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A b s t r a c t

In this paper, our earlier approach to proton localization in neutron star matter to finite 
temperatures is extended. The Skyrme forces were chosen to describe interactions in nuclear 
matter. The dependence of threshold density on temperatures for proton localization was 
obtained and these results were compared with those calculated earlier for the Friedman-
Pandharipande-Ravenhall potential. 
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S t r e s z c z e n i e 

W artykule rozszerzono wcześniejsze podejście do lokalizacji protonów w materii gwiazdy 
neutronowej do skończonych temperatur. Wybrano siły Skyrme’a do opisu oddziaływań w ma-
terii jądrowej. Otrzymano zależność gęstości progowej od temperatury dla lokalizacji protonów 
i porównano te wyniki z wcześniejszymi obliczeniami dla potencjału Friedmana-Pandharipan-
de-Ravenhalla.

Słowa kluczowe: temperaturowa zależność lokalizacji protonu, siły Skyrme’a

TECHNICAL TRANSACTIONS
FUNDAMENTAL SCIENCES

3-NP/2014

CZASOPISMO TECHNICZNE
NAUKI PODSTAWOWE



90

1. Introduction

We have shown in the earlier papers [1, 2] that in asymmetric nuclear matter, protons 
are localized in the core of neutron stars for realistic nuclear models. Protons that form the 
admixture tend to be localized above the threshold density nloc depending on the model used. 
The localization effect occurs as a result of the interaction of protons with small density 
oscillations of the neutron background [2]. In paper [3], we have extended the effect of proton 
localization to finite temperatures for the Friedman-Pandharipande-Ravenhall potential. 
Here, the influence of temperature on the proton localization for another nuclear model, the 
Skyrme nuclear interaction, is investigated.

The plan of this paper is as follows. In Section 2, some of the features of the Skyrme 
forces are briefly discussed. In Section 3, model of proton admixture in neutron model is 
presented. In Section 4, the process of calculating entropy and free energy of nuclear matter 
is described. Numerical results are discussed in Section 5. 

2. Skyrme forces parametrization

It was chosen to work with the Skyrme forces [4] to calculate the properties of the 
asymmetric nuclear matter. The Skyrme potential reads: 
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where nB = nN + nP (the density of baryon) and masses of nucleons are mP = 4.7549 fm–1 and 
mN = 4.7615 fm–1 . 

The local kinetic energy densities of neutrons and protons for plane waves become: 

 τ πi in i N P= ( ) =
3
5

3 2 2 3 5 3/ / , , .  (2)

In our calculations, the following Skyrme force parameters were used: t0 = –1057.3 
MeVfm3; t1 = 235.9 MeVfm5; t2 = –100.0 MeVfm5; t3 = 14463.5 MeVfm3 + 3γ; x0 = 0.2885;  
x1= x2 = 0; x3 = 0.2257; γ = 1. These are the Vautherin and Brink [5] parameters modified as 
described in [6]. 
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3. Proton admixture in neutron matter

Protons in strong asymmetric nuclear matter tend to localize [1, 2] in potential wells which 
correspond to neutron matter inhomogeneities created by the protons in neutron medium. The 
energetically favorable ground state of asymmetric nuclear matter was found by comparing the 
energy of two phases: a normal phase (in Wigner-Seitz approximation) and a phase with localized 
protons. The cells are assumed to be spherical and the volume is V = 1/nP, where the proton 
density nP = xnN for a small proton fraction x. In normal phase, protons are not localized and 
their wave functions are plane waves. The energy of the cell reads: 

 E V n nN P0 = ( )ε , ,  (3)

where ε(nN , nP) is the energy density. In the phase with localized protons, the energy of the 
Wigner-Seitz cell Eloc is [7]:
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The first term is the energy of the proton confined to an effective potential well  
veff = mP(n(r)). The two other terms in eq. (4) describe the contributions to the energy arising 
from local change of the neutron Fermi momentum and the gradient of the neutron distribution, 
respectively, in the Thomas-Fermi approximation. Here, ε(n(r)) is the local neutron matter 
energy per unit volume. The parameter BN is the curvature coefficient for pure neutron matter. 

We assume a simple trial form of the proton wave function:
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where RP is the root mean square (r.m.s.) radius of the localized proton probability distribu-
tion. We treat this quantity as a variational parameter and minimize ΔE = Eloc – E0. The results 
are presented in Section 5. 

4. Entropy and free energy of nuclear matter

The internal energy density of uniform nuclear matter is given by eq. (1) and 
inhomogeneities one by eq. (4). The entropy densities Si reads:

 S k n n n ni B i i i i= − + − −( )( )∑
α

α α α α, , , ,log ( ) log1 1 .  (6)

Here, nα,i are the occupation numbers of the simple-particle orbitals Φα,i (x) and i = N or P. 
Upon integration by parts, the entropy per baryon has the particularly simple form 



92

 S
n

m T Ji
i

i i i= ( ) ( ) −5
3

1 1
4

2 1
22

3
2

3
2π
η η* ,   (7)

where mi
*  denotes the effective nucleon masses i = N, P. The quantity hi is calculated from 

the relation:
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where Fermi integrals are defined as follows:
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Knowing the internal energy ε and the entropy per baryon Si the free energy per baryon is:

 F n n T T n S n S nN P N N P P B= ( ) − +( )( , , ) /ε .  (10) 

At finite temperatures, the ground state is found by minimizing the free energy.

5. Proton localization in finite temperatures 

The internal energy difference between the localized state of protons and the state with 
uniform matter ΔE = Eloc – E0 for the Skyrme forces was calculated. The difference ΔE as the 
function of variational parameter RP for various neutron density at T = 0 is shown in Fig. 1. 

The curves are labelled with the neutron matter density nN. One can notice that for the 
Skyrme (Sk) interaction, a local minimum above a certain density for the proton r.m.s. 
radius RP appears to strongly decrease with neutron density (Fig. 2). With increasing neutron 
matter density nN, the depth of the minimum ΔE increases. Above the threshold density, the 
energy difference becomes negative. The negative value ΔE < 0 means that the energy of 

Fig. 1. The energy difference ΔE = Eloc – E0 
as a function of the proton r.m.s. radius 
RP for various neutron densities at zero 

temperature for the Skyrme forces
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the localized proton is lower than the energy of a non-localized proton. This means that the 
localized proton state is preferred energetically for n > nloc .

To investigate the influence of temperatures on proton localization, we calculate the free 
energy difference ΔF = Floc – F0  in the same manner as in Section 2 using eq. (10). The 
relation ΔF versus proton radius presents Fig. 3.

Fig. 2. The r.m.s. radius of proton wave 
function at zero temperature as the function 

of density

Fig. 3. The difference of free energy 
between the localized and delocalized 

states as a function of proton radius at fixed 
baryon density and for various temperatures 

Fig. 4. The free energy difference at the 
minimum ΔE as a function of density at 
different temperatures for the Skyrme 

nuclear forces
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When the temperature increases, the minimum value of ΔF as a function of the average 
neutron number density is shown in Fig. 4. A value of zero corresponds to the threshold 
density nloc above which the state with localized proton occurs. 

A strong influence of temperatures on proton localization was observed (Fig. 5). 
Temperature inclusion lowers the localization threshold density and diminishes the size of 
the proton wave function (Fig. 2). Thus, the localization is present even in the case of very 
high temperature. This means that temperature and baryon density cooperate to achieve 
proton localized state in dense asymmetric nuclear matter.

Fig. 5. The threshold density nloc above 
which the localization is occurred as 

a function of the temperature of neutron 
matter 

5. Conclusions

Finally, the results show that for low values of x, the state with localized single protons 
has a lower energy than a uniform configuration for n > nloc, even for high temperatures. We 
have also found that the threshold localization temperature relationship for the Friedman-
Pandharipande-Ravenhall parametrization [3] turns out to be surprisingly close to that which 
was obtained in our calculation for the Skyrme forces. This fact indicates universal character 
of temperature influence on the proton localization in dense nuclear matter. 
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