WITOLD OBŁOZA*

A LINEAR ABSTRACT INITIAL VALUE PROBLEM WITH BESOV FUNCTION

ABSTRAKCYJNY LINIOWY PROBLEM POCZĄTKOWY Z FUNKCJA BESOVA

Abstract

This article is devoted to the investigation of the abstract linear initial value problem:

(*)
$$\begin{cases} \frac{du}{dt}(t) + A(t)u(t) = f(t) \\ u(s) = x \end{cases}$$
 in a Banach space in a parabolic case with Besov function f . We

give sufficient condition for existence and uniqueness of the solution of the problem (*) which may have weak singularity at the origin.

Keywords: Besov space, semigroup with singularity

Streszczenie

Niniejszy artykuł dotyczy abstrakcyjnego problemu początkowego: (*) $\left\{ \frac{du}{dt}(t) + A(t)u(t) = f(t) \right\}$

w przestrzeni Banacha z funkcją Besova f. Podane są warunki wystarczające na istnienie i jednoznaczność rozwiązania problemu (*) ze słabą osobliwością w punkcie początkowym.

Słowa kluczowe: przestrzeń Besova, półgrupa z osobliwością

BIBLIOTEKA CYFROWA POLITECHNIKI KRAKOWSKIEJ

^{*} Dr Witold Obłoza, Instytut Matematyki, Wydział Fizyki, Matematyki i Informatyki Stosowanej, Politechnika Krakowska.

1. Introduction

Let X be a Banach space, and let $\{A(t)\}_{t\in[0,T]}$ be a family of closed densely defined linear operators from X to X with domains D = D(A(t)) independent on t. We consider the linear abstract initial value problem

$$\begin{cases} \frac{du}{dt}(t) + A(t)u(t) = f(t), & t \in (s, T], \\ u(s) = x, & s \in [0, T), \ x \in X, \end{cases}$$
 (1)

where $f:[0,T] \to X$ is a Besov function. We prove a theorem on the existence and uniqueness of the solution of problem (1).

Definition 1. A function $u: [s,T] \to X$ is said to be a classical solution of the problem (1) if

- $u: [s,T] \to X$ is continuous, (i)
- $u: [s,T] \to X$ is of class \mathcal{C}^1 , (ii)
- $u(t) \in D$ for each $t \in (s,T]$, (iii)
- (iv) $\frac{du}{dt}(t) + A(t)u(t) = f(t) \text{ for each } t \in (s,T].$

2. Semigroups with singularity

We will use the following assumptions (see [6]):

- (Z1). The domain D of A(t) is independent on t, D is dense in X, and for $x \in D$ the function $[0,T] \ni t \to A(t)x \in X$ is of class \mathcal{C}^1 .
- $(\mathbf{Z}2). \text{ For all } t \in [0,T], \ \lambda \in \sum\nolimits_{b_0}^{\omega} = \left\{\lambda \in \mathbb{C} : \left| \arg(\lambda b_0) \right| < \omega \right\}, \ \text{ where } \ b_0 < 0, \ \omega \in \left(\frac{\pi}{2}, \pi\right)$

there exist $R_{\lambda}(t) = -(\lambda + A(t))^{-1} \in B(X)$ and there exist constants $M \ge 1$, $\theta \in \left(\frac{2}{3}, 1\right)$,

independent on t and λ , such that

$$||R_{\lambda}(t)|| \le \frac{M}{(1+|\lambda|)^{\theta}}$$
 for $\lambda \in \sum_{b_0}^{\omega}$, $t \in [0,T]$.

For a fixed $s \in [0,T]$ we may use results of [10] to get the following remark:

Remark 2. For any fixed $s \in [0,T]$ operators

$$S_s(t) := \frac{-1}{2\pi i} \int_{\Gamma h} e^{\lambda t} R_{\lambda}(s) d\lambda, \tag{2}$$

where $\Gamma_b = \left\{ re^{-i\omega} + b; \ 0 \le r < \infty \right\} \cup \left\{ re^{i\omega} + b; \ 0 \le r < \infty \right\}, \ b \in (b_0, +\infty), \ form \ an \ analytic = b$ semigroup with singularity generated by (-A(s)) (see [9]). Moreover

$$\frac{d^{n}}{dt^{n}}S_{s}(t) = (-1)^{n}A^{n}(s)S_{s}(t) \quad \text{for} \quad s \in [0,T], \ t > 0,$$

and for any fixed $s \in [0,T]$ the estimate

$$||A^n(s)S_s(t)|| \le M_n t^{\theta - (n+1)}$$
 for $s \in [0,T], t > 0,$ (3)

holds, where M_n depends only on θ and M (by assumption (**Z**2)).

Definition 3. Let us define (see [9])

$$A^{-\beta}(s) := \frac{-1}{2\pi i} \int_{\Gamma b} (-\mu)^{-\beta} R_{\mu}(s) d\mu,$$

for $\beta \in (1-\theta,1)$, $s \in [0,T]$, $b \in (b_0,0)$, where for the function $(-\mu)^{-\beta}$ we mean a branch whose arguments lie between $-\beta\pi$ and $\beta\pi$ and which is analytic in the region obtained by omitting the positive real axis (for details see [9]).

Remark 4. Under assumptions (**Z**1), (**Z**2) the linear operator $A^{-\beta}(s)$ is bounded and injective. Thus $A^{\beta}(s) := (A^{-\beta}(s))^{-1}$ is well defined and for $\beta \in (1-\theta,\theta)$ we have $D(A^{\beta}(s)) \supset D$ (for details see [9]).

We can write the main theorem of [6] in the following way:

Theorem 5. Assumptions (**Z**1), (**Z**2) guarantire that the problem

$$\begin{cases} \frac{du}{dt}(t) + A(t)u(t) = f(t), & t \in (s,T], \ s \in [0,T], \\ u(s) = x, & x \in \widehat{D^{\beta}} = \bigcup_{r \in [0,T]} D(A^{\beta}(r)), \ \beta \in (2(1-\theta),\theta), \end{cases}$$

has the unique two-parameter family of bounded operators $\{U(t,s)\}_{(t,s)\in\Lambda_{m,s}}$ $\Delta_T = \{(s,t): 0 \le s < t \le T\}$ (called fundamental solution) such that: $1^{\circ} U(t,s): X \to D$ is bounded and

$$||U(t,s)|| \le C|t-s|^{\theta-1}$$
 for $s < t$,

 2° For any fixed $\beta \in (2(1-\theta), \theta)$

$$\lim_{s \to t} U(t, s) x = x \quad \text{for} \quad x \in \bigcup_{r \in [0, T]} D(A^{\beta}(r)),$$

3° The function $(s,T] \ni t \to U(t,s)x$ is of class C^1 for $s \in [0,T], x \in X$ and

$$\frac{\partial U}{\partial t}(t,s)x + A(t)U(t,s)x = 0 \quad \text{for} \quad x \in X, \ 0 \le s < t \le T.$$

Moreover,
$$\left\| \frac{\partial U}{\partial t}(t,s) \right\| \le C |t-s|^{\theta-2}$$
 and

$$||A(t)U(t,s)A^{-1}(s)|| \le C|t-s|^{\theta-1}$$
 for $0 \le s < t \le T$.

 4° The function $[0,t) \ni s \to U(t,s)x \in X$ is differentiable for $x \in D$, $t \in (0,T]$ and

$$\frac{\partial U}{\partial s}(t,s)x = U(t,s)A(s)x.$$

Remark 6. In [6] it is proved that

$$U(t,s) = S_s(t-s) + W(t,s) = S_s(t-s) + \int_s^t S_r(t-r)P(r,s)dr,$$

where $\left\{S_s(t)\right\}_{t>0}$ is semigroup generated by (-A(s)), and operator P(r,s) is linear and bounded on X.

Lemma 7. (See [6]) It the function f is continuous then the function

$$G(t) = \int_{s}^{t} W(t, r) f(r) dr$$

is of class C^1 and

$$\frac{\partial}{\partial t}G(t) = \frac{\partial}{\partial t} \int_{s}^{t} W(t,r)f(r)dr = \int_{s}^{t} \int_{r}^{t} (A(t)S_{t}(t-p)P(t,r)) - A(p)S_{p}(t-p)P(p,r)dpf(r)dr + \int_{s}^{t} S_{t}(t-r)P(t,r)f(r)dr.$$

It is easy to proof the following technical lemma:

Lemma 8. For each $d \in (-1, \infty)$, there is C > 0 such that for each $a \in (0, \infty)$

$$\int_0^\infty t^d e^{-at} dt = Ca^{-d-1}. (4)$$

3. Besov spaces

For definition of spaces of Besov functions and their properties we refer to [5] and [4]. We recall some of them. We need the following definitions for characterization of Besov functions.

Definition 9. (See [4, 5, 10]) Let I = (a,b) where $-\infty < a < b < \infty$. We define $K_0(I)$ as the set of functions $\varphi: \mathbb{R}^2 \to \mathbb{R}$ of class C^{∞} , such that 1° and 2° holds:

1° For all compact $K \subset \mathbb{R}$ there exists a compact set $K_1 \subset \mathbb{R}$ such that, supp $\varphi(t,\cdot) \subset K_1$ for $t \in K$.

 2° For all compact $K \subset \mathbb{R}$ there exists compact set $K_2 \subset I$ such that supp $\varphi(t,(t-\cdot)/\tau) \subset K_2 \text{ for } t \in K \text{ and } \tau \in (0,1].$

Definition 10. (See [5]) Let I be as in the precedente definition

$$K_m(I) := \left\{ \frac{\partial^m \varphi}{\partial s^m}(t, s) : \varphi \in K_0(I) \right\}.$$

Let I = (a,b) be an interval and let the function φ_0 be of class C^{∞} with support in Isuch that $\int \varphi_0(t)dt = 1$. Let us define for each integraf *m* functions

$$e_m(t,s) = \sum_{j=0}^{m-1} \frac{\partial^j}{\partial s^j} \left(\frac{1}{j!} s^j \varphi_0(t-s) \right),$$

$$e_m^*(t,s) = 2e_m(t,s) - \int e_m(t,r) e_m(t-cr,s-r) dr.$$

Theorem 11. (See [5] Theorem 1) A distribution f is in $B_{p,q}^{\sigma}(I)$, if and only if exists $m > \sigma$ such that following conditions holds

$$\left\langle \varphi\left(t, \frac{t-s}{c}\right), f(s) \right\rangle_{s} \in L^{p}(I, X, dt) \quad \text{for all} \quad \varphi \in K_{0}(I),$$

$$\tau^{-\sigma} \left\langle \tau^{-1} \varphi\left(t, \frac{t-s}{\tau}\right), f(s) \right\rangle_{s} \in L^{q}\left((0, c), L^{p}(I, X, dt), \frac{d\tau}{\tau}\right)$$

for all $\varphi \in K_m(I)$.

Theorem 12. (See [5] Theorem 2) Let $f \in B^{\sigma}_{\infty,1}(I,X)$, where I = (a,b), and let $h, l \in \{0, 1, 2, 3, ...\}, -h < \sigma < l, m = h + l.$ Under above assumption the sequence $\{f_n\}_{n=1}^{\infty}$ defined by $f_n(t) = \int_{-\infty}^{\infty} ne_m^*(t, n(t-r)) f(r) dr$ converges to f in $B_{\infty,1}^{\sigma}(I, X)$. If the function $f:[a,b] \to X$ is continuous then $\{f_n\}_{n=1}^{\infty}$ are in $C^{\infty}([a,b]) \cap B_{\infty,1}^{\sigma}(I,X)$. Moreover, $\{f_n\}$ converges to f in $L^1(I,X)$. By definition of norm in $B^{\sigma}_{\infty,1}(I,X)$ for $\sigma > 0$, the sequence f_n converges to f in $L^{\infty}((a,b);X)$, while $n \to \infty$.

4. The linear case

We consider the following linear Cauchy problem

$$\begin{cases} \frac{du}{dt}(t) + A(t)u(t) = f(t), & t \in (s,T], \ s \in [0,T] \\ u(s) = x, & x \in \widehat{D^{\beta}}, \end{cases}$$
 (5)

where $f:[0,T]\to X$ is Besov function from $B_{\infty,1}^{1-\theta}$. We investigate the existence and uniqueness of the classical solution. We shall prove that function u given by

$$u(t) = U(t,s)x + \int_{s}^{t} U(t,r)f(r)dr$$

is the unique classical solution of the initial value problem.

We shall show that $u(\cdot)$ is differentiable. We note that $U(\cdot,s)x$ is the solution of initial value problem with f = 0. By the form of U(t,s)x and by differentiability of $G(\cdot)$, given in Lemma 7, it is sufficient to show the differentiability of $F(\cdot)$, given by $F(t) = \int_{0}^{t} S_{r}(t-r)f(r)dr$. By the inclusion in Corollary 2.1 from [10] it is sufficient consider function $F \in B^1_{\infty,1}$. The following lemmas will show that u satisfies the equation. We shall prove this by approximating the function u by solution of equations with the right-hand side function of class C^1 . We can do that by Theorem 12.

Lemma 13. Assume Z_1 – Z_2 and let $q, z \in [0,T]$. Then there exists C independent of z and q, such that

$$\left\| \frac{\partial^k}{\partial q^k} \frac{\partial}{\partial z} S_z(q) \right\| \le C q^{2\theta - k - 2} \tag{6}$$

Proof. By (2) and $(\mathbb{Z}2)$, we have

$$\left\| \frac{\partial^{k}}{\partial q^{k}} \frac{\partial}{\partial z} S_{z}(q) \right\| \leq C \left\| \int_{\Gamma a} \frac{\partial^{k}}{\partial q^{k}} \frac{\partial}{\partial z} e^{\lambda q} R_{\lambda}(z) d\lambda \right\| \leq C q^{2\theta - k - 2} (1 + q^{1 - \theta}) \leq C q^{2\theta - k - 2} (1 + T^{1 - \theta}) \leq C q^{2\theta - k - 2}.$$

Lemma 14. Let $\varphi \in K_0(s+\varepsilon,T)$, $\varepsilon > 0$, $q_0 \in (0,T-s)$, $q \in (0,T]$, $p \in (s+\varepsilon,T)$. Moreover, let function $f:[0,T] \to X$ be continuous and

$$M = \sup \left\{ \left| \varphi \left(p, \frac{p - q - r}{\tau} \right) \right|; \ p, q, r \in (0, T), \ \tau \in (0, 1] \right\}.$$

Then

$$\begin{split} \left\| \int_{s}^{T-q_{0}} \int_{z}^{T-q_{0}} \tau^{k} \frac{\partial^{k+1} S_{z}}{\partial q^{k} \partial z}(q) \varphi \left(p, \frac{p-q_{0}-r}{\tau} \right) f(r) dr \, dz \right\| \leq \\ \leq C \tau^{k} q^{\theta-1-k} \left\| \int_{s}^{T-q_{0}} \varphi \left(p, \frac{p-q_{0}-r}{\tau} \right) f(r) dr \right\| + C M \tau^{k+2} q^{2\theta-2-k} \left\| f \right\|_{L^{\infty}}. \end{split}$$

Proof. We shall show that $M < \infty$. For fixed $p \in (0,T)$ and $\tau(0,1]$ supp $\varphi\left(p, \frac{p-\cdot}{\tau}\right) \subset [0,T]$.

$$\begin{split} \sup \left\{ \left| \varphi \left(p, \frac{p - q_0 - r}{\tau} \right) \right|; \, p, q_0, r \in (0, T), \, \, \tau \in (0, 1] \right\} \leq \\ & \leq \sup \left\{ \left| \varphi \left(p, z - q_0 - r \right) \right|; \, z, q_0, r \in (0, \tau T), \, \, p \in (0, T), \tau \in (0, 1] \right\} < \infty \\ & \varphi \in C^{\infty} \quad \text{hence} \quad \sup \left\{ \varphi(t, s) : (t, s) \in [0, T] \times [-2T, T] \right\} \leq \infty. \end{split}$$

Let $\sup \varphi \left(p, \frac{p-q_0-\cdot}{\tau} \right) \subset [a,b] \subset [q_0-K\tau,q_0+K\tau]$ i $[a,b] \subset (s+\varepsilon,T)$, where K is independent of τ . We have

$$\left\| \int_{s}^{T-q_{0}} \tau^{k} \frac{\partial^{k}}{\partial q^{k}} \frac{\partial S_{z}}{\partial z}(q) \int_{z}^{T-q_{0}} \varphi\left(p, \frac{p-q_{0}-r}{\tau}\right) f(r) dr dz \right\| \leq$$

$$\leq \left\| \int_{s}^{a} \tau^{k} \frac{\partial^{k}}{\partial q^{k}} \frac{\partial S_{z}}{\partial z}(q) \int_{z}^{T-q_{0}} \varphi\left(p, \frac{p-q_{0}-r}{\tau}\right) f(r) dr dz \right\| +$$

$$+ \left\| \int_{a}^{b} \tau^{k} \frac{\partial^{k}}{\partial q^{k}} \frac{\partial S_{z}}{\partial z}(q) \int_{z}^{T-q_{0}} \varphi\left(p, \frac{p-q_{0}-r}{\tau}\right) f(r) dr dz \right\| +$$

$$+ \left\| \int_{b}^{T-q_{0}} \tau^{k} \frac{\partial^{k}}{\partial q^{k}} \frac{\partial S_{z}}{\partial z}(q) \int_{z}^{T-q_{0}} \varphi\left(p, \frac{p-q_{0}-r}{\tau}\right) f(r) dr dz \right\| +$$

Estimatig each term we prove Lemma 14.

Lemma 15. (See [10]) Let $I = (s,T), I_{\varepsilon} = (s+\varepsilon,T), q', q \in (0,T], \varphi \in K_0(I_{\varepsilon}) \cap K_0(I).$ If $f \in L_1(I,X)$ then

$$\left\| \int_{s}^{T-q} \tau^{-1} \varphi \left(t - q', \frac{t - q - r}{\tau} \right) f(r) dr \right\|_{L_{\infty}^{\infty}(I, X, dt)} \leq C \tau^{-1} \left\| f \right\|_{L_{1}(I, X)}.$$

Lemma 16. (See [10]) Let I = (s,T), $I_{\varepsilon} = (s+\varepsilon,T)$, $0 \le q \le \varepsilon$. If $f \in L^1(I,X)$ and $\varphi \in K_0(I_{\varepsilon}) \cap K_0(I)$ then

$$\left\| \int_{s}^{T-q} \tau^{-1} \varphi \left(t, \frac{t-q-r}{\tau} \right) f(r) dr \right\|_{L^{\infty}(I_{\varepsilon}, X, dt)} \leq$$

$$\leq \sum_{j=0}^{2} \frac{q^{j}}{j!} \left\| \int_{s}^{T-q} \tau^{-1} \varphi_{j,0} \left(t, \frac{t-r}{\tau} \right) f(r) dr \right\|_{L^{\infty}(I, X, dt)} + Cq^{3} \tau^{-1} \left\| f \right\|_{L_{1}(I, X)},$$

where $\phi_{i,j}(t,s) = \frac{\partial^{i+j}}{\partial^i t \partial^j s} \phi(t,s)$.

Proof. By Taylor formula

$$\varphi(t,q') = \sum_{j=0}^{2} \frac{q^{j}}{j!} \varphi_{j,0}(t-q,q') + \frac{q^{3}}{2} \int_{0}^{1} \eta^{2} \varphi_{3,0}(t-\eta q,q') d\eta, \tag{7}$$

for $t \in I_{\varepsilon}$ support $\varphi\left(t, \frac{t-q-\cdot}{\tau}\right) \subset (s+\varepsilon-q, T-q) \subset (s, T-q)$ so integrals over (s, T-q)and over (s,T) are equal. By Lemma 6 follows (7).

Lemma 17. Let function $f:[s,T] \to X$ be continuous function in Besov space $B^{1-\theta}_{\infty,1}(s;T)$ and $\varphi \in K_0(I_{\varepsilon}) \cap K_0(I)$. Then for every $c \in (0,1]$ we have

$$\int_{s}^{T} \varphi\left(p, \frac{p-t}{c}\right) F(t) dt \in L^{\infty}(I_{\varepsilon}; X; dp), \tag{8}$$

where $F:[s,T] \to X$ is given by

$$F(t) = \int_{s}^{t} S_r(t-r)f(r)dr. \tag{9}$$

Proof. By (9) we have

$$\begin{split} \int_{s}^{T} \varphi \Bigg(p, \frac{p-t}{c} \Bigg) & F(t) dt = \int_{s}^{T} \int_{r}^{T} \varphi \Bigg(p, \frac{p-t}{c} \Bigg) S_{r}(t-r) f(r) dt \ dr = \\ & = \int_{s}^{T} \int_{0}^{T-r} \varphi \Bigg(p, \frac{p-q-r}{c} \Bigg) S_{r}(q) f(r) dq \ dr. \end{split}$$

By assumption $S_{(\cdot)}(q)x$ is of class C^1 . So

$$\begin{split} \int_{s}^{T} \varphi \left(p, \frac{p-t}{c} \right) & F(t) dt = \int_{s}^{T} \int_{0}^{T-r} \int_{s}^{r} \frac{\partial}{\partial z} S_{z}(q) \varphi \left(p, \frac{p-q-r}{c} \right) & f(r) dz \, dq \, dr + \\ & + \int_{s}^{T} \int_{0}^{T-r} S_{s}(q) \varphi \left(p, \frac{p-q-r}{c} \right) & f(r) dq \, dr. \end{split}$$

The second term is in $L^{\infty}(I_{\varepsilon}; X; dp)$ (proof as in [10] because A(s) is constant). By Remark 6 and Lemma 14 for the first one we have

$$\left\| \int_0^{T-s} \int_s^{T-q} \int_z^{T-q} \frac{\partial}{\partial z} S_z(q) \varphi\left(p, \frac{p-q-r}{c}\right) f(r) dr dz dq \right\| \le$$

$$\le C(T-s)^{\theta} \left\| f \right\|_{L^1} + Cc^2 (T-s)^{2\theta-1} \left\| f \right\|_{L^{\infty}}.$$

Lemma 18. Let continuous function $f:[s,T]\to X$ be in $B^{1-\theta}_{\infty,1}(s;T)$, and function $F:[s,T] \to X$ be defined by (9). Then there exists $c \in (0,1]$ such that for every $\varphi \in K_5(I_\varepsilon) \cap K_5(I)$ the following condition holds

$$\tau^{-3}\int_{s}^{T}\varphi\left(p,\frac{p-t}{\tau}\right)F(t)dt\in L^{-1}((0,c);\ L^{\infty}(I_{\varepsilon};X;dt);d\tau).$$

Proof. By definition of F and using the fact that $S_{(\cdot)}(q)x$ is of class C^1 we have

$$\begin{split} J &= \tau^{-3} \int_{s}^{T} \varphi \left(p, \frac{p-t}{\tau} \right) F(t) dt = \tau^{-3} \int_{s}^{T} \int_{0}^{T-r} \varphi \left(p, \frac{p-q-r}{\tau} \right) S_{r}(q) f(r) dq \, dr = \\ &= \tau^{-3} \int_{s}^{T} \int_{0}^{T-r} \int_{s}^{\tau} \frac{\partial}{\partial z} S_{z}(q) \varphi \left(p, \frac{p-q-r}{\tau} \right) f(r) dz dq \, dr + \\ &+ \tau^{-3} \int_{s}^{T} \int_{0}^{T-r} S_{s}(q) \varphi \left(p, \frac{p-q-r}{\tau} \right) f(r) dz \, dq \, dr. \end{split}$$

The second term is in $L^{\infty}(I_{\varepsilon};X;dp)$ (proof as in [10] A(s) is constant). We consider the first term. Changing the order of integration we have

$$\begin{split} &\tau^{-3} \int_{s}^{T} \int_{0}^{T-r} \int_{s}^{r} \frac{\partial}{\partial z} S_{z}(q) \, \varphi \Bigg(p, \frac{p-q-r}{\tau} \Bigg) f(r) dz \, dq \, dr = \\ &= \tau^{-3} \Bigg(\int_{0}^{\tau} + \int_{\tau}^{T-s} \right) \! \int_{s}^{T-q} \int_{z}^{T-q} \frac{\partial}{\partial z} S_{z}(q) \, \varphi \Bigg(p, \frac{p-q-r}{\tau} \Bigg) f(r) dr \, dz \, dq = J_{1} + J_{2}. \end{split}$$

We estimate J_1 by Lemma 14 and Lemma 16

$$\begin{split} \left\| J_1 \right\| & \leq C \sum_{j=0}^2 \tau^j \left\| \int_s^T \tau^{-3+\theta} \varphi_{j,0} \left(p, \frac{p-r}{\tau} \right) f(r) dr \right\|_{L^{\infty}(I,X)} dq + \\ & + C \tau^{\theta} \left\| f \right\|_{L(I,X)} + C \tau^{2\theta-2} \left\| f \right\|_{L^{\infty}}. \end{split}$$

By assumption $f \in B^{1-\theta}_{\infty,1}$ we have that $J_1 \in L^1((0,c); L^{\infty}(I_{\varepsilon};X;dt); d\tau)$. We estimate J_2 in similiar way using Lemma 14 and Lemma 16.

Hence $J \in L^1((0,c); L^{\infty}(I_{\varepsilon}; X; dt); d\tau)$ as sum of two elements of this space.

Remark 19. By proofs of above lemmas the following inequality holds

$$\| F \|_{B^{1}_{\infty,1}} \le C \| f \|_{B^{1-\theta}_{\infty,1}} + C \| f \|_{L^{1}} + C \| f \|_{L^{\infty}}.$$
 (10)

Theorem 20. Assume Z_1-Z_4 and let continuous function $f:[0,T]\to X$ be in $B_{1,\infty}^{1-\theta}(0,T)$. Then problem (5) has the unique solution, given by

$$u(t) = U(t,s)x + \int_{-s}^{t} U(t,r)f(r)dr. \tag{11}$$

Proof. U(t,s)x is the solution of problem (5) with $f \equiv 0$. So, the first term in (11) is of class C^1 . We consider the second term

$$\int_{s}^{t} U(t,r)f(r)dr = \int_{s}^{t} S_{s}(t-r)f(r)dr + \int_{s}^{t} W(t,r)f(r)dr.$$

The function f is continuous. So Remark 6 gives that $\int_{r}^{t} W(\cdot, r) f(r) dr$ is of class C^{1} .

By Lemma 17 and Lemma 18, also, $F(t) = \int_{s}^{t} S_{s}(t-r)f(r)dr$ is of class C^{1} .

Theorem 12 implies the existence of sequence $\left\{f_n\right\}_{n=1}^{\infty}$, such that

$$f_n \in B^{1-\theta}_{\infty,1} \cap C^1([s,T];X)$$

and

$$f_n \to f$$
 in $B^{1-\theta}_{\infty,1} \cap L^1((s,T);X) \cap L^{\infty}([s,T];X)$.

Let us denote

$$F_n(t) = \int_s^t S_s(t-r) f_n(r) dr,$$

$$u_n(t) = U(t,s)x + \int_s^t U(t,r)f_n(r)dr = U(t,s)x + F_n(t) + G_n(t),$$

where $G(t) = \int_{s}^{t} W(t,r) f(r) dr$. Then

$$u_n \in C^1((s,T];X), \ u_n(t) \in D \quad \text{for} \quad t \in (s,T]$$

$$\frac{du_n}{dt}(t) = -A(t)u_n(t) + f_n(t) \quad \text{for} \quad t \in (s,T]. \tag{12}$$

Substituting f by $f - f_n$ in inequality (10) we have

$$\left\| F - F_n \right\|_{B_{\infty,1}^1} \le C \left\| f - f_n \right\|_{B_{\infty,1}^{1-\theta}} + C \left\| f - f_n \right\|_{L^1} + C \left\| f - f_n \right\|_{L^{\infty}}.$$

So

$$\|F - F_n\|_{B^{1-\theta}} \to 0$$
, while $n \to \infty$.

On the other hand, by (12), we have

$$\begin{split} \left\| A(\cdot)u_n(\cdot) + \frac{du}{dt}(\cdot) + f(\cdot) \right\|_X &\leq \\ &\leq \left\| -f_n(\cdot) - \frac{dF_n}{dt}(\cdot) + \frac{dF}{dt}(\cdot) + f(\cdot) + \frac{dG}{dt}(\cdot) - \frac{dG_n}{dt}(\cdot) \right\|_X &\leq \\ &\leq \left\| f(\cdot) - f_n(\cdot) \right\|_X + \left\| \frac{dF}{dt}(\cdot) - \frac{dF_n}{dt}(\cdot) \right\|_X + \left\| \frac{dG}{dt}(\cdot) - \frac{dG_n}{dt}(\cdot) \right\|_X \end{split}$$

By Theorem 3 in [5], Remark 19 and definition of Besov function

$$\left\| f_n(\cdot) - f(\cdot) \right\|_{B^0_{\infty,1}} \le C \left\| f_n(\cdot) - f(\cdot) \right\|_{B^{1-\theta}_{\infty,1}} \to 0, \quad \text{when} \quad n \to \infty$$

$$\left\|\frac{dF}{dt}(\cdot) - \frac{dF_n}{dt}(\cdot)\right\|_{B^0_{\infty,1}} \leq \left\|F(\cdot) - F_n(\cdot)\right\|_{B^1_{\infty,1}} \to 0, \quad \text{ when } \quad n \to \infty.$$

By Lebesgue convergence theorem and Remark 7

$$\left\| \frac{dG}{dt}(t) - \frac{dG_n}{dt}(t) \right\|_X \to 0, \quad \text{when} \quad n \to \infty.$$

By closedness of A(t) for $t \in (s,T]$ the theorem is proved.

5. Example

We give example of continuous functions

$$f:[0,1]\times[0,1]\to(-\infty,\infty)$$

and $u:[0,1] \rightarrow [0,1]$, such that

I. For fixed r function f satisfies the Lipschitz condition with respect to the second variable $\exists L \ge 0 \forall r \in [0,1] \forall t_1, t_2 \in [0,1]$

$$|f(r,t_1)-f(r,t_2)| \le L|t_1-t_2|.$$

For fixed t function $f(\cdot,t)$ is in Besov space $B_{\infty,1}^{\sigma}$, where $\sigma \in (0,1)$, i.e. $\exists M \ge 0$

$$\int_{0}^{1} h^{-1-\sigma} \sup_{t \in [0, T-h]} |f(t+h, r) - f(t, r)| dh \le M.$$

- Function *u* is of class C^{∞} .
- Composition function $f(\cdot,u(\cdot)):[0,1]\to(-\infty,\infty)$ is not in Besov space, that is

$$\int_{0}^{1} h^{-1-\sigma} \sup_{t \in [0, T-h]} \left| f(t+h, u(t+h)) - f(t, t) \right| dh = \infty.$$

This shows that the theorem on existence of the solution, for semilinear case requires additional assumption.

6. Construction

Let us define

$$p_n(t) = \begin{cases} \frac{2^{-n\sigma}}{n\log^2 2} & \text{for} \quad t = 0, \\ \frac{2^{-n\sigma}}{n\log^2 2} - \frac{nt^{\sigma}}{\log^2 t} & \text{for} \quad \left| t \right| \in \left[0, \frac{1}{2^n} \right], \\ 0 & \text{for} \quad \left| t \right| \ge \frac{1}{2^n}, \end{cases}$$

$$q_n(t,r) = \begin{cases} \left(1 - \frac{n\log^2 2}{2^{-n\sigma}} \middle| r \middle| \right) p_n(t) & \text{for} \quad \middle| r \middle| \le \frac{2^{-n\sigma}}{n\log^2 2}, \\ 0 & \text{for} \quad \middle| r \middle| > \frac{2^{-n\sigma}}{n\log^2 2}, \end{cases}$$

$$f(t,r) = \begin{cases} q_{n_m} \left(t - \frac{3}{4} 2^{1-m}, r - \frac{3}{4} 2^{1-m} \right) & \text{for} \quad t \in \left(\frac{1}{2^m}, \frac{1}{2^{m-1}} \right], \\ 0 & \text{for} \quad t = 0, \end{cases}$$

where $n_m = k + km$, $k \ge \max \left\{ 2, \frac{1}{\sigma} \right\}$.

For fixed r easy computations shows that

$$\|f\|_{B^{\sigma}_{\infty,1}} \int_{0}^{1} h^{-1-\sigma} \sup_{t \in [0,1-h]} |f(t+h,r) - f(t,r)| dh \le 6.$$

For fixed r semi-norm of function $f(\cdot,r)$ in Besov function $B_{\infty,1}^{\sigma}$ is no greather than 6. Function f satisfies the Lipschitz condition with respect to the second variable with constant 1.

Let u(t) = t. Then $u(\cdot)$ is of class C^{∞} and

$$\int_0^1 h^{-1-\sigma} \sup_{t \in [0,T-h]} \left| f(t+h,t+h) - f(t,t) \right| dh = \infty.$$

This means that $f(\cdot, u(\cdot)) \notin B_{\infty, 1}^{\sigma}$.

References

- [1] Hille E., Philips R.S., Functional Analysis and Semi-groups, Amer. Math. Soc., 1985.
- [2] K o z a k M., An abstract semilinear temporally inhomogeneous equation, Demonstratio Math., 23, 1990, 97-107.
- [3] Krein S., Linear Differential Equations in Banach Space, Amer. Math. Soc., 1972.
- [4] Muramatu T., On Besov spaces and Sobolev spaces of generalized functions defined on a general region, Publ. RIMS, Kyoto Univ., No. 9, 1974, 325-396.
- [5] Muramatu T., Besov spaces and analitic semigroups of linear operators, J. Math. Soc. Japan, Vol. 42, No. 1, 1990, 133-146.
- [6] Obłoza W., Construction of the fundamental solution for the parabolic initial value problem with singularity, Bulletin of the Polish Academy of Sciences Mathematics, Vol. 45, No. 3, 1997, 269-279.
- [7] Obłoza W., A Linear and Semilinear Abstract Initial Value Problem with Singularity, Demonstratio Mathematica XXXVII, No. 1, 2004, 71-90.
- [8] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer 1983.
- [9] Taira K., The theory of semigroups with weak singularity and its applications to partial differential equations, Tsukuba J. Math. 19, 1989, 513-562.
- [10] Umezu K., On the Cauchy problem for analitic semigroups with weak singularity, Tsukuba J. Math. 15, No. 2, 1991, 275-292.