
STANISŁAWA PLICHTA∗

THE SYNTHESIS OF A COMPUTER KNOWLEDGE BASE

SYNTEZA BAZY WIEDZY KOMPUTERA

A b s t r a c t

Users’ program contain the enormous output, the heritage of human knowledge. This
knowledge appears in a structure of a program but also in the sequence of operation written in
this structure. In this work it is shown such of organizing a base of knowledge, which lets use
evolution software to do a synthesis of the user’s program. The representation of knowledge
is presented in the form of graphs, witch explicitly build up a logical structure of the
hardware.

Keyword: knowledge, structure of a program, symbolic expressions, evolvable hardware

S t r e s z c z e n i e

Komputery rozwiązują róŜne problemy, w których mieści się olbrzymi dorobek wiedzy
ludzkiej. Wiedza ta zawarta jest w strukturze programu oraz operacjach arytmetycznych
i logicznych wpisanych w tę strukturę. Baza wiedzy takiego komputera powinna być
wyraŜona w odpowiedniej postaci symbolicznej, zapewniającej maksymalną integrację
wiedzy w jego pamięci. Celem artykułu jest określenie sposobu transformacji programów
uŜytkownika na postać symboliczną. Sformalizowano w nim koncepcję nabywania wiedzy
zawartej w komentarzach, zdaniach deklarujących, strukturze algorytmu i sekwencjach
kodów operacji.

Słowa kluczowe: baza wiedzy, struktura programu, wyraŜenie symboliczne, ewolucyjny
hardware

∗ Dr inŜ. Stanisława Plichta, Instytut Modelowania Komputerowego, Wydział Fizyki, Matematyki

i Informatyki Stosowanej, Politechnika Krakowska; Katedra Informatyki, Wydział Nauk
Ekonomicznych, WyŜsza Szkoła Umiejętności im. Stanisława Staszica w Kielcach.

 112

1. Introduction

A computer can solve different problems. The way they are solved in proves a vast
human knowledge. If the computer does not acquire this knowledge, it does not draw any
conclusions from what it has done, then it does not learn – thus the question arises whether
it is possible to build a computer which would be capable of learning, or in other words of
acquiring knowledge from the user’s programmes [1]. Such an ability is characteristic
of the computers with adequate organization of the knowledge basis. The knowledge
basis of such a computer should be expressed in an adequate symbolic form [1].

In this paper we develop that approach in domain of automatic synthesis of user
program from small pieces of knowledge stored in the knowledge base and acquired from
another different programs.

The above mentioned approach to automatic programming is such that on the basis
of user’s requirement expressed in natural language the computer performs the synthesis of
a program to solve the user’s task mentioned in the requirement. In order to accomplish that
approach, the computer possesses suitable knowledge in its knowledge base.

These programs are purposely entered into the computer by the knowledge engineer to
construct the initial knowledge base. During performance of the automatic programming
system the initial knowledge is extended by computer in result of consultation with user.
During acquisition of knowledge, the entered program is split by the computer into four
parts: sequence of comments, algorithm structure, sequence of operation codes and
declaration. Each such a part is split by the computer into some components. These
components are treated as small computer into symbolic forms which forms which are
incorporated into the knowledge base.

Each knowledge element is represented only once in the computer memory, no matter
how many programmes this element will occur in. Such an attitude ensures the integration
of knowledge. For its realisation it was assumed that the knowledge basis is represented in
the computer by tables any symbolic expressions. In the Paper the rules according to which
knowledge is acquired from the user’s programme is presented. Next, there is shown the
way of expanding of the symbolic expression representing the knowledge basis by adding
the knowledge gained from the user’s programmes and making conclusions on the basis
of this knowledge. Such an attitude demands determining all the connections of the
elements in the knowledge basis. It is a complex problem and demands deep analysis.

The leading idea of the resented approach to automatic programming arises from two
facts. The first fact tells us that in each users program written in a programming language
there is included human knowledge about a problem and method of solving it. We well
know that the present computer does not remember the knowledge included in user
program. When executing a given user program is completed by the computer, the program
is erased from computer memory. Hence, after erasing the user program, the computer does
not know what problem was solved and does not remember the human knowledge that was
concealed in the executed program. According to the above remarks, the computer should
acquire the knowledge from user programs to own knowledge base. The second fact tells
us that user programs written in programming language consist of finite number of
components such as structural components of algorithm, groups of structural components,
structural components of declaration, kinds of operation codes and so on. In different
programs the same components can appear. The above mentioned components can be

 113

considered as small pieces of knowledge which, after transforming into symbolic form,
should be stored in the knowledge bases. From those pieces of the knowledge a user
program con be constructed [7].

2. General concept of user’s programme decomposition into elements

Each algorithm consists of two base parts: the description of objects on which it
operates, and the description of activities performed on these objects. The objects are the
data which appear in arithmetical or logical expressions. Specified activities described by
means of an instruction of a chosen language of programming are performed on these
objects. A programme of higher abstract level contains:
– Comments – comments are written in the natural language. They contain information

about problems that can be solved by a computer;
– Declaring part – consists of a set of definitions and declarations of various types. Each

of the mentioned sets can be omitted or can appear many times and in any order;
– Structural part – contains programming language instructions connected with each other

into a logical whole. Such instructions performed in a specified order make a given
problem possible to solve. Figure 1 shows the user’s programme decomposition into
elements;

– Operational part – arithmetical and logical operations are inscribed into the algorithm
structure.
The knowledge included in the user’s programme appears in its structure and in

a sequence of operations written into this structure. Declaring sentences are associated with
the operational part of the algorithm, they allow correct interpretation of all changeable
occurring there. A computer should acquire this knowledge and integrate it into its
knowledge basis. Therefore, to enable the computer to collect and use this knowledge it
is essential to have it included in the knowledge basis. This knowledge should be presented
in a form that would make it possible to be reconstructed. Having the above in mind, this
knowledge is expressed in conditional rules of the IF THEN type, which are then
transformed into symbolic expressions. Symbolic expressions, in turn, should have such
a form that would make them possible to be transformed in a computer. All the operations
in the knowledge basis are performed on symbolic expressions [4].

To realize the process of acquiring knowledge from the user’s programme, the computer
should possess an adequate software. It is assumed that the knowledge contained in the first
user’s programme is the initial knowledge basis. The initial knowledge basis is enlarged by
the knowledge acquired from other user’s programmes. The acquired knowledge overleaps
with the knowledge already included in the knowledge basis. It is done by comparing
symbolic expressions of the knowledge acquired with those which represent the hitherto
existing knowledge basis. If the compared part of the symbolic expression does not exist
in the knowledge basis, then the expression representing the knowledge basis will be
enlarged by this part. Otherwise the knowledge basis remains unchanged. The acquired
knowledge is integrated, that is the same knowledge elements are all remembered in the
same place of the computer memory. To determine the knowledge basis, as well as
adequate programme solutions which would ensure the user’s programmes synthesis are the
most crucial problems in automatic programming.

 114

Fig. 1. Illustration of the process of acquiring knowledge
from the user’s programme

Rys. 1. Ilustracja procesu nabywania wiedzy z programów uŜytkownika

3. Decomposition user’s programme

3.1. The first user’s commentaries decomposition

We assume that the base of knowledge is empty. The first program introduced to the
computer has such shape

Multiply matrix A by matrix B

The natural language words in this commentary are substituted by symbolic names bj
(j = l, 2, 3, ...) which are remembered in table 1 [3].

T a b l e 1

Vocabulary B

Symbolic names Adress in Kext
++ Words

b1 W1 Multiply
b2 W4 matrix
b3 W7 A
b4 W10 by
b5 W12 B

 115

In the next stage of the analysis the task is divided into groups of words. The first group
refers to the predicate, the second to the subject and the third one to the object. The words
appearing in sentences belong to different lexical categories. Each word in the vocabulary
has a given lexical category. In the analyzed sentence it will be a set blb2b3b4b5. The
computer divides this set into word groups, making use of lexical symbols set, according
to the rules given in [5]. Each group of words has a different code symbol gi (i = l, 2, 3, ...)

b1 → g1 → Multiply
b2b3 → g2 → matrix A
b4b2b5 → g3 → by matrix B

A symbolic expression is a form of knowledge integration. Each word group is analysed
separately. For each group independent symbolic expressions are formed

 0 1 1 0
1 1 4 1 1() (())B g b z g b+ = (1)

 0 1 2 2 1 0
2 2 1 2 3 4 2 2() ((()))B g b z g b z g b+ = (2)

 0 1 2 3 3 2 1 0
3 4 1 3 2 1 3 5 4 3 4() (((())))B g b z g b z g b z g b+ = (3)

Symbol z1 stands for the space between symbols bj and symbol z4 means a connection
of the final symbol to the initial one. All the symbolic expressions are united, thus forming
a comprehensive expression has the form

 1 1 2 3() () ()B B g B g B g++ + + += ⊕ ⊕ (4)

 0 1 1 1 2 2 1 1 1 1 0
1 1 4 1 1 2 1 3 5 1 2 3 4 2 2 4 1 3 2 5 4 3 4(() , (, () , () , ())B b z g b b z g b z g b z g b b z g b b z g b++ = (5)

⊕ is operation of resting knowledge.
The structure of the commentary is a linear sequence of the words groups which can be

written as a graph illustrated by Fig. 2.

Fig. 2. Graphic interpretation of commentary structure

Rys. 2. Graficzna ilustracja struktury komentarza

The analytical form is presented in the following symbolic expression

 0 1 2 3 3 2 1 0
1 1 1 1 2 1 1 3 4 1 4(((())))C g z c g z c g z c g+ = (6)

 0 1 1 0
1 1 4 1 1(())A c z p c+ = (7)

On the basis of the commentary in the user’s programme there is formed a word basis
of knowledge. If the user instructs the computer to solve a certain problem, the user’s
instruction can be compared with the commentary in the knowledge basis. The result
of comparison is a decision, elaborated by the computer, about the possibility of solving the
given task.

 116

3.2. The first user’s in declaration part

Each procedure written in the language of higher level has to have univocally
determined all variables that appear in it. These are the definitions of constants, definitions
of the type of variables and declarations of variables. They may be neglected or appear
repeatedly and in any order. The declaration part from the first user’s programme, which
allows has the following form [3–5]

(The first form of declaration)

const n = 50;
type = array [l..n, 1..n] of real;
var i, j, k: 1 .. n;
A, B, C: M;
r : real;

In order to standardize changeable names, virtual symbols have been introduced instead
of real changeable names.

(The second form of declaration)

const v = χ;
type w = array [1.. v, 1.. v] of real;
var s, s, s : w;
s, s, s: w;
s : real;

In agreement with the declaration part transforming modulus, this part is then divided
into a sequence of terms – called declaration components. Giving to the declaration
components their symbolic names ki takes place on the bases of decisive rules. In the case
analyzed these are the rules

IF const v = x THEN k1
IF type w = array [1.. v, 1.. v] of real THEN k2
IF var s, s, s : w THEN k3
IF s, s, s : w THEN k4

IF s : real THEN k5

Having gained symbols ki, the declaration components are then subjected to
transformation into symbolic expression. Ascribing symbols l i to the words of statement
components remembered in vocabulary L.

T a b l e 2

Vocabulary L

Symbolic names Adress in Kext
++ Words

l1 V1 const
l2 V6 type
l3 V20 var
l4 V3 v = x
l5 V8 w =
...
l13 V31 s :

 117

For k3 declaration component the expression has the form

l3l10l11 → k3

 20 1 3 3 2 1 0
3 3 1 3 10 1 3 11 4 3 3(((())))K l z k l z k l z k l+ = (8)

All the symbolic expression are united, thus forming a comprehensive expression
representing a set of declaration components

 1 1 2 3 4 5K K K K K K++ + + + + += ⊕ ⊕ ⊕ ⊕ (9)

0 1 2 2 1 1 2 3 4 5 6 6 1
1 1 1 1 4 4 1 1 2 1 2 5 1 2 6 1 2 7 1 2 8 1 2 9 4 5 13 4 2 2

1 2 3 3 2 1 1 1 1 1 0
3 1 3 10 1 3 11 1 4 12 4 4 10 11 4 3 3 13 1 5 9

((()) , ((((((,) ...) ,

((, ())) , () , ())

K l z k l z k l l z k l z k l z k l z k l z k l z k l z k l

l z k l z k l z k l z k l l z k l l z k l

++ =

Another very essential set is the set of declaration structures. The structure of the
programme is expressed by a sequence of Vi declaration components

V1 = k1, k2, k3, k4, k5, k0

k0 is an empty declaration component. Declaration components belonging to the first user’s
programme belong to one particle of t parameter. The symbolic expression describing the
structure of the declaration part has the form

0 1 2 3 4 5 5 0
1 1 1 1 2 1 1 3 1 1 4 1 1 5 4 1 0(((((() ...)V k z t k z t k z t k z t k z t k+ =

In the declaration structures there occurs only one t parameter group written as

0 1 1 0
1 1 4 1 1(())T t z p t+ =

3.3. The first user’s in structural part

In the algorithm structure certain Structural components can be distinguished. When
analyzing the Structural part, the subsequent instructions of the algorithm have to be
considered. For the analyzed programme they have the following form:

begin
for i := 1 to n do
begin
for j := 1 to n do
begin
r :=0;
for k :=1 to n do
r :=r +A[i, k] * B{k, j]
C[i, j] := r;
end;
end;
end;

All the arithmetical and logical operations are replaced by symbols op and opp. The
word next informs that between the words begin and end there occur several instructions
[3, 4, 6].

Rules IF – THEN which allow giving the Structural components their symbolic names
as well as coefficients Uj characterising their properties. For the analysed algorithm five

(10)

 118

rules are chosen because five different Structural components have occurred. These rules
have the following form

Having gained symbols fi, the structural components are the subjected to transformation
into symbolic expression which for the first structural component takes the following form

IF begin next end THEN f1U1U2
IF for op do next THEN f2U1
IF begin op next opp end THEN f3U1U2U3

IF begin op do opp THEN f4U1

Ascribing symbols di to the words of statement components remembered in vocabulary D.

T a b l e 3

Vocabulary D

Symbolic names Adress in Gext
++ Words

d1 X1 begin
d2 X19 for
d3 X4 op
d4 X8 do
d5 X11 next
d6 X15 end
d7 X23 opp

d1d5d6 → f1U1U2

 0 1 2 3 3 0
1 1 1 1 5 1 1 6 4 1 1 2(((() ...)G d z f d z f d z f U U+ = (11)

Other structural components are written in an analogous way. A comprehensive
symbolic expression which represents the basis of the computer knowledge in the field
of structural components is obtained after having completed the covering operation

 1 1 2 3 4G G G G G++ + += ⊕ ⊕ ⊕ (12)

 119

0 1 2 3 4
1 1 1 1 5 1 3 3 1 3 5 1 4 4 1 2 4 1 4 7 1 2 5 4 2 1 1 3 7 1 1 6

5 5 1 1 1 1 1 0
4 1 1 2 4 3 1 2 3 2 1 4 3 1 2 3 7 4 4 1 1 3 6

((, (, , (, (, , ,

(,) ...) , (,) , (,))

G d z f d z f d z f d z f d z f d z f d z f d z f U z f d z f d

z f U U z f U U U d z f d z f d d z f U z f d

++ =

The structural of the algorithm is presented by the symbolic expression below

 1 1 1 2 2 1 1 1 2 2 1 3 1 2 3 4 1, , , , ,F f U U f U f U U f U f U U U f U+ = (14)

1 1 2(,)e f f 2 1 2 3 4(, , ,)e f f f f

 1 1 1 1 2 1 2 1 2 1 1 2 2 2 1 2 3 1 2 3 2 4 1, , , , ,F e f U U e f U e f U U e f U e f U U U e f U+ = (15)

 0 1 2 3 4 3 0
1 1 1 1 1 2 1 1 * * 1 1 2 1 0() ((((() ...)F e f U e f U e f U e f U e f+ = (16)

 0 2 3 4 4 0
1 2 2 2 0 1 2 2 1 2 3 3 2 3 2 2 1 1 2 4 1 2 3() (, ((, , () ...)F e U e f U e f U e f U e f U e f U e f U e f+ = (17)

 1 1 1 1 2() ()F F e F e++ + += ⊕ (18)

0 1 2 3

1 1 2 2 0 2 1 0 1 1 2 1 2 2 1 1 * 1 2 3 3 2 3 2 2 1

4 4 1 1 1 0
1 2 4 1 1 3 * * 1 1

((, , , (, (, ,

() ...) , ())

F f U e f U e f U e f U e f U e f U e f U e f U e f

U e f U e f f U e f

++ =
 (19)

The structural components belong to the ei group of particles

 0 1 2 2 1 0
1 1 4 1 2 4 1 1((()))E e z p e z p e++ = (20)

3.4. The first user’s in operational part

The analysis of the Operational part of the algorithm is carried parallel to the analysis
of the declaration and structural part [3]. Arithmetical and logical operations are inscribed
into the algorithm structure

 1 1 1 2 1 2 2 2 1 2 3 2 4 0, , , , , ,R r e e r e r e r e r e r r+ = (21)

T a b l e 4

Table R

Symbolic names Symbolic form Adress in Rext
++

r1 m1 := to m2 y1

r2 m1 := 0 y5

r3 m1 :=m1+ m2[m3, m4]*m5[m4, m6] y8

r4 m1[m2, m3] :=m4 y11

The obtained sequence of operations should be inscribed into the structure of the

algorithm, taking into consideration these statements in which we should look for the data
connected with the operation types mentioned in the expression. Operation r1, for instance,
makes use of the data which occur in the declaration k4 in position 1, 3, 4, 5 and in the
declaration k1 in the first position. The obtained sequence should be written as a symbolic
expression R1

++

(13)

 120

 0 1 2 2 1 1 2 2 1 0
1 1 1 1 1 1 1 2 3 3 1 2 2 2 1 2 5 1 3 1 2 4 4 1 2 5 0((, , ()) , (()))R r p e k r p e k r p e k r p e k r r p e k r p e k r++ = (22)

Similarly, one should expand the knowledge in the declaring, structural and operational
part. The full description of the base of knowledge is in Fig. 3.

Fig. 3. Structures of the knowledge bases

Rys. 3. Obraz bazy wiedzy komputera

4. Enriching knowledge bases

4.1. Enriching knowledge bases in verbal description of the task

The initial knowledge basis formed on the ground of the first user’s algorithm is being
enriched on the basis of the new algorithms from other users. The hitherto existing
knowledge basis is enriched by the elements which occur for the first time. That is because
the integration of the elements in the knowledge basis depends on the phenomenon that
the same knowledge element is remembered only once, no matter how many times and
in how many algorithms this very element will occur. Let us consider the second user’s
programme allowing tabulating the function square of [dx, dy] at step dx. The commentary
to this task will be

Tabulate function square at step dx of interval x to y

b6 → g4 → Tabulate
b7 b8 b9 b10 b11 → g5 → function square at step dx
b12 b13 b14 b15 b16 → g6 → of interval dx and dy

The symbolic expressions describing group for the second user’s programme has the
form

 0 1 1 0
4 6 4 4 6() (())B g b z g b+ = (23)

 121

 20 1 3 4 5 5 1 0
5 7 1 5 8 1 5 9 1 5 10 1 5 11 4 5 7() (((((() ...))B g b z g b z g b z g b z g b z g b+ = (24)

 20 1 3 4 5 5 1 0
6 12 1 6 13 1 6 14 1 6 15 1 6 16 4 6 12() (((((() ...))B g b z g b z g b z g b z g b z g b+ = (25)

All the symbolic expressions are united, thus forming a comprehensive expression.
For second user’s programme has the form

 2 4 5 6() () ()B B g B g B g++ + + += ⊕ ⊕ (26)

0 1 1 1 2 3 4 5 5 1

2 6 1 4 6 7 1 5 8 1 5 9 1 5 10 4 5 11 4 5 7

1 2 3 4 5 5 1 0
12 1 6 13 1 6 14 1 6 15 1 6 16 4 6 12

(() , ((((() ...) ,

((((() ...))

B b z g b b z g b z g b z g b z g b z g b

b z g b z g b z g b z g b z g b

+ =
 (27)

The structure of the commentary for second user’s programme is a linear sequence
of word groups

 0 1 2 3 3 2 1 0
2 4 1 2 5 1 2 5 4 2 6(((())))C g z c g z c g z c g+ = (28)

 0 1 1 0
2 2 4 2 2(())A c z p c+ = (29)

Further analysis is to put the knowledge from the commentary of the second user on the
knowledge, which has already been in the base of knowledge. The result of the overlap are
the expressions form

 1 2extB B B++ ++ ++= ⊕ (30)

 **
1 2extC C C++ ++= ⊕ (31)

 1 2extA A A++ ++ ++= ⊕ (32)

The result of the overlap are the expression form

0 1 1 1 2 2 1 1 2 3 3 2 1
1 4 1 1 2 1 2 3 4 2 2 4 1 3 2 4 3 5 4 3 4

1 1 1 2 3 4 5 5 1
6 1 4 6 7 1 5 8 1 6 9 1 5 10 1 6 11 4 5 7

1 2 3 4 5 5 1 0
12 1 6 13 1 6 14 1 6 15 1 6 16 4 6 12

(() , (()) , ((())) ,

() , ((((() ...) ,

((((() ...))

extB b z g b b z g b z g b b z g b z g b z g b

b z g b b z g b z g b z g b z g b z g b

b z g b z g b z g b z g b z g b

++ =

 (33)

 0 1 2 3 3 2 1 1 2 3 3 2 1 0
1 1 1 2 1 1 3 4 1 1 4 1 2 5 1 2 6 4 2 4(((())) , ((())))extC g z c g z c g z c g g z c g z c g z c g++ = (34)

 0 1 1 1 1 0
1 4 1 1 2 4 2 2(() , ())extA c z p c c z p c++ = (35)

4.2. Enriching knowledge bases in declaration part

The declaration part from the first user’s programme, which allows tabulating the
function square of [xp, yk] at step dx has the following form

(The first form of declaration)

const n = 20;
var wx, wy: array [l..n] of real;
i: l .. n;
x, y, xp, xk, dx, a, b, c: real;

 122

(The second form of declaration)

const v = x;
var s, s: array [l.. v] of real;
s :1 .. v;
s, s, s, s, s, s, s, s : real;

New rules:

IF var s, s : = array [1.. v, 1.. v] of real THEN k6

IF s: l .. v THEN k7

IF s, s, s, s, s, s, s, s: real THEN k8

Having gained symbols ki, the declaration components are then subjected to
transformation into symbolic expression. For k6 declaration component the expression has
the form [6]

 0 1 2 3 4 5 6 6 0
6 3 1 6 14 1 6 6 1 6 15 1 6 8 1 6 9 4 6 3((((((() ...)K l z k l z k l z k l z k l z k l z k l+ = (36)

All the symbolic expression are united, thus forming a comprehensive expression
representing a set of declaration components

 1 2extK K K++ ++ ++= ⊕ (37)

0 1 2 2 1 1 2 3 4 5
1 1 1 4 4 1 1 2 1 2 5 1 2 6 1 6 15 1 2 7 1 2 8 1 6 9

6 7 7 1 1 2
1 2 9 4 5 13 4 2 2 4 6 3 4 8 16 1 8 9 3 1 6 14 1 3 10 1 3 11

3 3 2 1 1
1 4 12 4 4 10 11 4 3 3

((()) , (((, ((,

(, , , () ...) , (, (,

())) , (,

extK l z k l z k l l z k l z k l z k l z k l z k l z k l

z k l z k l z k l z k l z k l z k l l z k l z k l z k l

z k l z k l l z k l

++ =

2 3 3 2 1 1 1 1 1 0
13 1 5 9 1 7 11 4 4 10 14 1 6 6 15 1 6 9(, ())) , () , ())l z k l z k l z k l l z k l l z k l

The structure of the programme is expressed by a sequence of V2 declaration
components

V2 = k1, k6, k7, k8, k0

The symbolic expression describing the structure of the declaration part has the form

 0 1 2 3 4 4 0
2 1 1 2 6 1 2 7 1 2 8 4 2 0((((() ...)V k z t k z t k z t k z t k+ = (39)

In the declaration structures there occurs only one t parameter group written as

 0 1 1 0
2 2 4 2 2(())T t z p t+ = (40)

 1 2extV V V++ ++ ++= ⊕ (41)

 **
1 2extT T T++ ++= ⊕ (42)

0 1 2 3 4 5 5 1

1 1 2 6 1 1 2 1 1 3 1 1 4 1 1 5 4 1 0

1 2 3 3 0
6 1 2 7 1 2 8 4 2 0

((, (((() ...) ,

((() ...)

extV k z t k z t k z t k z t k z t k z t k

k z t k z t k z t k

++ =
 (43)

 0 1 1 1 0
1 4 1 1 2 4 2 2(() , ())t

extT t z p t t z p t++ = (44)

(38)

 123

4.3. Enriching knowledge bases in structural part

The structural part from the first user’s programme, which allows tabulating the
function square of [xp, yk] at step dx has the following form

x:=xp;
dx:=(xk-xp)/n;
for i:=l to n do
if x<xk then
begin
y:=A*x*x+B*x+C;
wx[i]:=x;
wy[i]:=y;
x:=x+dx;
end;
for i:=l to n do
writeln (wx[i]:5:2,wy[i]:5:2);
end;

Rules have the following form

IF begin op next.end THEN f5U1U2U3
IF for op do THEN f6U1
IF if op then THEN f7U1
IF begin op end THEN f8U0

Having gained symbols f7 the structural components are the subjected to transformation
into symbolic expression which for the structural component takes the following form

d8d3d9 → f7U1

 0 1 2 3 3 0
7 8 1 2 3 1 7 9 4 7 1(((())G d z f d z f d z f U+ = … (45)

Other structural components are written in an analogous way. A comprehensive
symbolic expression which represents the basis of the computer knowledge in the field
of structural components is obtained after having completed the covering operation

 2 1 5 6 7 8G G G G G G++ + + + + += ⊕ ⊕ ⊕ ⊕ (46)

 1 2extG G G++ ++ ++= ⊕ (47)

0 1 2
1 1 1 5 1 5 3 1 8 3 1 3 3 1 3 5 1 4 4 1 6 4 1 7 9

3 4
1 8 6 1 5 5 1 2 4 1 4 7 4 6 1 1 2 5 4 2 1 1 3 7 1 5 6 1 1 6

5 5 1 1
4 1 1 2 4 5 1 2 3 4 8 0 4 3 1 2 3 2 1 4 3

((, , , (, , , ,

, , (, , (, , , ,

(, , ,) ...) , (,

extG d z f d z f d z f d z f d z f d z f d z f d z f d

z f d z f d z f d z f d z f U z f d z f U z f d z f d z f d

z f U U z f U U U z f U z f U U U d z f d

++ =

1
1 2 3 1 6 3

1 1 1 1 1 1 0
7 4 4 1 1 3 6 8 1 7 3 9 4 7 1

,) ,

(,) , () , ())

z f d z f d

d z f U z f d d z f d d z f U

The structural of the algorithm is presented by the symbolic expression below

 2 5 1 2 4 6 1 7 1 8 0 4 1, , , ,F f U U U f U f U f U f U+ = (49)

 3 5 6 7 8 4(, , , ,)e f f f f f (50)

(48)

 124

 0 1 2 3 4 5 6 6 0
2 3 5 1 3 6 1 3 7 1 3 8 0 3 4 1 3 5 2 3 0() ((((((() ...)F e f U e f U e f U e f U e f U e f U e f+ = (51)

 1 1 1 1 2 2 3() () ()F F e F e F e++ + + += ⊕ ⊕ (52)

0 1 2 3
1 1 2 2 0 2 1 0 1 1 2 1 2 2 1 1 * 1 2 3 3 2 3 2 2 1

4 4 1 1 2 3 4 4 1
1 2 4 1 1 3 5 2 3 0 1 3 6 1 3 7 1 3 8 0 3 4

1 1 0
* * 1 1

((, , , (, (, ,

() ...) , (, ((() ...) ,

())

F f U e f U e f U e f U e f U e f U e f U e f U e f

U e f U e f f U e f U e f U e f U e f U e f

f U e f

++ =

 (53)

The structural components belong to the ei group of particles

 0 1 1 0
2 3 4 2 3(())E e z p e++ = (54)

 1 2extE E E++ ++ ++= ⊕ (55)

 0 1 2 1 1 1 0
1 1 1 2 4 1 1 3 4 2 3((() , ())extE e z p e z p e e z p e++ = (56)

4.4. Enriching knowledge bases in operation part

The initial knowledge basis formed on the ground of the first user’s algorithm is being
enriched on the basis of the new algorithms from other users. It refers to the verbal
description of the task, the declaration part and the structural as well as the operational part.
The hitherto existing knowledge basis is enriched by the elements which occur for the first
time. That is because the integration of the elements in the knowledge basis depends on the
phenomenon that the same knowledge element is remembered only once, no matter how
many times and in how many algorithms this very element will occur

 2 3 5 3 1 3 6 3 7 3 1 3 8 0, , , , , ,R e r e r e r e r e r e r r+ = (57)

The obtained sequence should be written as a symbolic expression R2
++

 0 1 2 3 3 2 1 1 1 0
2 5 2 3 6 1 2 3 7 8 2 3 7 6 2 3 9 1 8 2 3 10 0(((, ())) , ())R r p e k r p e k r p e k r p e k r r p e k r++ = (58)

 1 2extR R R++ ++ ++= ⊕ (59)

0 1 ' ' ' ' ' 2 ' 2 1
1 1 1 1 1 1 2 3 3 2 3 7 8 2 3 7 6 1 2 2 2 1 2 5 1

1 ' 2 ' 2 1 0 1 ' 1 1 ' 2 ' 2 1
3 1 2 4 4 1 2 5 0 5 2 3 6 1 6 2 3 8 7 2 3 7 1

1 ' 1 0
8 2 3 10 0

((, , , , ()) ,

(())) , () , (()) ,

())

extR r p e k r p e k r p e k r p e k r p e k r p e k r

r p e k r p e k r r p e k r r p e k r p e k r

r p e k r

++ =

5. Realization of the base of knowledge

For a computer to have the ability of automatic programming it is necessary to possess
adequate knowledge. This knowledge is contained in the user’s programmes written in the
language of higher level. The aim of the present paper is to determine acceptable user’s
programmes transformation into a symbolic form which constitutes an element of the
knowledge basis. The knowledge basis of such a computer should be expressed in an

(60)

 125

adequate symbolic form, thus allowing maximum knowledge integration in the computer
memory. To realize knowledge integration it is assumed that one and the very one element
of knowledge should be represented once only, no matter in how many programmes and
how many times it will appear. In the paper the concept of acquiring knowledge contained
in statements and in operation code sequences has been formalized, as well as its
representation in the knowledge basis [1, 2].

Special attention was paid to the declaration part. It is worth mentioning that the
formalism introduced in the paper, as well as the concept of the computer knowledge
basis organization forms the ground for further research in the field of automatic
programming. The concept of the knowledge basis organization presented in the paper
should be, in the future, developed in the direction of forming new algorithms from
the knowledge elements belonging to different tasks. A different sequence of the same
components may an algorithm capable of solving a new problem. To verify the elaborated
algorithms a synthesis was carried out of the user’s programme on the basis of the user’s
instruction expressed in natural language Fig. 4.

Fig. 4. Knowledge in the field of understanding the natural language

Rys. 4. Algorytm syntezy programów uŜytkownika

When the knowledge basis is of the software kind the knowledge elements are stored

in memory cells and the process of concluding is complex and time consuming. It is very
different from the human way of drawing conclusions. While thinking or regenerating

 126

the acquired knowledge a human being transforms a semantic picture which can not their
appears the necessity to realize a part of the basis through hardware [4].

Hardware is a permanent structure which can be based on e.g. transferors. A chosen
configuration of transferors may represent the semantic picture of a sentence. The software
part of the knowledge bases is therefore used to perform a syntactic analysis. The result
of this analysis, that is the symbolic expressions, are the transformed to the hardware
part. The knowledge representation can be shown as a graph, which univocally has
a repercussion on the logical structure of the hardware.

As the knowledge is acquired and accumulated the semantic memory will absorb newer
and newer semantic pictures. If at the input of such a hardware we ask a question in an
adequate symbolic form, then it should activate a certain part of its structure which would
generate an answer in an accepted knowledge representation and which would be then
transformed into a sentence in natural language.

A hardware which is able to adjust its logical structure to a symbolic representation
of the knowledge bases is called an evolvable hardware. Hardware is steady structure. The
semantic picture may be represented by appropriate scheme of this flip-flop. The symbolic
expressions are this form, of representation of the knowledge, which can be shown as
a graph. Such form definitely depicts the logical structure of the hardware [7].

Every user’s program could be believed to be a specific kind of semantic picture. The
more knowledge the semantic memory will take from the user’s program the semantic
pictures it will contain. Hardware, which can match its logical structure to the symbolic
representation of the base of knowledge is called the evolvable hardware.

6. Conclusions

In this paper an approach to automatic synthesis of programs from pieces of knowledge
acquired to the knowledge base from another different programs has been introduced.
The concept of the knowledge bases organization presented in the paper should be, in the
future, developed in the direction of forming new algorithms from take knowledge
elements belonging to different tasks. A different sequence of the same components may
an algorithm capable of solving a new problem.

R e f e r e n c e s

[1] K a z i m i e r c z a k J., Knowledge Representation on the Level of Natural Language for
Purposes od Automatic Programming, Proceeclings of the Inter., Conference,
Rockville, Maryland, USA., KSI Press, Skokie 1995.

[2] K a z i m i e r c z a k J., Zastosowanie ewolucyjnego hardware’u do reprezentacji wiedzy
wyraŜonej w postaci zdań języka naturalnego, Proc. of 4th Konferencja nt. „InŜynieria
wiedzy i systemy ekspertowe”, Vol. l, Wrocław 2000, 235-243.

[3] P l i c h t a S., Synteza bazy wiedzy komputera w zakresie części operacyjnej i dekla-
rującej dla potrzeb automatyzacji programowania, praca doktorska, Politechnika Wro-
cławska, Wrocław 1991.

 127

[4] P l i c h t a S., Evolvable Hardware for the Needs of Programming Automatisation,
VI International Conference on Artifical Inteligence AI-19’ 2004, Siedlce 2004.

[5] P l i c h t a S., Synthesis of computer knowledge basis for the needs of programming
automatisation, 10TH International Conference on System-Modelling-Control, Zako-
pane 2001.

[6] P l i c h t a S., Formal model evolvable hardware to representation of knowledge for
automatic programming, AI MECH 2002, Methods of Artiflcial Intelligence in
Mechanics, Gliwice 2002.

[7] X i n Yao, T e t s u y a Higuchi, Promises and Chailanges of Evolve Hardware, Proc.
of the 1st Intern. Conf. on Evolvable Systems: from Biology to Hardvare, Tskuba,
Japan, Springer Press, Tokyo 1997, 55-80.

