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A b s t r a c t  

An error estimation technique for solutions of parabolic boundary-value problems, obtained 
by finite difference method with irregular meshes in the local formulation, is presented. 
Explicit and implicit schemes are used. Convergence tests illustrate the method. 
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1. Introduction 

The Finite Difference Method (FDM) with irregular meshes, used first in the half of the 
previous century by R. H. Mac Neal [15] and continued later by many authors was applied 
mainly to elliptic boundary-value problems (BVP). The method was developed  
in two directions: in the first one, called “balance method”, a mesh of triangles or rectangles 
was used and difference formulas were obtained using the Gaussian formula and linear 
interpolation ([5] and references therein). In the second approach, similar to the classical 
one, only nodal values of functions were used and the difference scheme was obtained  
by the Taylor expansion ([13, 14, 19] and references therein). 

Mathematical proofs were done mainly for the first version [2, 3, 5, 10, 18].  
For the local formulation on a regular mesh proofs of convergence are well-known.  
Not so many of them have been done for the FDM on irregular meshes [1, 4, 9, 17]. 

For parabolic BVP the classical FDM with regular meshes was commonly used but 
there are few papers concerning FDM with irregular meshes. T. Liszka and J. Orkisz  
in [13, 14] present an approximate solution of the heat equation obtained by “irregular” 
formulas on a regular mesh. An efficient stability condition was obtained this way. A proof 
of the convergence for one dimensional space variable was obtained by Li Ronghua [18]. 
FDM with rectangular meshes was considered by M. Malec and M. Rosati [16]. 

An overview of the FDM with irregular mesh and its applications was done by  
F. Ihlenburg [6], J. Orkisz [20] and J. Krok [12], who published many papers in this 
subject, e.g. [11]. 

The purpose of this paper is to present convergence analysis for solutions of parabolic 
BVP obtained by the FDM with irregular meshes in the local formulation in an explicit  
and implicit form. The presented proof is based on a discrete maximum principle 
(Theorems 3.1 and 3.2) extended in an earlier paper ([7]). Theoretical results are confirmed 
by convergence tests. 

2. Statement of the problem 

A cylindrical, bounded domain 
3(0, )D T= × Ω ⊂ ℜ  with a boundary 0 1 2TD D D D D∂ = ∂ ∪ ∂ ∪ ∂ ∪ ∂  is considered.  

The symbols used above denote 

0 {0} ,D∂ = × Ω     { } ,TD T∂ = × Ω     1 2 0\ ( ) (0, ] ,TD D D D D T∂ ∪ ∂ = ∂ ∂ ∪ ∂ = × ∂Ω  

1 2 O,∂ ∩ ∂ = /D D  

where ,Ω  ∂Ω  are closure and boundary of Ω  correspondingly, 1,D∂  2D∂  will be defined 

by boundary conditions and 

0 1,BD D D∂ = ∂ ∪ ∂     .D D D= ∪ ∂  

Let a mesh of nodes 1 2( , ) ,i i ix x x i I= ∈ Ω ∈  be given with 

int { : },iI i x= ∈Ω    { : }bd iI i x= ∈ ∂Ω  – indices of internal and boundary nodes. 
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The time interval [0, ]T  is divided into M equal time steps 

0 10 ,Mt t t T= < < < =…     1 const, 1n nk t t n M−= − = ≤ ≤  

and ( , ), 0 ,n it x n M i I≤ ≤ ∈  are the mesh of nodes in .D  For each node ( , )n it x D∈   

a set of indices j of auxiliary nodes connected with this node (“star of the node”), ( , )G n i   

is defined ( ( , )).i G n i∉  We denote further 

( , ) sup(| ( , ) ( , ) |, ( , )}n j n ih n i t x t x j G n i= − ∈ ,    {max ( , ), {1, , }, },h h n i n M i I= ∈ ∈…  

2

11 22, , , , , , , , , , .t i ij ni i j

u u u u
u u u u u u u

t nx x x

∂ ∂ ∂ ∂= = = ∆ = + =
∂ ∂∂ ∂ ∂

 

Moreover we assume that 

2 1 2( , ) , ( , ), ( , ) ,n i n jt x D j G n i t x D D∀ ∈ ∂ ∀ ∈ ∉∂ ∪ ∂  

i.e. each star of a node which belongs to 2D∂  consists of internal nodes only. In the domain 

D the following boundary-value problem is considered 

2 2

, 1 1

( , ) , ( , ) ( , ) , ( , ) ( , ) , ( , ) ( , ) ( , ) ( , )t ij ij i i
i j i

Lu t x u t x a t x u t x b t x u t x c t x u t x f t x
= =

 
 = − ⋅ + ⋅ + ⋅ =
  
∑ ∑ (1) 

for ( , )t x D∈  

 
2

2
1

( , ) ( , ) , ( , ) ( , ) ( , ) ( , )i i
i

Bu t x d t x u t x e t x u t x g t x
=

= ⋅ + ⋅ =∑  (2) 

for 2( , ) ,t x D∈ ∂  and 

 ),(),( 1 xtgxtu =  (3) 

for ( , ) .Bt x D∈ ∂  

The problem (1)–(3) is replaced by the FDM equations for the discrete solution U 

 { }
1

1

2 1

( , )

( ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

i
h n i n i

j j n j n i
j G n i

n i n i

L U k U t x U t x

n i h n i h U t x U t x

n i U t x f t x

−
−

− −

∈

= −  

   − α + β ⋅ −  

− γ =

∑  (4) 

(implicit scheme), or 

 { }
1

1

2 1

( , )

( ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

e
h n i n i

j j n j n i
j G n i

n i n i

L U k U t x U t x

n i h n i h U t x U t x

n i U t x f t x

−
+

− −

∈

= −  

   − α + β ⋅ −  

− γ =

∑  (5) 
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(explicit scheme), for ( , )n i Tt x D D∈ ∪ ∂  

 1
2

( , )

( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )h j n i n j n i n i
j G n i

B U h n i U t x U t x n i U t x g t x−

∈

 = δ ⋅ − + ε = ∑  (6) 

for 2( , )n it x D∈ ∂  

 1( , ) ( , )n i n iU t x g t x=  (7) 

for ( , ) .n i Bt x D∈ ∂  

3. Maximum principle 

Theorem 3.1 ([7]). Let the implicit difference system (4), (6), (7) fulfils at each node 
( , )n it x  the following assumptions 

1( , ), ( , ) 0, ( , ) ( , ) 0 ( , ), ( , ) 0, ( , ) 0,j j j jn i n i n i h n i j G n i n i n i−α δ > α + β > ∀ ∈ ε ≥ γ ≤  (8) 

 1 2( , ) 0, ( , ) 0 ( , ) 0,n i n i n if t x g t x g t x≤ ≤ ≤  (9) 

then 

 0),( ≤in xtU  (10) 

at each node ( , ) .n it x D∈  

Theorem 3.2 ([7]). Let the explicit difference system (5)–(7) fulfils at each node 
( , )n it x  assumptions (8), (9) and 

   { } 1
2 1

( , )

0 min ( , ) ( , ) ( , ) , {0, , },j j
j G n i

k n i h n i h n i n M i I
−

− −

∈

   < ≤ α + β − γ ∈ ∈  
  
∑ …  (11) 

then (10) holds at each node. 
Sketch of the proof of Theorem 3.1. Suppose, on the contrary, that there is a node 

( , )n kt x  such that 

 ( , ) 0.n kU t x >  (12) 

(9) implies that  

 ( , ) .n k Bt x D∉ ∂  (13) 

There are two possible cases 

1. 2( , ) ,n kt x D∈ ∂  then 

2
( , ) ( , )

int
( , )

0 ( , ) ( , ) ( , )

max{ ( , ), }

n k j j n j n k
j G n k j G n k

j n p
j G n k

U t x h U t x hg t x

U t x p I

∈ ∈

∈

 
 < ⋅ δ + ε = δ +
  

≤ δ ∈

∑ ∑

∑
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and there is a node ( , )n rt x D∈  at which 

0 ( , ) ( , ),n k n rU t x U t x< <  

what implies the second case. 
2. ( , ) .n kt x D∈  (12), (13) imply then an existence of a int( )m m n I= ∈  such that 

( , ) max{ ( , ), } 0.n m n iU t x U t x i I= ∈ >  

For this node we obtain 

{ }2 1
1

( , )

2 1

( , )

2 1

( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , )

1 ( , ) ( , ) 0.

n m j j n j n m n m
j G n m

n m j j n j
j G n m

j j n m n m
j G n m

U t x k h h U t x U t x U t x

kf t x k h h U t x

k h h U t x U t x

− −
−

∈

− −

∈

− −

∈

   = − ⋅ α + β ⋅ − +  

 − ≥ − ⋅ α + β ⋅ 

 
  + + ⋅ α + β ⋅ ≥ >   

∑

∑

∑

 

We can then write 

int intmax{ ( , ), } max{ ( , ), } 0, 1, , ,n k p n pU t x p I U t x p I k n− ∈ ≥ ∈ > = …  

but this implies 

0 max{ (0, ), ( , ) },p n p BU x t x D< ∈ ∂  

which contradicts (9). 
Proof of the Theorem 3.2 is similar (cf. [7]). 

4. Convergence of the method 

Suppose the following conditions hold: 

A1. The BVP (1)–(3) has the unique solution 3 2( ) ( )u C D C D∈ ∩  and 

 { } 1sup | ( , ) |, ( , ) , | | 3 ,D u t x t x D Mα ∈ α ≤ = < ∞   

 { } 2sup | ( , ) |, ( , ) , | | 2 .D u t x t x D Mα ∈ α ≤ = < ∞   

A2. For any polynomial V of the form 

1 1 1 2 2 2 1 2
11 12 22 10 01 00( , ) ,tV t x a x x a x x a x x a x a x a t a= + + + + + +  

if the implicit scheme is used, the equality 

 ( , ) ( , ), ( , ),i
n i h n i n iLV t x L V t x t x= ∀  (14a) 

or, in the other case 

 ( , ) ( , ), ( , )e
n i h n i n iLV t x L V t x t x= ∀  (14b) 

holds. 
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A3. Inequalities (8) are fulfilled. 
A4. There is 0m >  independent of , ,k h n such that 

( ) int
( , )

, ,j j
j G n i

m i I
∈

α + β − γ ≤ ∀ ∈∑     
( , )

, .j bd
j G n i

m i I
∈

δ ≤ ∀ ∈∑  

A5. If 2 O∂ ≠ /D  then there are constants 1 3 4, , 0c M M >  and a function 
3 2( ) ( )v C D C D∈ ∩  such that 

 1 in ,TLv c D D≥ ∪   

 1 2on ,Bv c D≥ ∂   

 0 on ,Bv D≥ ∂   

 { } 3sup | ( , ) |, ( , ) , | | 3 ,D v t x t x D Mα ∈ α ≤ = < ∞   

 { } 4sup | ( , ) |, ( , ) , | | 2 .D v t x t x D Mα ∈ α ≤ = < ∞   

A6. The difference problem (4), (6), (7) or, if explicit scheme is used, (5)–(7) has the 
unique solution U. 

Theorem 4.1. If Assumptions A1–A6 are fulfilled (with (14a)), then the discrete 
solution U obtained by the implicit method, converges to the exact solution u and there  
is a constant 0C >  independent of k and h such that 

 { }sup | ( , ) ( , ) |, ( , ) ( ).n i n i n iU t x u t x t x D C k h− ∈ ≤ +  (15) 

Theorem 4.2. If Assumptions A1–A6 are fulfilled (with (14b)), inequality (11) holds 
and U is the discrete solution obtained by the explicit method, then the assertion of 
Theorem 4.1. holds. 

Remark 1. Assumptions A1 and A5 may be replaced by a much stronger assumption: 
“For any right hand sides of the equations (1)–(3) regular enough, there is a unique solution 
of these equations with bounded second and third derivative”. This condition is forced here 
to the searched exact solution and to one solution of the problem with positive right hand 
sides only. Then Assumption A5 does not limit in fact applications of Theorems 4.1  
and 4.2. 

Remark 2. For the heat conduction problem as a typical phenomenon described by  
a partial differential equation of parabolic type the solution u of the considered problem  
or the function v in Assumption A5 are the temperature distributions, Lu and Lv are 
distributions of heat sources, Bu, Bv represent heat flows through the boundary. 
Assumption A5 says that for positive heat sources and flow the temperature may  
be positive with limited second and third derivatives, i.e. there is no singularities e.g. at the 
contact of the Dirichlet and Neumann boundary conditions. 
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Proof of Theorems 4.1 and 4.2. 
The solution u of (1)–(3) can be expanded in Taylor series 

2
2

1

( , ) ( , ) , ( , )( ) , ( , )( ) 0,5 , ( , )( )j j
n i t n i n j n i i tt n i n

j

u t x u t x u t x t t u t x x x u t x t t
=

= + − + − + −∑  

2 2

1 , 1

, ( , )( )( ) 0,5 , ( , )( )( )j j j j k k
tj n i n i kj n i i i

j k j

u t x t t x x u t x x x x x
= =

+ − − + − −∑ ∑
2

3 2

1

1
, ( , )( ) 0,5 , ( ', ')( ) ( )

6
j j

ttt n i n ttj n i
j

u t x t t u t x t t x x
=

+ − + − −∑  

2

, 1

0,5 , ( ', ')( )( )( )j j k k
tkj n i i

k j

u t x t t x x x x
=

+ − − −∑  

2

, , 1

1
, ( ', ')( )( )( ) ( , ) , ( , )( )

6
j j k k l l

lkj i i i n i t n i n
l k j

u t x x x x x x x u t x u t x t t
=

+ − − − = + −∑  

2 2

1 , 1

, ( , )( ) 0,5 , ( , )( )( ) ( , ).j j j j k k
j n i i kj n i i i

j k j

u t x x x u t x x x x x R t x
= =

+ − + − − +∑ ∑  

At the point ( , )n it x  we have 

 ( ) ( , ) ( )( , ) ( , )h n i h n i n iL L u t x L U u t x f t x− = − =  

2

1

( , ) , ( , )( ) , ( , ) ( )j j
h n i t n i n j n i i

j

L u t x u t x t t u t x x x
=


− + − + −



∑  

2

, 1

0,5 , ( , )( )( ) ( )j j k k
kj n i i i h

k j

u t x x x x x L R
=


+ − − −



∑

( , ) ( , ) ( ) ( ).n i n if t x f t x O k h O k h= − + + = +  

Similarly 

2
2

1

( , ) ( , ) , ( , )( ) , ( , )( ) 0,5 , ( ', ')( )j j
n i t n i n j n i i tt n

j

u t x u t x u t x t t u t x x x u t x t t
=

= + − + − + −∑  

2 2

1 , 1

, ( ', ')( )( ) 0,5 , ( ', ')( )( )j j j j k k
tj n i kj i i

j k j

u t x t t x x u t x x x x x
= =

+ − − + − −∑ ∑  

2

1

( , ) , ( , ) ( ) ( , ).j j
n i j n i i

j

u t x u t x x x P t x
=

= + − +∑  
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2( ) ( , ) ( )( , ) ( , )h n i h n i n iB B u t x B U u t x g t x− = − =  

2

1

( , ) , ( , )( ) ( )j j
h n i j n i i h

j

B u t x u t x x x B P
=

 
 − + − −
 
 

∑  

= 2 2( , ) ( , ) ( ) ( )n i n ig t x g t x O h O h− + =  

The above formulas can be rewritten as 

 2| ( ) | ( ),hL U u c k h− ≤ +     2| ( ) | .hB U u c h− ≤  (16) 

For the function v defined in Assumption A5, or, if 2 O,∂ = /D  1( , ) ,v t x c t=  the 

following assumptions hold 

( ) ( , ) ( ),h n iL L v t x O k h− = +     ( ) ( , ) ( ),h n iB B v t x O h− =  

then for k, h small enough 

1( ) ( , ) 0,5 ( , ) ,h n i n i TL L v t x c t x D D− ≤ ∀ ∈ ∪ ∂  

 1 2( ) ( , ) 0,5 ( , ) ,h n i n iB B v t x c t x D− ≤ ∀ ∈ ∂  (17) 

therefore 

 1( , ) 0,5 ,h n iL v t x c≥     1( , ) 0,5 .h n iB v t x c≥  (18) 

Let 1
2 12( ) .hv k h vc c−= +  Then, by (16)–(18) and A5 

( )( , ) 0h h n iL U u v t x− − ≤   in  ,TD D∪ ∂  

( )( , ) 0h h n iB U u v t x− − ≤   on  2,D∂  

( )( , ) 0h n iU u v t x− − ≤   on  .BD∂  

The same inequalities imply 

( )( , ) 0h h n iL u U v t x− − ≤   in  ,TD D∪ ∂  

( )( , ) 0h h n iB u U v t x− − ≤   on  2,D∂  

( )( , ) 0h n iu U v t x− − ≤   on  ,BD∂  

therefore, by Theorems 3.1 and 3.2, we have 

( )( , ) 0h n iU u v t x− − ≤   in  ,D  

( )( , ) 0h n iu U v t x− − ≤   in  D   and 

| ( )( , ) | ( , ) ( ) ( , ) .n i h n i n iu U t x v t x c k h t x D− ≤ ≤ + ∀ ∈  
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5. Numerical tests 

The cylindrical domain 

1 2 2 1 2 2 2{( , , ) : 0 1, ( ) ( ) 1}D t x x t r x x= < < = + <  

with equal time-steps and irregular mesh of nodes at each time was considered.  
The following boundary-value problems were defined: 
BVP1. The Dirichlet BVP 

1 2, in , on , O.−∆ = = ∂ ∂ = /t Bu u f D u g D D  

BVP2. The Neumann BVP 

1 0 2 2 1, 10 in , on , , on , O.−∆ + = = ∂ = ∂ ∂ = /t nu u u f D u g D u g D D  

BVP3. The Robin BVP 

1 0 2 2 1, in , on , , on , O.−∆ = = ∂ + = ∂ ∂ = /t nu u f D u g D u u g D D  

BVP4. The mixed BVP 

1
1 2 2, in , on , , on {( , ) : 1, 0}.t B nu u f D u g D u g D t x r x−∆ = = ∂ = ∂ = = >  

Values of 1 2, ,f g g  were taken as corresponding values for exact solutions in four 

examples: 

1. 4( , ) 1 ,u t r t r= − ⋅  

2. ( , ) cos(0,25 ),u t r tr= π  

3. 2( , ) sin(0,3 ),u t r t r= π  

4. 
2

( , ) .tru t r e−=  

Each example was solved with the explicit and implicit scheme. The expression 

sup{| ( , ) ( , ) |, ( , ) }i j i j i je u t x U t x t x D= − ∈  

was assumed to be the error of the method. 

An example of an irregular mesh in the circle 2 1r ≤  is shown in Fig. 1. The graphs  

of the approximate and exact solution on the plane 2 0x =  for the Boundary Value  
Problem 1, Example 3, explicit scheme, are given in Figs. 2 and 3 (the both solutions are 
axisymmetric). Rates of convergence in all Boundary Value Problems and all examples 
are presented in Figs. 4–11. The x and y axis represent logarithms of h and of e. Rates  
of convergence for considered problems are assembled in the Table 1. 
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T a b l e  1 

Rates of convergence 

 BVP 1 BVP 2 BVP 3 BVP 4 
Scheme explicit implicit explicit implicit explicit implicit explicit implicit 
Solution 1 2,073 2,074 1,182 1,182 0,927 0,936 0,989 0,999 
Solution 2 1,979 2,141 1,377 1,378 1,065 1,085 1,133 1,155 
Solution 3 1,976 2,081 1,502 1,492 1,104 1,104 1,147 1,147 
Solution 4 2,211 2,207 1,074 1,076 0,959 1,037 1,031 1,086 

 
 

 
Fig. 1. Irregular mesh of nodes 

Rys. 1. Nieregularna siatka węzłów 
 
 

 
Fig. 2. Approximate solution for y = 0 

Rys. 2. Rozwiązanie przybliŜone dla y = 0 
 

 t = 0 
 
 t = 0,334 
 
 t = 0,666 
 
 t = 1,0 

x 

u 
(t

, x
) 
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Fig. 3. Exact solution for y = 0 

Rys. 3. Rozwiązanie dokładne dla y = 0 
 
 
 

 
Fig. 4. Convergence test: Boundary Value Problem 1, explicit scheme 

Rys. 4. Test zbieŜności: problem brzegowy nr 1, schemat jawny 
 
 
 

 
Fig. 5. Convergence test: Boundary Value Problem 1, implicit scheme 

Rys. 5. Test zbieŜności: problem brzegowy nr 1, schemat niejawny 
 

 t = 0 
 

 t = 0,334 
 

 t = 0,666 
 

 t = 1,0 

x 

u 
(t

, k
) 

Log hmax 

Log hmax 
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Fig. 6. Convergence test: Boundary Value Problem 2, explicit scheme 

Rys. 6. Test zbieŜności: problem brzegowy nr 2, schemat jawny 
 
 

 
Fig. 7. Convergence test: Boundary Value Problem 2, implicit scheme 

Rys. 7. Test zbieŜności: problem brzegowy nr 2, schemat niejawny 
 
 

 
Fig. 8. Convergence test: Boundary Value Problem 3, explicit scheme 

Rys. 8. Test zbieŜności: problem brzegowy nr 3, schemat jawny 
 
 

Log hmax 

Log hmax 

Log hmax 
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Fig. 9. Convergence test: Boundary Value Problem 3, implicit scheme 

Rys. 9. Test zbieŜności: problem brzegowy nr 3, schemat niejawny 
 
 

 
Fig. 10. Convergence test: Boundary Value Problem 4, explicit scheme 

Rys. 10. Test zbieŜności: problem brzegowy nr 4, schemat jawny 
 
 

 
Fig. 11. Convergence test: Boundary Value Problem 4, implicit scheme 

Rys. 11. Test zbieŜności: problem brzegowy nr 4, schemat niejawny 
 
 

Log hmax 

Log hmax 

Log hmax 
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6. General remarks 

The presented numerical examples converge to exact solutions with the rate 2( )O h  

(BVP1) or ( )O h  (BVP 2–4), for the simple boundary condition approximation. When  

the approximation along the boundary is of the second order, the obtained convergence rate 

for the BVP2 is 2( ).O h  It suggest that for given assumptions, convergence estimate (16)  

is optimal. The problem of modifying (16) for the Dirichlet BVP and for the second order 
boundary approximation remains open. The presented examples show the importance  
of the accurate approximation of the boundary conditions containing derivatives.  
For the given end-time t = 1 convergence of the both FD methods is theoretically and 
numerically confirmed. 

The paper does not present stability tests. Theoretical estimates however include  
the stability condition (11). It coincides with the classical one on a regular mesh.  
In a special case better results were obtained by Liszka and Orkisz ([13, 14]). 

This paper may be extended on another difference schemes, for example Crank– 
–Nicholson schemes, schemes with excessive nodes [14] or schemes obtained by the 
balance method [5]. Application of the presented method to other boundary value problems 
may be investigated, too. 
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