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1. INTRODUCTION

1.1. Continuum-mechanics based approaches

The oldest continuum-mechanics based approach to the 
numerical analysis of cracking masonry arches is due to Castigli-
ano, 1879 [1, p. 472–478]. Castigliano analyzed the structural 
behaviour of Ponte Mosca, Turin (erected in 1834). He started 
with the assumption of a homogeneous, isotropic, elastic arch. 
After completing the analysis, Castigliano checked, for all radial 
joints, whether the joints were fully under compression or not. 
He assumed that the lack of tensile resistance of the mortared 
(or dry) joints dominates the behaviour of the masonry arch, so 
that the effective thickness of the arch is reduced to the height 
of the compressive zone (Fig. 1). In order to capture the me-
chanics of the arch correctly, it is therefore necessary to perform 
an iterative analysis. Due to the lack of tensile resistance, the 
centerline and the thickness of the arch change; the analysis is 
therefore repeated with the updated geometry, until the change 
to the preceding iteration is negligible. Castigliano claimed – 
correctly – that this iterative procedure would converge rapidly. 
Castigliano’s method has found applications until very recently 
[2]. Castigliano’s approach captures the arch mechanics in ser-
vice state relatively well: The most essential characteristics of 
masonry, namely the anisotropy related to joint orientation, and 
the zero tensile strength in the direction normal to the bed joints, 
are represented in Castigliano’s model. The main argument 
that can be brought forward against Castigliano’s model is that 
it is unsuited for the analysis of the ultimate limit state: It does 
not permit to introduce the compressive strength of masonry. 
The compressed part of the arch always remains linear elastic.

More recently, Castigliano’s approach has been general-
ized into multidimensions  as the “NTR” material model for 
arbitrary masonry structures (“non tensile-resistant”; see [3] 
for a general review and, among other contributions, [4], for 
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specifi c applications to arches). This approach has been devel-
oped aiming at rigourous proofs that material models with zero 
tensile strength share most of the properties with more classical 
elastoplastic material laws (based on convex yield surfaces), and 
that the classical limit theorems of plasticity indeed carry over 
to such materials. The NTR model can be combined with any 
isotropic or anisotropic elastic model for the uncracked con-
tinuum. It is able to refl ect the low tensile strength of masonry 
without any need of determining a large number of material 
properties. However, the main drawback of these models is 
that they do not take into account the orientation-dependent 
tensile strength of real masonry, but rather assume that ma-
sonry has no tensile strength in any direction whatsoever. 
While this drawback may not be so important within the scope 
of the analysis of masonry walls where multi-axial in-plane 
stress and shear dominate, it is a prohibitive drawback when 
one ventures to analyze vaults, because out-of-plane bending 
is the most important stress state for vaults.

Fig. 1. The one-dimensional NTR (non tensile-resistant) model as imple-
mented by Castigliano
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Conversely, classical plasticity models have also been em-
ployed in arch and vault analysis. While some older – in some 
cases valuable – contributions ([5], [6], [7], [8]) employed 
isotropic yield surfaces with small tensile strength, more recent 
contributions have followed the pioneering work of Lourenço 
for masonry walls (1996, [9]) in employing anisotropic failure 
criteria ([10], [11]) and have applied them to vaults as well. 
These models ensure that the vault does not prematurely 
crack in circumferential direction, an effect which essentially 
invalidated the analyses of  [7], and others, and which com-
monly occurs when material models for concrete are carried 
over to the analysis of masonry vaults. Typical historical vault 
constructions have only one single voussoir stone in thickness 
direction. In such vaults, cracks follow the radial joint orienta-
tion. Circumferential cracks occur only when the tensile stiff-
ness of the stone material is reached, which entails at the same 
time also the failure of the mortar in the bed joints because 
the cracking stone is unable to sustain the three-dimensional 
compressive stress state in the mortar layer. This means, as a 
consequence, that isotropic elastoplastic material models such 
as concrete models do not refl ect the mechanics of historic 
thin vaults correctly. Anisotropic elastoplastic models, on the 
other hand, suffer from the fact that they cannot represent 
localization of strain: In other words, elastoplastic continuum 
models must be enriched by discontinuity models in order to 
capture the development of large, local cracks. Otherwise, they 
cannot approach the failure state of the vaults, no matter how 
elaborate the material model or how non-linear the geometric 
relations used. Furthermore, elaborate anisotropic material 
models require a large set of input data which are generally 
extremely diffi cult to obtain for historic vaults.

The fact that the discrete, localized opening of the radial bed 
joints of a vault dominates the behaviour of real vaults has been 
highlighted by [12, p. 104–107]. This model, employing fi nite 
elements with discrete unilateral interface elements, but a simple 
linear elastic model for the voussoir stones, was able to produce 
results which captured the main effects of the vault behaviour. A 
similar, but more elaborate, approach has been presented more 
recently by [13]. This approach employs frictional interface 
elements. In the paper, the authors have also highlighted that 
the resulting model shows nonsmooth behaviour and therefore 

necessitates the use of advanced solvers for the path-following 
problem. The two studies can be viewed as a transition from the 
continuum model to the discontinuum models. They capture 
the role of the joint very well and are able to reproduce the real 
behaviour of historic arches. The main drawback is that they 
are based on an individual discretization of the voussoirs and 
joints and that they require two-dimensional elements for the 
essentially one-dimensional (curved rod) arch structure. Also, 
the interface elements must be carried on from the very begin-
ning for all joints of the arch, no matter whether they acquire any 
importance in the actual course of the loading process. Typically, 
only a fraction of the joints actually open up, and only few joints 
reach the compressive limit. 

As early as 1985, Crisfi eld [14] has suggested an arch 
model based on rod elements and “automatic” introduction 
of cracking. This was achieved by a numerical integration 
through the thickness of the arch, taking into account a simple 
one-dimensional elastic-plastic material law in the direction 
parallel to the axis of the beam (see also Fig. 2). Crisfi eld’s 
method “smears” the cracking effects over the element length 
numerically; however, this means that no discrete, localized 
interfaces (hinges) develop, so that the deformed fi gure of the 
arch is always a smooth curve. In reality, hinges form and the 
defl ection curve exhibits kinks, which cannot be reproduced by 
smooth fi nite element ansatz functions. In Crisfi eld’s numeri-
cal examples this decisive drawback was not entirely obvious 
because the arches studied were all shallow arches under 
considerable backfi ll. Such arches, which are characterized by 
high normal stresses, show a tendency towards the formation 
of extended “plastic zones” instead of localized hinges. This 
can also be seen in recent contributions which are based on 
analytical solutions, e.g. [15]: The authors have analyzed an 
arch under very high backfi ll (presumed to be an acceptable 
model for arched openings in walls). Their model is a simple 
one-dimensional elastic – perfectly plastic model based on 
Euler-Bernoulli beam kinematics. This model, while perfectly 
capturing the essentials of arch mechanics, is limited in scope 
because only simple cases can be solved analytically. When 
transferred to approximate fi nite element analysis, it is diffi cult 
to reproduce the localizations in the defl ections satisfactorily 
because a smooth fi nite element function is ill adapted to 
approximating a curve which exhibits sharp local changes in 
defl ection, up to “kinks”. Employing low-order elements, the 
ultimate load-carrying capacity will be over-estimated because 
the smooth ansatz functions prevent the formation of hinges; 
conversely, high-order fi nite element ansatz functions will lead 
to oscillations and a break-down of the algorithm far before the 
true limit load has been reached. The localization problem of 
arch mechanics – the formation of hinges – within the general 
scope of an analysis with beam elements has been addressed in 
1998 by Molins and Roca [Molins/Roca 1998] by a regulariza-
tion based on the generation of the beam stiffness matrices by 
the transfer matrix method; each beam element is discretized 
into a number of sub-sections; the forward integration in the 
transfer matrix method permits arbitrary local curvature inside 
the beam element. The study included a one-dimensional 
elastic – perfectly plastic material model. The only objection 
which can be made against this approach is that it requires a 
complex overall load-stepping procedure, including the storage 
of path information in all the interior points of the elements 
and is computationally burdensome because of the necessary 
sub-element-scale iterations.Fig. 2 A simple one-dimensional elastic-plastic “opening joint” model
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1.2. Rigid-body approaches
The complementary method to elastic, continuum-based 

analysis is discontinuum analysis, i.e. modeling the vault or 
arch as an assembly of rigid or elastic/plastic blocks with inter-
facial contact conditions. In the simplest case, discontinuum 
analysis boils down to mechanism analysis. The earliest suc-
cessful attempts at mechanism analysis can be traced back far 
into history. The fi rst coherent and correct solution was given 
in the well-known paper of Coulomb of 1773. It was Jacques 
Heyman’s lasting contribution to bring these methods back 
to practice and to provide them with a modern framework by 
interpreting them as an application of the limit theorems of 
plasticity [17]. However, it can be objected against Heyman’s 
original method that the masonry is assumed to be infi nitely 
strong in compression, which is obviously far from true if one 
considers, e.g., brick vaults with thick mortar joints, a situa-
tion frequently encountered in actual historic vaults (typical 
compressive strength in the order of 1–2 MN/m²). A simple 
one-dimensional closed-form stress-strain law for masonry 
with cracking has been presented by [18]. This model includes 
as a limiting case the linear elastic – perfectly plastic model, 
although the authors stress the fact that masonry shows a dis-
tinct falling branch in the stress-strain curve after the peak. For 
an extensive review of experimental data, see also [19]. Under 
the assumption that the elastic – perfectly plastic assumption 
is nevertheless good enough for all practical purposes, the 
objection against Heyman’s method was successfully tackled 
by Harvey and others [20] who extended Heyman’s “thrust 
line method” to a method employing a “thrust zone”, i.e., a 
thrust line which is contained within a layer of fi nite width, 
corresponding to the compressive strength of the compound 
material. Harvey’s extension to Heyman’s method also re-
moved the need to introduce a “geometric factor of safety”, 
which was required in Heyman’s original approach because 
otherwise the stability of an arch under its own weight depends 
only on the form of the arch, but not on its absolute size (a 
natural consequence of the infi nite strength assumption). 
Computationally, the Heyman-Harvey method is extremely 
effi cient since it only requires a simple optimization algorithm 
to identify the critical hinge positions; this optimization can 
be performed on the basis of an arch which already exhibits 
three hinges, i.e., it requires only statically determined com-
putations and therefore obviates the need for any material data 
except the compressive strength. The main objection against 
the simple hinge mechanism approaches is that they render 
only an estimate of the limit load, but no information on the 
sequence of the crack/hinge formation and on the overall load-
displacement behaviour. The second objection that they do not 
include sliding mechanisms is less important. More recently, 
it has been shown by Ochsendorf [21] and, independently, by 
Jagfeld [10], that the hinge mechanism (Heyman’s or Harvey’s 
approach) approach can be easily extended to geometrically 
non-linear analyses; in particular, this permits reliable simula-
tions of the problem of the arch on spreading supports, one of 
the most important questions in the context of assessment of 
real-life historic arches. In the case of spreading supports, the 
actual arch transforms quickly into a three-hinged system, so 
that the hinge mechanism method renders a sharp estimate 
of the actual behaviour, including the load-displacement 
behaviour for the arch beyond the point of the formation of 
the three hinges.

Sliding mechanisms and combinations of hinge and slid-
ing failure are naturally present in more general limit analysis 
approaches based on rigid or elastic bodies in contact with 
friction (the reader is referred to [22], [23], [24], [25], [26] 
for a review). Some of the approaches start from the static limit 
theorem, others from the kinematic theorem, and they render 
lower or upper bounds to the true collapse load, respectively. 
These models require an overall optimization algorithm to 
identify the failure mechanism. More recently, they have 
been successfully extended to handle complex cases such as 
domes, torsional action (see, e.g., [27], [28] and [29]). The 
most important drawback of all these approaches is that they 
require block-by-block modelling of the arch masonry and 
therefore create a great input overhead. Also, these approaches 
get computationally expensive if a large number of blocks are 
used, particularly when using elastic blocks and/or complicated 
constitutive laws for the interfaces. In the analysis of plane 
arches, sliding occurs only for very shallow geometries (e.g., 
the platband), or in the case of high horizontal loads, which 
occur naturally under seismic loading. In the assessment of 
typical vaults in historic buildings under static loads, sliding 
is typically not a major concern.

2. A SIMPLIFIED FINITE ELEMENT 
APPROACH

In the following, we are going to develop a simplifi ed ap-
proach for the practical analysis of masonry arches and systems 
of masonry piers and arches. It is based on the following ideas:

 – beam (rod) elements are used
 – the strength anisotropy caused by the bed joint orientation 

is incorporated into the model
 – Timoshenko (shear-deformable) theory is employed, al-

lowing the use of low shear stiffnesses for the joints
 – the model handles the non-linearity caused by the opening 

of the joints under fl exural stress
 – the model is able to detect the formation of plastic hinges 

and incorporates discrete hinges
 – the model incorporates the effect of limited compressive 

strength
 – the model permits accuracy control by p-extension (ar-

bitrary polynomial degree of the fi nite element ansatz 
functions).
The last item in the list perhaps deserves some explana-

tion. Typically, fi nite element programs for frameworks use 
the Euler-Bernoulli beam theory and analytical elemental 
matrices. This method does no longer work for non-linear 
stress-strain relationships (However, for an attempt to adapt 
a commerical fi nite element code to Castigliano-like analysis, 
but with limited compressive strength of the material, see 
[30]). Rather than employing the transfer matrix method for 
the numerical integration of the element matrices as in [16], 
we represent the deformation in each beam (displacements in 
horizontal and vertical direction, rotations) by suitable high-
order polynomial approximations (see [31] for an outline of 
higher-order fi nite elements). This means that we not only 
have to handle unknowns at the nodes where the elements are 
joined, but also inside the individual elements. This approach 
is natural with Timoshenko beam theory, and it is easily exten-
sible to any non-linear material law. All our computations are 
achieved with fi xed meshes; however, the polynomial degree 
of the ansatz functions inside all elements can be varied arbi-
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trary. p is increased until it is found that any further increase 
in the p level has no recognizable effect on the results. Using 
high p values implies the use of high-degree Gauss-Legendre 
quadrature schemes for the integration of the element stiffness 
matrices in axial direction. All the constitutive equations are 
evaluated at integration point level. The through-the-thickness 
integration, however, is performed analytically, as opposed to 
Crisfi eld’s approach [14]. This implies the use of analytical 
stress-strain laws as explained in the present section.

We start from continuum mechanics assumptions in the 
serviceability state: Initially, the voussoirs and the mortar are 
assumed to be linear elastic. Consider an arch of unit width. 
For given normal force N, there is a certain bending moment 

M  which leads to opening joints. Let   be the associ-

ated excentricity of the resultant of the pressures normal to 
the bed joints (assumed to be orthogonal to the centerline of 
the arch). Let t denote the thickness of the arch (cf. Fig. 1). 

Then, at  , the joint begins to open. We denote by  h 

 t  the height of the remaining compressive zone. Admitting 
infi nite compressive stress, the maximum bending moment 

that can be carried by the arch for any given N  is  . 

For any excentricities , the arch is in the „open joint” 

regime (Fig. 1). In the open joint regime, the arch with plane 
sections and linear elastic material carries the bending moment 

 . The compressive stress at the compressed 

edge of the arch is then given by . Let E denote some 

average Young’s modulus for the masonry under compression. 

Then, the compressive strain at the compressed edge is  

and the corresponding curvature of the beam is . 

We denote by  the curvature corresponding to the 

incipient opening of the joint. Then, . This way, we 

obtain the dimensionless relation between bending moment 
and curvature as 

 .

While the joints are completely under compression, 
purely (linear) elastic deformation dominates. Once the joints 
start to open, the non-linearity caused by the opening joints 
becomes the most important feature. The joints are discrete 
gaps. Nevertheless, the effect of elastically opening joints can 
be smeared by simple volume averaging. Let α be the volume 
fraction of the mortared joints (thickness fraction of bed joints 
in direction parallel to the axis of the arch) and 1 – α the volume 
fraction of the voussoir stones (in historic brick 5%  α  25% 
vaults, typically). Then, considering the joints and the stones as 

a serial arrangement of springs, we obtain the averaged normal 
stiffness of the uncracked  arch approximately as 

 .

This relation (and similar ones for the bending and shear 
stiffnesses) can be readily implemented in a fi nite beam ele-
ment. This is essentially Castigliano’s approach (except that 
Castigliano used (Eh)stone  instead of (Et)stone, an assumption 
which is retrieved here if we set α = 1). This model is perfect 
for analysing a clamped masonry arch on rigid supports under 
its own weight. However, any local bending perturbation in-
troduced by local loads on top of the arch will quickly lead to 
local crushing of the masonry, i.e., to the incipient formation 
of hinges. The same holds true for yielding supports and the 
resulting movement. Therefore, the model has to be extended 
to incorporate the crushing strength β of the masonry. The 
simplest possible model is the linear elastic – perfectly plastic 
model (bilinear stress-strain relationship for compression 
normal to the bed joint). In elastoplastic state (cf. Fig. 2), 
the compressive zone of height h carries the normal force 

, where γh is the portion of the compressive zone 

in which the compressive stress has already reached the limit 
value β (plastic part of the section). The bending moment 
which can be carried under these cirumstances can be readily 

computed to be . In order 

to obtain a dimensionless relation between bending moments 
and curvature again, we introduce the normal capacity Np = βt  
of the section under uniform pressure and the (arbitrary) ref-

erence bending moment   . Now, we can write the 

dimensionless stress resultants  and  , and we 

obtain the dimensionless interaction law for combined normal 
and bending loads:

 .

This formula describes, in the dimensionless interaction 
diagram, the permissible stress states of the arch under com-
bined axial and bending action. For γ = 0, we obtain a perfectly 
“brittle” material model, whereas γ = 1 would correspond to an 
infi nitely ductile material, permitting arbitrarily large rotations 
in the plastic regime. Concrete is able to accomodate “ductile” 
deformation up to γ ≈ 0.81. 

While the dimensionless interaction diagram has already 
been studied by many people and has been made the starting-
point of analytical solutions (e.g., [15]), the model proposed 
so far is unfortunately not very suitable for incorporation 
into a fi nite element programm. The reasons for this perhaps 
somewhat surprising statement become evident if we use the 
model to derive the associated moment-curvature relation for 
fi xed axial force. Typical historical vaults are in the range of 
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n  0.25 . For n  0.5, in the elastic – perfect plastic model, the 
dimensi0onless curvature of the beam is given by 

 .

This relation can be used to eliminate the variable γ de-
scribing the extent of plastifi cation inside the compressive 
zone, yielding

 .

If this expression is inserted into the expression for the 
interaction between moment and axial action, we obtain, in a 
straighforward way, for any fi xed n , a dimensionless moment-

curvature relation, . Fig. 3 shows this moment-

curvature relation for a fi xed non-dimensional axial action  
n = 0.2. For comparison, the purely elastic “Castigliano” 
relationship is also shown. It is evident that the introduction 
of a fi nite compressive strength transforms the monotoni-
cally growing moment of Castigliano’s model into an almost 
horizontal branch.

Fig. 3 Moment-curvature relation for an elastic-perfectly plastic “opening 
joint” model

Once part of the beam enters the elastic-plastic range, 
the mapping from bending moment to curvature therefore 
becomes almost non-unique (the slope of the curve being very 
small), resulting in severe problems in the context of a fi nite 
element code. In a code employing high-order trial functions, 
such a relation between reaction forces and deformations will 
automatically lead to oscillations and a premature breakdown 
of the algorithm, long before the actual limit load of the struc-
ture has been reached. These problems get the more severe the 
smaller the dimensionless normal action n is. Unfortunately, 
very small n is typical for most historical vaults, and even in 

arched masonry bridges with backfi ll, n rarely exceeds values 
around 0.25 even if we allow only β = 1.0 MN/m2 for the com-
pressive strength of the compound material mortar+stone.

This observation means nothing else that the arch offers 
practically no further resistance to bending once it enters the 
plastic range. In other words, the strains will localize, a hinge 
forms. In order to incorporate the fi nite strength model into 
a fi nite element algorithm, it is therefore advisable to replace 
the almost horizontal part of the moment-curvature diagram 
by a suitable approximation. It is obvious that the most natural 
approximation – a conservative one – is given by the limiting 
condition when the beam reaches the compressive stress at 
the edge (cf. Fig. 4). The gain in moment which is associated 
with increasing plastifi cation is almost negligible in practical 
situations. Rather than implementing an elastic-plastic law like 
[14], we therefore opt for introducing discrete hinges at all po-
sitions where the compressive stress reaches the strength level. 
In contrast to our approach, the localization of strains was ef-
fectively ruled out in [30] by setting a “ductilility limit”, which 
prevents the formation of discrete hinges (associated with 
“ductile” rotation) and forces the arch to remain continuous. 

Fig. 4 Simplifi ed moment-curvature relation for an elastic-perfectly plastic 
“opening joint” model

Our procedure is incorporated in an incremental load-
ing analysis. At each load step, the program checks for all the 
integration points whether the compressive stress exceeds 
the strength β . All these integration points are marked. In an 
arch with infi nitely thin voussoirs, the hinge would form at 
the point of the maximum excessive stress in each contiguous 
zone of open joints. In an arch with a fi nite number of vous-
soirs, the hinge will form at the joint situated next to the peak 
stress. Since we control the accuracy of the fi nite  element 
approximation by an increase in the polynomial degree rather 
than mesh refi nement, it is straightforward to select a mesh 
in which element sizes more or less refl ect voussoir sizes, and 
to introduce the hinges at interelement boundaries. However, 
this is not a prerequisite and would be impractical for very 
small voussoirs. Nevertheless, our program always places the 
hinges at interelement boundaries for simplicity.
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It is needless to remark that the resulting force-displace-
ment behaviour of the arch is decidedly nonsmooth. There-
fore, a classical incremental Newton-Raphson algorithm is not 
applicable. Rather, iterations for equilibrium are performed 
with a secant algorithm which always starts with the secant 
stiffnesses between the last equilibrated state and the origin. 
This means that no history information needs to be stored at 
element level (the whole history information being contained 
in the hinge locations); the additional cost caused by the linear 
rather than quadratic convergence of the scheme is almost 
negligible in practice.

3. ANALYSIS OF VARIOUS LOAD CASES

Next, we proceed by applying our incremental finite 
element procedure to various simple cases and compare the 
ultimate loads obtained to the limit loads predicted by Har-
vey’s thrust zone method. All results shown are based on a 
symmetric arch with an angle of embrace of 140°, a centerline 

with a radius R = 5.0 m, compressive strength  β = 1.0 MN/m2, 
arch depth t = 0.5 m and density ρ = 18 MN/m2  of the arch 
material. The averaged material data for the arch (average of 
mortar and stone properties) were set to E = 4000 MN/m2 , 
G = 2000 MN/m2 . The volume fraction of the mortar joints 
was assumed as  α = 5%.

Figs. 5-8 display the arch under increasing abutment yield. 
The “crack” marks displayed are not discrete cracks, but only 
symbolic indications of the joint opening at the integration 
points of the model. All fi gures show the displacements, scaled 
by a factor of 200, and the “line of thrust” or locus of the 
resultant of the compressive forces normal to the bed joints. 
On rigid supports, the arch shows extended zones of slightly 
opening joints next to the vertex and next to the springings 
(Fig. 5). The joints open towards the intrados at both loca-
tions. A minimal abutment movement of 1 mm towards the 
outside changes the picture quite strongly (Fig. 6): The joints 
at the top of the arch open far beyond the centerline, and two 
extended zones of opening joints appear on the haunches. Less 
than 2 mm outward movement suffi ce to introduce a plastic 
hinge at the top (Fig. 7, hinge marked by a small circle in the 
fi gure). The distance between the hinge and the extrados 
naturally corresponds to h/3. This hinge reduces the stiffness 
of the arch signifi cantly. At 3.7 mm outward movement of the 
abutments, the next hinges form (cf. Fig. 8). These hinges ap-
pear at 35° above the horizon in our “5° voussoir” mesh. They 
open towards the extrados. The new hinges transform the arch 
into a statically determinate structure, so that our geometrically 
linear computation will not induce any further change of the 
arch state. The last fi gure of the series shows the arch at 5 mm 
outward movement of the right abutment (Fig. 8).

For an arch under dead loads, the presence of plastic hinges 
does not in itself constitute a risk. If the associated horizontal 
outward thrust H of the vault can be carried by the substruc-
ture, the arch is safe, and there is no need for an intervention, 
at least as long as the hinges are ductile enough to carry the 
required rotations. 

However, if there are indications of ongoing outward 
movement, the arch is threatened by snap-through collapse. 
A very convenient way of assessing the arch on strongly spread-
ing supports is the rigid-body model. Inspired by the works of 
Ochsendorf and Jagfeld, we have extended Harvey’s “thrust 
zone method” to the case of large (geometrically non-linear) 
displacements (fi nite rigid-body rotations). Since the thrust 
zone method assumes a rectangular rather than wedge-shaped 
distribution of the compressive stresses in the plastic joint, our 
computations with this method have been based on the input   
β = 1.5 MN/m2 in order to ensure that the hinge locations 
inside the joint keep the same edge distance as those produced 
by our continuum-mechanics based fi nite element analysis. 
The “thrust zone” approach starts from the very beginning 
with the assumption that the arch has already cracked and is 
essentially a three-hinge arch. The most unfavourable hinge 
positions are determined by a optimum seeking algorithm 
(simple hill-climbing suffi ces). Fig. 9 shows the state of the 
arch at 200 mm abutment yield, as obtained by a geometrically 
non-linear (large rotation) thrust-zone analysis. The crack 
at the apex is wide open, as well as the other two hinges on 
the haunches. When the arch becomes shallower as a result 
of the abutment spread, the thrust increases, and, as a conse-
quence, the “thrust zone” moves towards the extrados at the 
springings. Once the “thrust zone” touches the extrados here, 

Fig. 9 “Thrust-zone” limit analysis of the arch under 200 mm abutment 
yield (scale factor 1)

Fig. 8 The arch at 5 mm horizontal yield of the right abutment (scale factor 
200). Three-hinge state

Fig. 7 The arch at 2 mm horizontal yield of the right abutment (scale factor 
200). Plastic hinge at apex

Fig. 6 The arch at 1mm horizontal yield of the right abutment (scale fac-
tor 200)

Fig. 5 The arch on rigid abutments under its own weight
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two further hinges are generated, resulting in an unstable 
equilibrium state. The thrust zone analysis ignores the elastic 
deformation of the arch and concentrates all the “opening 
joint” behaviour at discrete hinges. However, once the arch 
has reached the three-hinged state, the rigid-body movements 
of the three-hinge system dominate. This can be clearly seen 
from a comparison of the “cracking continuum” vs. “thrust 
zone” computations (Fig. 10).

Fig. 10 Comparison of geometrically linear fi nite element analysis and 
geometrically linear limit analysis using the thrust zone concept

The FEM curve (Fig. 10, in red) is able to represent the 
sharp drop of the arch thrust at small displacements, but – due 
to our geometrically linear code – it does not represent the in-
crease of the thrust which is caused by the fl attening of the arch 
at large abutment yields. Conversely, the thrust zone method 
assumes that the arch is already in three-hinged state from the 
very beginning, which is not true. Therefore, it yields a lower 
bound on the horizontal thrust at small displacements. The 
two curves intersect at roughly 3.5 mm outward movement. In 
fact, geometric nonlinearity is not yet important at such small 
displacements, but is the dominating factor at larger abutment 
yields, as evidenced in the fi gure; at larger displacements, the 
thrust zone method represents the actual arch behaviour cor-
rectly (the three-hinge system). Therefore, the two methods 
complement each other almost perfectly. With increasing 
abutment yield, the plastic hinges gradually jump from their 
starting positions at 35° degree above the horizon to 60°. The 
jumps are clearly visible in the curve. Finally, the thrust zone 
touches the contour of the arch not only at the three hinges, 
but also at the springings (outward movement of 305 mm). 
This introduces a sharp increase in the computational thrust; 
however, the computation can be continued for even larger 
outward movements (up to 533 mm). The solutions (hinge 
locations) corresponding to this part of the thrust-defl ection 
curve are very unstable (as evidenced by the zigzagging curve), 
and in reality, this last part of the curve cannot be obtained 
because the arch is evidently in an instable fi ve-hinge mecha-
nism state. For the arch considered, the 305 mm displacement 
is the practical limiting value. In real-life situations, the actual 

abutment spread can often be measured, assuming that the 
supporting walls were originally vertical, so that the thrust 
zone method provides valuable information on the safety of 
the arch in the sense of answers to the question “how much 
can the abutment spread increase beyond its current value 
without entailing collapse”.

Next, we study the arch under the action of a concentrated 
load with our fi nite element procedure. We place a constant 
load on the section of the arch contained between the 50° and 
60° angles above the horizon. Then, we increase this load. In 
the following fi gures, the load is represented as an equivalent 
“pile of material” on top of the arch (the pile material cor-
responding to the arch material). At approximately 2 m of 
additional load, the fi rst hinge forms at the extrados of the 
abutment opposite the load (Fig. 11). 

Fig. 11 Arch under the action of an additional load. Formation of the fi rst 
hinge (scale factor 200)

Fig. 12 Arch under the action of an additional load. Formation of the second 
hinge (scale factor 200)

Further increase of the load leads to the formation of more 
hinges. At approximately 2.6 m of additional load, a second 
hinge appears at the inner end of the loaded zone (Fig. 12). 
Increasing the load to approximately 3.3 m yields a third hinge, 
this time close to the abutment beneath the load (Fig. 13). Fi-
nally, a fourth hinge forms at the ultimate load of 3.37 m and 
transforms the arch into a four-bar mechanism (Fig. 14). For 
comparison, we show the same arch also in the “thrust zone” 
analysis, at a load of 3.4 m (Fig. 15). It is evident that the thrust 
zone analysis is able to predict a very reasonable estimate of 
the actual collapse load. At 3.4 m load, the thrust zone analysis 
renders hinge positions at 29°, 60° and 122.5°, which agree 
very well with the hinge positions as obtained by the fi nite ele-
ment method. Furthermore, the thrust zone just touches the 
extrados at thge right abutment with a load of 3.4, indicating 
the formation of the fi nal hinge. Even though the sequence of 
hinge formation is unknown, the actual limit load is correctly 
predicted, and the correct hinge arrangement is found.
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Finally, Fig. 16 shows the development of the vertical set-
tlement of the arch under the load, as the load is progressively 
increased until collapse (results of fi nite element simulation). 
Each hinge leads to a kink in the curve, whereas the spreading 
of the regions with elastic opening joints induces a gradual 
softening of the arch. It is evident that particularly the last 
part of the computation is markedly non-linear, requiring 
relatively small load steps for accuracy. In our example, the 
load was applied in 25 progressively decreasing steps (square 
root progression).

Naturally, our finite element approach can be easily 
extended to handle not just a single arch, but also complex 
systems of arches and piers, such as multi-span bridges. Fig. 17 
shows such an example. The “tas-de-charge” blocks have 
been modelled by purely elastic beam elements, while all the 
other members of the structure are allowed to crack – and 
fi nally form a hinge – under the load. Of course, our simple 
analysis based on beam elements is restricted to cases where 
the assumption is valid that the cracks will follow a single joint 
through the thickness of the member, rather than cracking 
in a zig-zag (or stepwise) pattern. A thick arch consisting of 
several (interlocked or non-interlocked) rings of voussoirs or 
a thick pier consisting of several blocks in thickness do not 
fulfi l these restrictions.

4. THE BARREL VAULT WITH LUNETTES 
AND THE CROSS VAULT

The good agreement between the limit analysis estimate 
and the incremental fi nite element/discrete hinge procedures 
gives rise to the hope that many real-life vaults can be rapidly 
assessed via the geometrically non-linear thrust zone method. 
However, whereas the mechanisms associated with arches or 
plane arrangements of several arches and piers (multispan 
bridges) are comparatively simple, it is not so clear which 
mechanisms are effective in real three-dimensional vaults. 
Anyway, a situation which is frequently encountered in the 
nave of historic churches and other vaulted buildings is an 
arrangement of several cross-vaults balancing each other in 
longitudinal direction. Furthermore, many historical nave 
vaults have the form of a barrel vault with lunettes. Visually, a 
series of cross vaults and a barrel vault with lunettes are often 
virtually undistinguishable in the view from below. Only in 
the aspect from above, the true structure of the vault becomes 
evident. Many gothic vaults with a dense network of ribs are 
in fact barrel vaults with lunettes.

In order to get a simplifi ed approach to the safety assess-
ment of such vaults, we have to assume a failure mechanism. 
For the most important case of yielding abutments, the follow-
ing mechanisms offer themselves for consideration:

 – The lunettes separate from the main barrel at the groins. 
Essentially, the lunettes stand unchanged when the abut-
ments yield and the main barrel rotates inwards. This kind 
of mechanism can be triggered by ill bond at the groins 
(a natural effect of barrel vault masonry constituted by 
courses of bricks running parallel to the axis of the barrel) 
and by high back-fi ll.

 – The lunettes stick to the main barrel and are essentially 
lifted up from their bases; they rotate inward together 
with the barrel when the abutments yield. This behaviour 
is unlikely in typical barrel/cross vaults whith straight 
courses of masonry running parallel to the barrel/lunette 

Fig. 16 Load-displacement function of the arch with additional load. The 
recorded displacement is the vertical displacement of the point under the 
center of the loaded area (55° angle above the horizon)

Fig. 15 Thrust zone analysis of the arch with additional load. Limit load and 
mechanism agree very well with the fi nite element prediction

Fig. 14 Arch under the action of an additional load. Formation of the fourth 
hinge (scale factor 200)

Fig. 13 Arch under the action of an additional load. Formation of the third 
hinge (scale factor 200)
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axis. However, it is a limit case for any mechanism which 
involves cracking of the lunette. It also describes a limit 
case for any lunettes which are not bonded with the lon-
gitudinal walls of the building (lunette separating from the 
wall). In some real-life cases, horizontal cracks at the bases 
of the lunettes are, nevertheless, observable.

 – The lunette cracks according to the well-known “Sa-
bouret” mechanism. In this case, the upper part of the 
lunette remains fi xed to the main barrel, whereas the outer 
part does not take part in the rotation.
All these three mechanisms are essentially plane mecha-

nisms. The thrust zone allows us to account approximately 
for the fact that the stress is concentrated in the lower parts of 
the vaults towards the tas-de-charge. The assumptions about 
the mechanism can be easily verifi ed by recording the location 
and orientation of the actual cracks in the vault.

Let us demonstrate the concept with an example. Assume 
that we have a main barrel of 5 m radius with 25 cm thickness 
and an angle of embrace of 120° (i.e., abutments at 30° above 
the horizon). We consider a portion of this barrel vault which 
is 11 m long. The density of the vault material is the same as 
before.This longitudinal vault is intersected by lunettes with 
4.5 m radius, 25 cm thickness. The lunettes are assumed to 
start at the same height as the main vault, and they have a 
horizontal ridge. The nave is assumed to be 10 m wide. Since 
the radius of the lunettes is less than the radius of the main 
barrel, they do not reach up to the ridge of the main barrel. 
The scheme corresponds to a widespread model of 16th and 
18th century vaults. If we assume a periodic arrangements of 
such vault bays, it suffi ces to analyze one half of the vault. We 
assume a compressive strength of   β = 1.0 MN/m2 as before, 
and rigid supports.

If we ignore the lunettes altogether, the barrel vault exerts 
a horizontal thrust of approximately 185 kN on its supports 
(Fig. 18; the weight of the pure barrel vault is 518 kN). The 
cracks (hinge lines) are at the crown of the vault and at 43.5° 
above the horizon. Next, we introduce the lunettes. If we as-
sume that the lunettes will crack vertically (Sabouret cracks, 
cf. Fig. 19), then the hinge lines in the main barrel appear at 
42° above the horizon, and the thrust of the bay increases to 
187 kN. Conversely, if we assume that the lunettes separate 

completely from the main barrel and do not partake in its 
rotation, then the lower limit of the thrust given by the thrust 
zone model is 184 kN, with hinges at 47° above the horizon. 
Finally, the assumption of lunettes sticking to the main barrel 
and rotating with it, lifting off the lowest part, yields a limit 
analysis thrust of 177 kN, and hinge lines at 34.5° above the 
horizon (Fig. 20). Evidently, the Sabouret case is the most un-

Fig. 17 A system of arches and piers subjected to local loads. Near-collapse state. Circle marks indicate fully established hinges, whereas hashed areas 
are “cracked” (opening joints), but still below the compressive limit stress

Fig. 18 Barrel vault with lunettes ignored. Green lines indicate hinge lines

Fig. 19 Barrel vaults with lunettes. Limit analysis result with thrust-zone 
technique, assuming a rigid-body mechanism in accordance with the forma-
tion of Sabouret cracks. Green lines indicate hinges or cracks
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favourable one. Playing with the three distinct failure modes, 
it is always straightforward and easy to determine the most 
unfavourable one. In most practical cases, the limit mecha-
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nism is almost identical to the case of a barrel vault without 
any lunettes at all, because the hinge lines are typically so high 
above the springings that only a small portion of the lunettes 
actually takes part in the mechanism. Therefore, a very quick 
assessment may even be done on the basis of a very simple 
plane computation (arch model), verifying ex post whether 
the portion of the lunettes taking part in the mechanism was 
indeed negligible or not.

If we increase the radius of the lunette to 5 m, our barrel 
vault is transformed into a cross vault with horizontal ridges. 
In this case, a vault thickness of 25 cm turns out to be insuf-
fi cient with   β = 1.0 MN/m2. If we increase the thickness 
to 40 cm, the vault is stable again. However, the differences 
between the three assumed mechanisms get greater the more 
the vault resembles a cross vault. In the cross vault and similar 
geometries, the Sabouret mechanism is always the most unfa-
vourable one. In our example (Fig. 21), it renders 285 kN of 
thrust for the whole bay.

5. CONCLUSIONS

Discrete hinges forming in arches and vaults are essential 
for the realistic assessment of their structural safety. Purely 
continuum-mechanics based methods are well suited for the 
simulation of the load-defl ection behaviour of vaulted ma-
sonry structures under service loads, but are ill suited for the 
analysis of the collapse state. Limit analysis method provide 
sharp estimates of the load carrying capacities since the elastic 
(both linear-elastic and elastic-open-joint) contribution to 
the limit loads is typically negligibly small. Distinct element 
methods, while in theory well suited to vault analysis, are 
too complicated to use in practice. Therefore, it is reasonable 
to bridge the gap between continuum-mechanics based ap-
proaches and classical limit analysis by introduction of suitable 
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dimensional situations which essentially reduce to plane hinge 
mechanisms. This makes them very attractive for practical 
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Fig. 20 Barrel vault with lunettes. Results obtained with the assumption 
that the upper part of the lunette sticks to the main barrel and rotates with 
it, lifting off the lower part

Fig. 21 The cross vault with Sabouret cracks
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Abstract
The present contribution discusses various approaches 
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element methods based on a continuum mechanics approach 
vs. rigid-body approaches. We employ beam elements and a 
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from fi nite element methods to rigid body methods by the 
introduction of discrete hinges in the course of an incremen-
tal fi nite element analysis. We show that rigid body methods 
based on the “thrust zone” approach developed by Harvey et 
al. (1990) render sharp estimates of the ultimate loads, and that 
the “thust zone” concept provides valuable estimates for large 
displacements. Finally, we extend the rigid-body approach to 
the case of barrel vaults with lunettes.


