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Abstract

An error estimation technique for solutions of parabolic boundary-value problems, obtained
by finite difference method with irregular meshes in the local formulation, is presented.
Explicit and implicit schemes are used. Convergence tests illustrate the method
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1. Introduction

The Finite Difference Method (FDM) with irregular meshes, used first in the half of the
previous century by R. H. Mac Neal [15] and continued later by many authors was applied
mainly to elliptic boundary-value problems (BVP). The method was developed
in two directions: in the first one, called “balance method”, a mesh of triangles or rectangles
was used and difference formulas were obtained using the Gaussian formula and linear
interpolation ([5] and references therein). In the second approach, similar to the classical
one, only nodal values of functions were used and the difference scheme was obtained
by the Taylor expansion ([13, 14, 19] and references therein).

Mathematical proofs were done mainly for the first version [2, 3, 5, 10, 18].
For the local formulation on a regular mesh proofs of convergence are well-known.
Not so many of them have been done for the FDM on irregular meshes [1, 4, 9, 17].

For parabolic BVP the classical FDM with regular meshes was commonly used but
there are few papers concerning FDM with irregular meshes. T. Liszka and J. Orkisz
in [13, 14] present an approximate solution of the heat equation obtained by “irregular”
formulas on a regular mesh. An efficient stability condition was obtained this way. A proof
of the convergence for one dimensional space variable was obtained by Li Ronghua [18].
FDM with rectangular meshes was considered by M. Malec and M. Rosati [16].

An overview of the FDM with irregular mesh and its applications was done by
F. Ihlenburg [6], J. Orkisz [20] and J. Krok [12], who published many papers in this
subject, e.g. [11].

The purpose of this paper is to present convergence analysis for solutions of parabolic
BVP obtained by the FDM with irregular meshes in the local formulation in an explicit
and implicit form. The presented proof is based on a discrete maximum principle
(Theorems 3.1 and 3.2) extended in an earlier paper ([7]). Theoretical results are confirmed
by convergence tests.

2. Statement of the problem

A cylindrical, bounded domain
D=(0,T)xQO0% with a boundarydD =D, [1dD; 0dD, 13D, is considered.
The symbols used above denote

0D, ={0} xQ aD; ={T} xQ 4D, 04D, =aD\(dD, 0dD;) = (0,T]xdQ,
dD, n dD, = O,

where Q, 9Q are closure and boundary 6f correspondinglygD;, dD, will be defined
by boundary conditions and

0Dz =dD, 00D,, D=D0OAD.
Let a mesh of nodes, = (X,>3)0Q, i0 | be given with

I ={i:x; 0, g ={i: x;00%} —indices of internal and boundary nodes.
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The time interval0,T] is divided intoM equal time steps
0=ty <t <...<ty =T, k=t,-t,,=const, kns<M

and (t,,x), 0sn< M, idl are the mesh of nodes iB. For each nodg(t,,x )0 D
a set of indice$ of auxiliary nodes connected with this node (“star of the nodg{)), i)
is defined {OG(n,i)). We denote further

h(n)=sup(l € X » & x)10G @), h={maxh(ni), nO ..., M}, i0 1,

du ou 9% du
= = , AU=Ug + Uy, un:%.

it YRR uli__il uq]:—
ot 0x X ox

Moreover we assume that

O(t,, x)00D,, Dj0GMN,i), (,,x )00, 00D,

i.e. each star of a node which belong9, consists of internal nodes only. In the domain
D the following boundary-value problem is considered

2 2
Lu(t, X) = Uy (t, Y- Z g (t 0y (¢ >9+Z b(t 30y (13 €1 X UI%= €.t))

ij=1 i=1
for (t,x)O D
2
Bu(t )= d(t ¥y (t 3+ €104t X (L) (2)
i=1
for (t,x)0dD,, and
u(t X) =g, (t,x) 3
for (t,x)0dD;.
The problem (1)—(3) is replaced by the FDM equations for the discrete sdlution
Lh(U) =k Uty %) = U(ts, X)]
= > {[omin s in | fuc, x)- e 0} (@)

joG(n.)
=y(n, U (6, %) = T, %)

(implicit scheme), or
L5U) = k™ [U(tug, %) = U(t,, )]
= > {[oy By U, %)=t )} (5)

joG(n,i)

=Y U (%) = Tt %)
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(explicit scheme), fot,, %) DO Dy
By(U)=h D & (n)fu, %)= U, x)]+e(n U, X)= g (£, x)  (6)
j0G(n,i)
for (t,,x) 00D,
Ut %) = ai(t, %) (")
for (t,,%)00Dg.

3. Maximum principle

Theorem 3.1 ([7]). Let the implicit difference system (4), (6), (7) fulfils at each node
(t,.x) the following assumptions

a;(n,i),d; (n,i)>0, 0(]-(n,i)q‘1+[3j h,i)>0 OjOGh,), sai= 0, yOix C (8)

ft,x)<0, 6. %)<0 & (h.x)<0 ©)
then
Ut ,x)<0 (10)
at each nodét,,,x,) 0 D.

Theorem 3.2 ([7]). Let the explicit difference system (5)—(7) fulfils at each node
(t,,x;) assumptions (8), (9) and

O<ks< min{ > {[Gj(n,i)h‘z+[3j(n,i)h‘1}_y(n,i)}_1, n0{o, ..., M}, iDI} (11)
j0G(n,i)

then (10) holds at each node.
Sketch of the proof of Theorem 3.1. Suppose, on the contrary, that there is a node

(t,, %) such that

U(t,,x)>0. (12)
(9) implies that

(t,, %) 00Dg. (13)
There are two possible cases
1. (t,,x,)00D,, then

O<U(tn,xk)[% > 6j+hs]= D 3U Mt x;)*+ g, (4, %)

j0G(n,k) jBG(n,k)
< Z 6] maX{LJ (tnyxp)! pD lint}

i0G(nk)



and there is a nodg,, x,) 0 D at which
O0<U (tnlxk)<U(tn*Xr)’

what implies the second case.
2. (t,.x,)0D. (12), (13) imply then an existence oha= m(n O |, such that

U (ty, %) = maxqU (t,, ), 101} >0.
For this node we obtain

Ul ) ==k0 > {[o 07 48 | BUG, %) = UG, 500 |+ UG, )

jEG(n,m)

— Kf (1, %) 2 kO Y. [ajh‘zmj h‘l}[u(rn, X:)

jBG(n,m)
+1+kO Y [ajh‘2+5j h‘l}DU(g,xm) > U(t,, x,)> 0.
joG(n,m)
We can then write
max{U (th-x, Xp), PO line} 2max{U(t,, xp), pU Iy} >0, k=1,...,n
but this implies
0<maxy (0,x,), ¢, %, )H0Dg},

which contradicts (9).
Proof of the Theorem 3.2 is similar (cf. [7]).

4. Convergence of the method

Suppose the following conditions hold:
Al. The BVP (1)—(3) has the unique solutioi C*(D) n C*(D) and

sup[|D°‘u(,x)|,(,xED,¢(s| }3: M, <

sup{ ID?u € X) 1, X)) D ¢ 4 p= M, <o
A2. For any polynomiaV of the form
V(LX) =a; X X+ g, XX+ 8, X X+ g kg % (att o
if the implicit scheme is used, the equality

LV (t,, %) = LV(t, %), O(t, %),

or, in the other case

LV (t,, %) = V(L. %), O, %)
holds.
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(14a)

(14b)
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A3. Inequalities (8) are fulfilled.
A4. There ism >0 independent ok, h, n such that

> (o +B)-ysm DiOly, Y & <m Oill,.

oG (n,i) joG(n,i)

A5 If dD,z® then there are constantsc,M;M,>0 and a function
vOC3(D) n C(D) such that

Lv>g in DOD,
Bvzg on 0D,

v20 on 0Dg,
sup ID®V € X)1, € X D ¢t 4 = My<e

sup{ ID?V € )|, € x DD h 4 =M, <

A6. The difference problem (4), (6), (7) or, if explicit scheme is used, (5)-(7) has the
unique solutiory.
Theorem 4.1. If Assumptions A1-A6 are fulfilled (with (14a)), then the discrete
solution U obtained by the implicit method, converges to the exact solutiand there
is a constanC >0 independent df andh such that

sup{ U 6 % -ut )16 x DD <Ch h) (15)

Theorem 4.2. If Assumptions A1-A6 are fulfilled (with (14b)), inequality (11) holds
and U is the discrete solution obtained by the explicit method, then the assertion of
Theorem 4.1. holds.

Remark 1. Assumptions Al and A5 may be replaced by a much stronger assumption:
“For any right hand sides of the equations (1)—(3) regular enough, there is a unique solution
of these equations with bounded second and third derivative”. This condition is forced here
to the searched exact solution and to one solution of the problem with positive right hand
sides only. Then Assumption A5 does not limit in fact applications of Theorems 4.1
and 4.2.

Remark 2. For the heat conduction problem as a typical phenomenon described by
a partial differential equation of parabolic type the solutioof the considered problem
or the functionv in Assumption A5 are the temperature distributios,and Lv are
distributions of heat sourceBu, Bv represent heat flows through the boundary.
Assumption A5 says that for positive heat sources and flow the temperature may
be positive with limited second and third derivatives, i.e. there is no singularities e.g. at the
contact of the Dirichlet and Neumann boundary conditions.
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Proof of Theorems 4.1 and 4.2.
The solutioru of (1)—(3) can be expanded in Taylor series

2 . .
u(t, %) = U, %)+ U (OO 5+ Uy (8, 00k= &)+ 0,5y (E, p)(¢ ot

=1

2 ) ) 2 . )
Y U (G X)A=1)0= ) +0,5) ug (L x)(R= X )%= K)
j=1

K, j=1
2 . .

# 2y (X 6+ 0,8) Uy x4 F 0= %)
=1

2
0,5 Ugq X )=t - % )X - )

k, j=1

2 . .
+% D g ()0 = F )K= )k 0= Gt X+ ot D )

Ik,j=1

2 ) ) 2 ) )
DU () =) +0,5D " Uy (b )0 = (%= &)+ R1X
j=1

K, j=1
At the point(t,,,x;) we have
(L=Lpu(ty, %) = LU -u)(t, %)= f(h. x)

2 . .
=Ly | Uty )+ e (1, 9)(E 1)+ D 4y (5,0 Ot = %)
j=1

2
0,50 Uy b %)~ )X - )|~ L(R

k, j=1

= £(t,,%) = f(t,. %)+ O(k+ = Qk+ .

Similarly
2 N N
u(t, X = Uk %)+ U (b X)(E B+ U (5 00k= K+ 0,54 (t X)(+
j=L

Y Uy (X)) - )+0,5) Uy (. x)0A - k)(k- &)
j=1

k. j=1

2
=u(ty, %)+ D Uy (h) (4= )+ AL Y.

j=1
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(B-B)u(, %)= B(U-U(f 0= ga(f ¥

2
=B, [ Uty X)+ D U (h, ) - )|~ B(P

j=1
=02(t %)~ G (4, )+ Ah= Ah
The above formulas can be rewritten as
IL,U-u)kc(k+h), [B,U-ukch (16)

For the functionv defined in Assumption A5, or, 0D, =®, v(t,x)=qgt, the
following assumptions hold

(L-Lp)v(ty, %) = A(k+ B, (B-B)Ut, %)= AD,
then fork, h small enough
(L-LyV(t,, x)<0,56 O(t,%)0 DOAD
(B-B)Mt, %)<0,5¢ O(f,x)10 0, (17)
therefore
Lav(th, %) 20,56, BaW(ty, %) 2 0,56 . (18)
Let v, =2(k+ h)vg ¢ 1. Then, by (16)—(18) and A5
Ly(U-u-wv)(t,,x)<0 in DOOJD;,
B,(U-u-y)(t, %)<0 on dD,,
U -u-v)(t,, x)<0 on dDg.
The same inequalities imply
L,(u-U-v)(t,,x)<0 in DOJD;,
B,(u-U-y)(t,, )< 0 on dD,,
(U-U-v,)(t,,%x)<0 on dDg,
therefore, by Theorems 3.1 and 3.2, we have
U -u-w)(t,,%)<0 in D,
(U-U-v)(t,%x)<0 in D and
[U-U)(t, %) kv (5.%)< ok B O(F, )0 D
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5. Numerical tests
The cylindrical domain
D={(t x}, x):0<t<1, r? = (x)2+(x?) %<1}

with equal time-steps and irregular mesh of nodes at each time was considered.
The following boundary-value problems were defined:
BVP1. The Dirichlet BVP

u,-Au= fin D, u=gondlk;, db =0.
BVP2. The Neumann BVP
u, —Au+10u= finD, u=gondQ, u,= g omMD,o00R=/C
BVP3. The Robin BVP
u,-Au= finD, u=gondl, u,+tu=gondBQ, 0Q=0
BVP4. The mixed BVP
u,-Au=fin D, u=gondDy, u,= g ond D ={(tX:r=1%x> 0}

Values of f, g;, g, were taken as corresponding values for exact solutions in four
examples:
1. u(t,r)=1-t @4,
2. u(t,r) = cos(0, 25tr )
3. u(t,r) = sin(0, 3tt%r ),
4

cur) ="’

Each example was solved with the explicit and implicit scheme. The expression
e=sup{lu(t,x)-U(t,x) ¢, x )X D}

was assumed to be the error of the method.
An example of an irregular mesh in the cire/e< 1 is shown in Fig. 1. The graphs

of the approximate and exact solution on the plafe=0 for the Boundary Value
Problem 1, Example 3, explicit scheme, are given in Figs. 2 and 3 (the both solutions are
axisymmetric). Rates of convergence in all Boundary Value Problems and all examples
are presented in Figs. 4-11. Tkeandy axis represent logarithms bf and ofe. Rates

of convergence for considered problems are assembled in the Table 1.
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Table 1
Rates of convergence
BVP 1 BVP 2 BVP 3 BVP 4
Scheme explicitt implicitt explicit implicit | explicitf implicit explicif implicit
Solution1 | 2,073 2,074 1,182 1,182 0,927 0,936 0,989 0,9p9
Solution2 | 1,979 2,141 1,377 1,378 1,064 1,08p 1,133 1,1p5
Solution3 | 1,976 2,081 1,502 1,492 1,104 1,104 1,147 1,147
Solution4 | 2,211 2,207 1,074 1,076 0,959 1,03f 1,031 1,086
Fig. 1. Irregular mesh of nodes
Rys. 1. Nieregularna siatkagméw
1
0,8 1K X
——t=0
= 0,6 \K /
< 04 1a \!\ / R ——t=0,334
0,2 AN A | Ao
s b AT
0 .

“ Q “ 9 o)
,Qq’ Qf} Q- Q:\

X

Fig. 2. Approximate solution for=0
Rys. 2. Rozwgzanie przybltione dlay = 0

N
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0,8 1K X
0.6 \ /

u(t, k)

0,4 & / A ——t=0
0,2 AN el B SR
) ; 3 i g: ! 1 —&— t=0,666
01 —%—t=1,0
0.2 . A 12 -5 Q N “ AS)
> N N o N O~ Qn
‘ X
Fig. 3. Exact solution foy=0
Rys. 3. Rozwizanie doktadne dlp= 0
Log hmax
0,00 -0,50 -1,00 -1,50 2,00
0700 L 1 L
o201 ——#—— Solution 1
[*]
5 4001 ---@ - Solution 2
& 600- - & Solution 3
goo-4 e | T L R Solution 4
10,00~
Fig. 4. Convergence test: Boundary Value Problem 1, explicit scheme
Rys. 4. Test zbigosci: problem brzegowy nr 1, schemat jawny
Log hmax
0,00 -0,50 -1,00 -1,50 -2,00
0,00 1 L L
. 2,00- 1 —— Solution 1
% 4,00- ----@--- Solution 2
§) 6,00- e Qolution 3
,,,,,, | E— 1
$.00- | Solution 4
10,00-

Fig. 5. Convergence test: Boundary Value Problem 1, implicit scheme
Rys. 5. Test zbigosci: problem brzegowy nr 1, schemat niejawny
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Log hmax
0,00 -0,50 -1,00 -1,50 -2,00
2,00 1 1 |
0,00 ’\N —&— Solution 1
<] -
‘g 2.00- | ‘ ) wo--@- Solution 2
g | T I T N .. A Solution 3
4,00- 1 B "' **** = Solution 4
6,00~
Fig. 6. Convergence test: Boundary Value Problem 2, explicit scheme
Rys. 6. Test zbimosci: problem brzegowy nr 2, schemat jawny
Log hmax
0,00 -0,50 -1,00 -1,50 -2,00
2,00 ‘ ‘ ‘
0,00 M ——&— Solution 1
]
= [ 3
g 2.00- 1 ﬁ Solution 2
ki T “ . A - Solution 3
4,00- 1 { B ':‘ti' —————— [ Solution 4
6,00~
Fig. 7. Convergence test: Boundary Value Problem 2, implicit scheme
Rys. 7. Test zbimosci: problem brzegowy nr 2, schemat niejawny
Log hmax
0,00 -0,50 -1,00 -1,50 -2,00
2,00 ‘ ‘ ‘
" 0,00 *\‘\Q\*‘M ¢ Solution |
g 2,00- A R ----@--- Solution 2
S B, : 7777777777777 :\ Aok A Solution 3
4,00- 7 e m-- Solution 4
6,00-

Fig. 8. Convergence test: Boundary Value Problem 3, explicit scheme
Rys. 8. Test zbimosci: problem brzegowy nr 3, schemat jawny
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—&— Solution 1
@ Solution 2

A Solution 3
,,,,,, s Solution 4

—&—— Solution 1
----@--- Solution 2

& Solution 3
""" ®----- Solution 4

—— Solution 1
@ Solution 2

A Solution 3
,,,,,, B Solution 4

Log hmax
0,00 -0,50 -1,00 -1,50 -2,00
2,00
0,00 - M
2,00- - A
B ~»i‘(‘ ‘ Aoy
4,00- 1 i e 2}
6,00-
Fig. 9. Convergence test: Boundary Value Problem 3, implicit scheme
Rys. 9. Test zbigosci: problem brzegowy nr 3, schemat niejawny
Log hmax
0,00 -0,50 -1,00 -1,50
2700 L I 1
0,00 M
2,00- 1 e A oa
»»»» ::.;‘\._ ) A A "N
SR = - VA
4,00- e
Fig. 10. Convergence test: Boundary Value Problem 4, explicit scheme
Rys. 10. Test zbimosci: problem brzegowy nr 4, schemat jawny
Log hmax
0,00 -0,50 -1,00 -1,50
2700 1 | |
0,00 M
2,00- Aa
.. e A Ao,
’.‘-::,,.:,.,ﬂ»\.
4,00-

Fig. 11. Convergence test: Boundary Value Problem 4, implicit scheme
Rys. 11. Test zbimosci: problem brzegowy nr 4, schemat niejawny
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6. General remarks

The presented numerical examples converge to exact solutions with the(fafte
(BVP1) or O(h) (BVP 2-4), for the simple boundary condition approximation. When
the approximation along the boundary is of the second order, the obtained convergence rate
for the BVP2 isO(h?). It suggest that for given assumptions, convergence estimate (16)

is optimal. The problem of modifying (16) for the Dirichlet BVP and for the second order
boundary approximation remains open. The presented examples show the importance
of the accurate approximation of the boundary conditions containing derivatives.
For the given end-timé = 1 convergence of the both FD methods is theoretically and
numerically confirmed.

The paper does not present stability tests. Theoretical estimates however include
the stability condition (11). It coincides with the classical one on a regular mesh.
In a special case better results were obtained by Liszka and Orkisz ([13, 14]).

This paper may be extended on another difference schemes, for example Crank—
—Nicholson schemes, schemes with excessive nodes [14] or schemes obtained by the
balance method [5]. Application of the presented method to other boundary value problems
may be investigated, too.
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