 
suffi cient multipliers ”

  (32)

where o is the class of kinematically suffi cient multipliers.
Thereafter, by means of the static theorem, one can search 

for the collapse multiplier by implementing the problem

  (33)

Or otherwise, by means of the kinematic theorem, by 
solving the problem

 
 (34)

4.3. Variational principles 
for the NT equilibrium problem

Analysis of no-tension structures proves that stress, strain 
and displacement fi elds obey extremum principles of the basic 
energy functionals. Therefore the solution displacement and 
fracture strain fi elds are found as the constrained minimum 
of the Potential Energy functional, under the condition that the 
fracture fi eld is positively semi-defi nite at any point. In other 
words, if  and u are respectively the strain and the displace-
ment fi elds such that

  (35)

and p, F are the surface tractions and the body forces, it is 
possible to write down the Total Potential Energy (TPE) 
functional

  (36)

with D the inverse tensor of C. The TPE functional E(u, f) 
is made up by two terms, expressing the energy stored in the 
body L(u, f) and the opposite of the work made by the applied 
loads P(u). It can be proved that the solution uo, fo satisfi es 
the following condition

  (37)

which is the minimum of the Potential Energy, conditioned 
upon admissibility of the fracture strain, with  the set of 
admissible fracture fi elds. Despite the quadratic functional 
L(u, f) is positive defi nite, the minimum may be not unique 
if some mechanism exists such that P(u) = 0.

The stress fi eld can be found, in turn, as the constrained 
minimum of the Complementary Energy (CE) functional, un-
der the condition that the stress fi eld is in equilibrium with the 
applied loads and compressive everywhere. In other words, let

  (38) 

be the CE functional S () defi ned on the set o of the 
admissible stress fi elds (o) in equilibrium with the applied 
loads, with Lc() the complementary energy stored in the body 
and R() the work by the reactions times the settlements of the 
constrained points. It can be proved that, if ois the solution 
stress fi eld, the following condition holds 

  (39)

Eq.(39) expresses the compatibility condition on the solu-
tion stress fi eld, i.e. the constrained minimum of S () yields 
the stress fi eld o such that the elastic strains Co can be made 
compatible with a continuous displacement fi eld, by the su-
perposition of a fracture strain fi eld. Since · C is positive 
defi nite in , the solution is unique.

4.4. Convexity of the energy functionals 
and Limit Analysis as a tool 
for existence of the solution

It is easy to prove that the Total Potential Energy and 
the Complementary Energy functionals are both defi ned on 
convex sets. The respective sets of defi nition are: i) the space 
of couples (u,f), with u a displacement vector function com-
patible with the external constraints and f a semi-positively 
valued tensor fi eld; ii) the space of semi-negatively valued 
tensor fi elds in equilibrium with the applied loads. Because of 
convexity, both minima exist if the respective defi nition sets, 
U   on one side and o on the other side, are not empty. 
For o to be not empty it is necessary and suffi cient that the 
structure is under the collapse threshold; in this case a unique 
minimal point exists for S (). U and  are intrinsically not 
empty, in that the fi rst is the set of three-components vector 
fi elds and the second is the space of semi-positive defi nite 
3rd-order tensor fi elds. The displacement/fracture solution 
may be not unique if a mechanism exists such that the external 
work is zero. Anyway, if any collapse mechanism exists, E (u,f) 
diverges, and the minimum does not exist. 

It can be concluded that the solution of the NT equilibrium 
problem exists iff the structure is under the collapse threshold.
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4.5. The NT solution for masonry arches 
and barrel vaults

NT solutions have been investigated since many years 
and many results have been produced, also yielding success-
ful comparison with experimental results. As an example, 
consider the portal arch in Fig. 17a, that has been tested under 
an horizontal force acting on top of the right pillar, as in Fig. 
17b. In Fig. 17c the comparison between the experimental and 
numerical results is plotted, proving a very good agreement of 
the NT theory with practice.

 a) b) c)

Fig. 17. Experimental and mechanical model: a) The laboratory arch-portal 
tested under the horizontal force F; b) The mechanical NT model for cal-
culations; c) Plot of numerical and experimental results

More details on NT material and structures can be found 
in [14, 15].

5. NO-TENSION MODEL FOR MASONRY 
– LIKE SHELLS AND DOMES

Equilibrium fi elds for No-Tension vaults can be built upon 
the assumption that a membrane stress-surface is considered, 
included in the profi le of the vault, displaying compressive 
forces along all directions. The idea is not new, it was put 
forward by Heyman [11], but there are few doubts that it 
represents a powerful approach to search stresses in masonry 
vaults, as the 3D direct counterpart of the traditional historical 
method based on the funicular line of the loads in 2D structural 
problems (Fig. 18). 

 a) b)

Fig. 18. a) Arch equilibrium analysis: the pressure line; b) Vault equilibrium 
analysis: the membrane stress surface

As illustrated in Sec. 4, modelling a large variety of equi-
librium stress fi elds is the preliminary step to fi nd a fi nal solu-
tion, yielding a credible pattern for the fracture distribution, in 
agreement with technical expectation, as it can be recognized 
for the two-span arch in Fig. 19

In the following an approach is outlined to identify mem-
brane stress surfaces both responding to the requirements of 
stress admissibility and equilibrium with active loads.

Fig. 19. Sample results from NT model. a) The arcade and the experimental 
set up; b) The arcade in the original confi guration and with downward set-
tlement of the central pier; c) Pressure line and fractures without settlement; 
d) Stresses without settlement; e) Pressure line and fractures with settle-
ment; f) Stresses with settlement

5.1. Membrane 3D-equilibrium of the generic 
vault element

Let consider a membrane shell z = z (x,y) subject to ge-
neric load components px, py, pz , as shown in Fig. 20. In order 
to express local equilibrium conditions one should consider 
any single surface element under the action of loads and of 
membrane stresses, and write equilibrium equations along 
coordinate axes, as in Fig. 21. 

After some algebra, the equilibrium equations in the x and 
y directions can be written in the form

  (40)

  (41)

Additionally, equilibrium along the z-direction yields

  (42)

Fig. 20. The membrane surface Fig. 21. Generic surface element of the 
membrane surface

5.2. Equivalence of the 3D-problem 
with the projected 2D-problem

Considering the projections Nx, Ny, Nxy = Nyx of the mem-
brane stresses onto the xy pIane, as shown in Fig. 22
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Fig. 22. Stresses and loads acting 
on a generic 3D-element of the 
vault mid-surface and their projec-
tion on the plane

Fig. 23. The vault and its mid-surface 
under purely vertical loads

the following equations hold

  (43)

with

  (44)

Moreover putting

  (45)

the equilibrium equations in function of the new variables 
can be written

  (46)

The z-equation, after some algebra, reduces to

   (47)

whence one gets

  (48)

So the membrane equilibrium, apart from Eq. (48), be-
comes analogous to the problem of a plane panel.

5.3. Reduction of equilibrium conditions 
by means of the stress function

In most cases, it is advantageous to introduce a stress func-
tion (x, y) that reduces the 3 equilibrium equations to one 
second-order equation as follows. By analogy with the panel 
problem, the equilibrium conditions in the x and y directions 
are identically satisfi ed if one puts

  (49)

Then the third equilibrium equation (48) turns into 

  (50)

The solution of the problem is, thus, reduced to the 
determination of the stress function. If px = py = 0 (e.g. the 
vault sustains only gravitational loads), the latter equation 
simplifi es to:

  (51)

5.4. Stress NT admissibility

Let consider a masonry vault with thickness s, subject only 
to vertical loads, as shown in Fig. 23 Since it is assumed that 
the masonry cannot resist tensile stresses, the internal forces 
have to satisfy the following admissibility conditions

  (52)

A solution can be attempted searching for a membrane 
surface z = z(x,y) completely internal to the mass of the vault, 
and such to resist the downward (i.e. positive) load pz by purely 
compressive internal forces. The fi rst condition is expressed 
by the inequalities (the inclusion condition)

  (53)

where z1(x,y) and z2(x,y) are the surfaces identifying the upper 
and lower profi les of the vault, respectively.

Defi nitively, setting the problem in plane variables and 
assuming that only vertical loads act, the equilibrium is ex-
pressed by Eqs. (49) with px = py = 0 and by Eq. (51), whilst 
admissibility conditions are given by 

  (54)

Eqs. (54) are conditioned by Eq. (53), according to which 
the stress membrane shell of the vault should be kept within 
the vault’s profi les. 

5.5. Simple coupling of stress equilibrium 
with admissibility

So, the key of the problem is how the stress function (x,y) 
combines with the membrane function z(x,y). It is interesting 
to note that if one takes 

 x,y = k z(x,y), k > 0 (55)

by substitution in Eq.(49), one gets

  (56)

Coupling with admissibility conditions, one gets
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  (57)

with Hz(x,y) the Hessian determinant of the z function, and 
X the horizontal projection of the vault. On the other side, 
substitution of Eq. (55) in the z-equilibrium Eq. (51) yields

  (58)

with Q the thrust basement factor. From Eqs (57) one can deduct 
that z(x,y) is a concave function. One can also observe that in a 
masonry vault. equilibrium may coincide with admissibility. This 
result means that a single joint equation is able to account at the 
meanwhile for both equilibrium and admissibility, also giving 
a scientifi c demonstration of the easiness of building masonry 
vaults, due to the almost immediate intuition of equilibrium 
against applied load, which is able to assure also admissibility.

Eq. (58) represents the simplest form of the well known 
Monge-Ampère equation [16], and quite clearly plays a key 
role in the statics of NT vaults [17]. 

5.6. General coupling of stress equilibrium 
with admissibility

More in general consider the position

 (x,y) = F[z(x,y)] (59)

Eq.s (49) turn to

 (60)

and Eqs. (54) yield

 (61)

while the z-equilibrium Eq. (51) is

  (62)

5.7. Problem solution in terms of stress 
and fractures by the complementary 

energy approach
Once membrane forces have been identifi ed, stresses and 

consequently elastic energy can be easily calculated.
Therefore, after individuating the set of statically ad-

missible membrane surfaces (in terms of admissibility and 
equilibrium, i.e. satisfying the set of inequalities in Eqs (40)-
(41)-(42) and (52)), a possible approach in order to fi nd the 
solution in terms of stresses is to set up a Complementary 
Energy problem to be formulated as a kind of extension to 
masonry vaults of the classical analogous energetic approach 
for linearly elastic structures, aiming at fi nding the fracture 
fi eld that yields a  compatible strain fi eld when combined 
with elastic strains.

In order to undertake this approach the expression of the 
Complementary Energy embedded in a masonry vault element 
shall be evaluated. In case of NT assumption, one should con-
sider that the generic element appears to be partially resistant; 
with reference to Fig. 24 one has the following stress and strain 
components in he membrane’s plane

  (63)

where CN is the point where the membrane surface intersects 
the normal to the middle surface of the vault, u is the distance 
from CN to the compressed profi le of the vault element, the 
neutral surface where stresses are null is at distance 3u from 
the compressed profi le, the part of the vault element below (or 
above) the neutral surface is inert and possibly fractured, Arx 
= 3udsy and Ary = 3udsx are the reactive areas of the respective 
cross-sections, Gr is the centroid of the reactive part of the 
vault element, er is the distance of the membrane from Gr, and 
Nx, Ny are the normal forces per unit length on the element 
edges; mx = x(Gr), my = y(Gr) are the average compression 
stresses on respectively Arx and Ary

  (64)

Eqs. (63) and (64) after some algebra yield
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  (65)

 a) b)

Fig. 24. Cross sections of the generic element of the vault and normal 
stresses distribution: a) Cross-section xz, b) Cross-section yz

When neglecting the curvatures of the element and the 
shear stress component, the elementary elastic work is

  (66)

and so is the elastic energy stored in the element dL = dLe. 
The elastic energy over the whole vault is

  (67)

where S is the mean surface of the vault. In Eq. (67) all the 
entities in the integrand function are dependent by the point 
coordinates through the membrane function z(x,y). 

The fi nal Complementary Energy functional S expression 
is given by adding to the elastic energy term L, the energy 
related to the work developed by the constraint reactions R, 
as S =L+R.

The solution in terms of stresses shall be then searched for 
by numerically implementing the minimization of the Com-
plementary Energy functional over admissible z-functions, i.e. 
under the condition that the solution itself is respectful of the 
above individuated equilibrium and admissibility equations. 

6. SOLUTION OF NT EQUILIBRIUM. 
THE VAULTS OF TRANSLATION

After membrane forces have been identifi ed, stresses and 
consequently elastic energy are easily calculated.

As shown in the previous paragraph, a possible approach 
to the problem consists in hypothesizing a shape of the stress 

function (x,y) a priori satisfying equilibrium and material 
admissibility, and, thereafter, deducing the related membrane 
function z(x,y), and, therefore, stress distribution; in some 
cases this approach allows to identify solutions fi tting some 
vault typologies; in the following, the case is presented of vaults 
of translation, such as the simple case of the barrel vault with 
indefi nite length and the -less simple- barrel vault with con-
straints at its longitudinal extremities, which requires a rather 
more complex treatment. 

6.1. The indefi nite length barrel vault

Fig. 25. The indefi nite barrel vault and its cross-section

With reference to Fig. 25, consider the stress function in 
the form 

  (68)

whence

  (69)

From Eq.(51), equilibrium turns into

  (70)

If one considers

  (71)

Eq. (70) reduces to

  (72)

which can be solved with

  (73)

whence
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  (74)

According to Eq. (56) the solution is admissible if  
– kz(x) +g(x) ≤ 0 . If one takes – kz(x) +g(x) = 0  the previ-
ous Eqs (73) yield Ny = 0, and the equation

  (75)

yields the funicular line of the active load, with H the relevant 
thrust, which is the well known solution for the barrel vault 
as a sequence of independent arches (Fig. 25).

6.2. The confi ned barrel vault

A second case can be obtained setting

  (76)

with the coeffi cient a such that 0 ≤ aL ≤ 1, being L a length 
parameter, and (x) obeying the equation

  (77)

One should notice that (x) is the function governing 
the internal forces in the membrane surface. In fact, from 
Eq.(49), one has

 (78)

o(x,y) is assigned in the form

  (79)

with G(x) and Q(x) obeying the following differential 
equations

 (80)

The membrane surface remains identifi ed by the equation:

 (81)

The initial values of (x), G(x), Q(x) with the relevant 
derivatives, and the values of a and k remain undetermined 
and available to set additional constraints.

In fact, if the problem is symmetric in both directions <x> 
and <y>, the following conditions shall be added:

  (82)

  (83)

still because of symmetry

 
  (84)

 

Initial conditions for (x), G(x) and Q(x) and the param-
eters a and k can be sought in order to meet the requirement 
that the membrane surface z = z(x,y) is in the interior of the 
vault thickness everywhere. Note that the set functions satisfy 
the equations 

  (85)

  (86)

with 0 ≤ (y) ≤ 1 for any y, i.e. equilibrium and admissibility 
vs. vertical load are verifi ed.

If one looks at the z-surface resulting from the above posi-
tions, one realizes that this can be assumed as the membrane 
surface for a confi ned barrel vault (Fig. 26).
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Fig. 26. The confi ned barrel vault with a possible membrane surface: 
a) Axonometric projection; b) Transverse xz section; c) Longitudinal yz 
section

7. VAULTS OF GENERAL SHAPE. 
THE MONGE-AMPERE EQUATION

The set S of solutions of the Vault Inequality System (VIS) 
composed by the inequalities 

  (87)

with X the horizontal projection of the vault, contains all 
solutions of the z-equilibrium Eq. (58). Solutions of the 
system Eq. (87) defi ne convex functions z(x,y) included in 
the profi le of the vault, and enjoy the following property: If 
zi(x,y) (i = 1,…,N) are N functions, each verifying the, pos-
sibly homogeneous, basic VIS system in Eq. (87), any convex 
combination of such functions also yields a member of the 
solution set of the vault inequality with the strict inequality 
sign. The homogeneous VIS is the same as Eq. (87) with the 
sign of equality in the fi rst row.

7.1. Finding solutions

It is possible to build up a number N of solutions zi(x,y) 
(i = 1,…,N) of the homogeneous or non-homogeneous VIS, 
so that solutions of the z-equilibrium equation

  (88)

can be searched in the form

  (89)

where each of the basic functions zi(x,y) is assumed to comply 
with the VIS [Eq. (87)], in homogeneous or non-homoge-
neous form.

Assume, moreover, that some coi coeffi cients have been 
found such that

  (90)

verifi es the inclusion condition. To this aim, it is suffi cient 
that Eq. (90) is a convex combination of the basic zi’s, possibly 
approaching as much as possible the middle surface zm(x,y).

Coeffi cients ci yielding solutions of Eq. (88) correspond to 
the minimum of the error function

  (91)

with

  (92)

One should notice that, since z(x,y| ci) is assumed to be 
convex, also R(ci) ≥ 0 and because of the Schwarz’s inequality

  (93)

The conditions for the minimum of Eq. (91) with respect 
to Q are written

  (94)

whence

  (95)

After substitution in the expression in Eq. (91) of the mean 
square error, one gets 

  (96)

By virtue of Eqs. (92)-(93), (ci) is a positive defi nite 
function of its arguments ci and it is null if  Hz(x,y) = –pz (x,y).

It follows that the minimum of (ci) is attained where the 
ratio ~R2(ci)/S(ci) is minimum. Therefore the problem can be 
defi nitely set in the form



Wiadomości Konserwatorskie • Journal of Heritage Conservation • 32/2012  79

  (97)

All load patterns –pz (x,y) such that coeffi cients ci resulting 
in =0 exist, are called manageable load patterns with respect to 
the assumed form for the function z(x,y|ci). If the applied load 
is manageable, equilibrium can be exactly satisfi ed. Otherwise, 
equilibrium can be approximately verifi ed, to some extent, 
depending on the choice of the basic functions zi(x,y). 

Further details and applications are illustrated in [17, 18]. 
Interaction with the reciprocal problem, i.e. No-Compression 
double curvature structures, can give fruitful contributes to 
new developments (see e.g. [19]).

7.2. Some results. The NT vault subject 
to the self-weight and to a manageable live load

As an example, a parabolic vault covering a rectangular 
domain X = [x1,x2] × [y1,y2] . The vault is characterized by 
height f, thickness s and middle surface 

   (98)

with a = f /(x1
2 + y1

2).

 a) b)

Fig. 27. Sample results: a) Plot of the objective load p(x,y) = w(x,y)+ q(x,y); 
b) Superposition of the objective load and its approximation by means of 
Hz(x,y); the two plots are practically coincident

The objective load is composed by the superposition of an 
accidental load q(x,y) localized around a point (xo, yo) and the 
self weight of the vault w(x,y) given as follows 

  (99)

with t denoting the height of the superstructure, f and m 
the unit weight of the superstructure and of the structural 
masonry respectively.

A manageable live load is assumed in the form

  (100)

and the results are plotted in Fig. 27, proving a perfect agree-
ment between the Hessian Hz(x,y) of the function z(x,y) and 
the objective load p(x,y) = w(x,y)+ q(x,y). 

A second example is quoted in Fig. 28, where a live load, 
non-manageable with respect to the basis adopted for z(x,y) 
is assumed in the form

  (101)

The results are not coincident, but anyway a good ap-
proximation can be obtained. Better results can be pursued, 
of course, assuming an expression for z(x,y) that makes the 
load manageable. Results are synthetically quoted in Fig. 28.

 a) b)
Fig. 28. Non-manageable load pattern: a) Plot of the objective load p(x,y) 
= w(x,y)+ q(x,y); b) Superposition of the objective load and its approxima-
tion by means of Hz(x,y)

8. CONCLUSIONS

Historical masonry vaults and/or cupolas exhibit a large 
variety of typological assets. Often masonry is well operated, 
with strong stones and effectively adhesive mortar; in many 
cases masonry is in worse working order; in other cases a poor 
masonry is encountered.

Anyway, double-curvature structures can appeal to many 
equilibrium patterns to sustain at least their own weight plus 
some light additional loads. So they are in general stable 
systems, provided that their supports are strong and able to 
contrast thrust forces. Vaults are in general characterized by 
their shape, and a lot of types can be listed (see e.g. [20]), that 
have been conceived to be included in any simple or complex 
architectural design. But the equilibrium paths are also driven 
by the way masonry is interwoven. In some cases, a masterly 
design of the masonry tissue and of the vault apparatus may 
help in improving the structure’s stability, and sometimes even 
in preventing fractures, as discussed and illustrated in Sec. 3.

It should be realized, by contrast, that fractures are almost 
always a physiological feature of masonry; since almost always 
it does not enjoy signifi cant tensile strength, it cannot expand 
by tension and, when necessary to comply with congruence 
of the overall deformation, dilatation is provided by fractures.

Anyway, the poor consistency of the tensile resistance of 
the masonry material, its brittle, desultory and time-aging 
character, the diffi culty in identifying non-zero reliable values, 
possibly led the ancient builders to introject empirical rules 
aiming, more or less consciously, at organizing structures in 
way that they are able to equilibrate loads without needing 
tensile stresses in the material. A susceptibility that has not 
been disproved by any analysis performed by modern power-
ful theoretical, numerical and electronic equipments. After a 
similar survey, Heyman, in 1966 [21], demonstrated that the 
failure of the masonry structures was substantially due to the 
activation of a collapse mechanism, rather than to the prob-
ability of compression crushing.

Many efforts have been devoted to specializing the Limit 
Analysis theory to the case of masonry structures (see e.g. [22-
27]). Actually by referring to the collapse condition, one can 
just obtain some indications about the safety margins, whilst 
nothing about the fracture distribution or the behaviour evolu-
tion with increasing loads can be predicted.
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Under such perspective, even if the NT model still repre-
sents an idealization of the real behaviour, one can follow the 
fracture evolution, assuming the small localized fractures as 
a phenomenological feature of the masonry material, besides 
the cases when the crack situation is such to compromise the 
local material resistance or to activate a collapse mechanism. 
The special character of the model, which results in a overall 
non-linear behaviour due to the unilateral nature of the con-
stitutive law, and in a few more features related to the basic 
assumptions (determining and governing the existence of the 
inelastic crack strain fi eld, the conditions for its activation, its 
development at the fi rst detachment, the characteristics of the 
stress state), require some special formulation for structural 
analysis purposes (Sec.4).

Defi nitely, the solution of the structural problem is based 
on a suitable re-formulation of the energetic theorems, which, 
by refl ecting the non-linear character of the mechanical model, 
translates into constrained extremum principles the ordinary 
conditions of stress equilibrium on one side, and of strain con-
gruence on the other side. In such a way, the fi nal state of the 
structural solid under different load levels can be identifi ed up 
to the collapse situation, which can be predicted, as mentioned 
in the above, by means of the fundamental theorems of Limit 
Analysis, suitably re-formulated. As far as two-dimensional 
structural systems are concerned (walls, arches, plane models 
of masonry bridges and so on), and some their combinations, 
theory and practice are in a well established state of the art.

Application to the statics of vaults and cupolas is today 
largely investigated by many authors. The present paper is far 
from aiming at an exhaustive review, and only a few papers 
(see e.g. [28-33]) are referenced here, among the manifold 
that would deserve to be mentioned. It is clear however that 

the problem is much harder than for plane structures; in this 
regard it may be enough to consider the intrinsic diffi culties 
to identify collapse mechanisms in applying the kinematic ap-
proach of Limit Analysis to double-curvature vaults. 

A common feature, however, is that in most cases the 
main objective is to extend to double-curvature roofi ng the 
methods that have historically developed with reference to 
single curvature arches or analogues, to fi nd admissible stress 
distributions. The approach illustrated in Secs. 5-7, originally 
elaborated by the writers, aims at this purpose, on one side 
providing solution to the collapse problem from the point of 
view of the static theorem, and on the other side solving the 
preliminary step to fi nd solutions including compatible strain 
and fracture fi elds in agreement with fi eld engineering surveys. 
The Monge-Ampere equation, introduced in Sec. 5, is essen-
tially the double-curvature counterpart of the equation of the 
funicular line. The equation has widely been investigated by 
mathematicians; nevertheless only a few solutions are available 
in the literature, so that solutions effective for the problem at 
hand shall be sought by specifi c and/or numerical methods. 
A Ritz-Galerkin type approach, requiring a previous identi-
fi cation of a number of basic functions, has been specifi cally 
issued in Sec. 7, proving its manageability in practical examples.
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Abstract
After discussing the problem of roofi ng empty spaces by 

ancient masonry builders, it is found out that curvature and 
horizontal thrust are the basic elements for masonry to get 
over long spans. Basic properties of masonry do not allow to 
rely on tensile strength, and beam behaviour cannot be trusted 
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cases, the No-Tension assumption yields a effective model 
for structural assessment. The theory is briefl y illustrated, 
and its application to vaults is explained in detail, leading to 
a Monge-Ampere equation ruling the static regime through 
a membrane stress surface.

Streszczenie
Po przeanalizowaniu problematyki przekryć wznoszonych 

techniką murarską  w dawnych czasach, okazało się, że krzy-
wizna i siły rozporu są głównymi elementami pozwalającymi 
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Podstawowe właściwości budulca nie gwarantują wytrzyma-
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których przypadkach, dzięki działaniu sił ściskających i tarcia, 
pozwolić na powstanie modelu równowagi obejmującego 
rozciąganie, co wyjaśnia nadspodziewaną nośność niektórych 
ścian i kopuł. Ogólnie uznaje się, że z wyjątkiem nielicznych 
przypadków, założenie braku naprężeń rozciągających daje w 
efekcie odpowiedni model do oceny konstrukcji. Ta krótko 
przedstawiona tutaj teoria i jej zastosowanie w przypadku kopuł, 
zostały szczegółowo wyjaśnione, czego efektem jest równanie 
Monge-Ampere wyznaczające schemat statyczny w naprężeniu 
błonowym powierzchni.
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