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FIXED POINTS OF α-NONEXPANSIVE MAPPINGS

PUNKTY STAŁE ODWZOROWAŃ α-NIEODDALAJĄCYCH

A b s t r a c t

This paper is connected with the theory of a-nonexpansive mappings, which were introduced 
by K. Goebel and M. A. J. Pineda in 2007. These mappings are a natural generalisation of 
nonexpansive mappings from the point of view of the fixed point theory. In particular, they 
proved that in Banach spaces all α α α= ( , , )1 n -nonexpansive mappings with a1 big enough, 

namely α1
1
12³ −n , have minimal displacement equal to zero. This paper introduces some new 

results connected with this problem.

Keywords:  α-nonexpansive mappings, minimal displacement, fixed point

S t r e s z c z e n i e

Niniejszy artykuł jest związany z odwzorowaniami a-nieoddalającymi, które zostały wprowa-
dzone przez K. Goebla i M. A. J. Pinedę w 2007 r. Odwzorowania te są naturalnym uogólnie-
niem odwzorowań nieoddalających z punktu widzenia teorii punktu stałego. Wyżej wspomniani 
autorzy wykazali, że w przestrzeniach Banacha odwzorowania α α α= ( , , )1 n -nieoddalające, 

mające odpowiednio duże a1, a dokładniej α1
1
12³ −n ,  posiadają minimalne przesunięcie rów-

ne zeru. W artykule przedstawiono pewne nowe wyniki z związane z tym problemem.

Słowa  kluczowe:  odwzorowania α-nieoddalające, minimalne przesunięcie, punkt stały
DOI:  10.4467/2353737XCT.15.111.4148
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1.  Introduction and preliminaries

Let (X,  d) be a metric space, and let α α α= ( , , )1  n  be a multi-index satisfying 

α α α1 1
0 0 0 2 1 1> > ≥, , , , , .n i i

n
i n= −

=∑ and  In [2], the following notions were 

introduced:
The mapping T X X: →  is said to be a-Lipschitzian with constant k ³ 0,  if 

αi
i

i

n
id T x T y kd x y for all x y X( , ) ( , ) , .

=
∑
1

≤ ∈

The mapping T X X: →  is said to be a-nonexpansive (a-contraction), if T is  
a-Lipschitzian with constant k = 1 (k < 1 resp.).

Denote the Lipschitz constant with k (T) and the a-Lipschitz constant of T with k (a, T).
Define also d T d x Tx x X( ) : inf{ ( , ), },= Î  which we will call the minimal displacement 

of T. Sometimes it is also called the approximate fixed point of T.
These notions are natural generalisations of Lipschitzian mappings, nonexpansive 

mappings and contractions from the point of view of the fixed point theory. For more 
information concerning a-nonexpansive mappings and other Lipschitzian mappings 
connected with the fixed point theory, we refer to [4].

In [2], the authors proved the following:
Theorem 1.1. (see also [4], chapter 3) Let X be a Banach space, let C be a nonempty, 

closed, convex and bounded subset of X. Let T C C be an n: ( , , )→ =α α α1  - 

-nonexpansive mapping where α1
1
12 0³ − =n Then d T. ( ) .

Notice that the problem of determining the set of multi-indices α for which each 
a-nonexpansive mapping T has d (T ) = 0 is still open.

The aim of this paper is to prove two results (Theorem 2.1, Theorem 2.2) which give 
a partial answer to the above open problem (see [4]).

Before proceeding further, let us recall the generalised Banach contraction principle 
(abbreviated to GBCP), which is formulated as follows:

Theorem 1.2. ([1], [5]) In complete metric space X if for some N ³ 1 and 0 < M < 1 
the  mapping T X X: →  satisfies min{ ( , ), } ( , )d T x T y j N Md x yj j 1£ £ £  for any 
x y X, ,Î  then T has the unique fixed point.

In author’s PhD thesis [6] the more general version of the above theorem was presented. 
Let us recall it without proof.

Theorem 1.3. Let (X,  d) be a complete metric space, N  ³  1. Assume that  
φ : [ , ) [ , ]0 0 1¥ →  is a continuous, non-increasing function  satisfying φ ( )t =1  if, and only  

if, t = 0. Let T X X: →  be such that min{ ( , ), } ( ( , )) ( , )d T x T y j N d x y d x yj j 1£ £ £ φ ⋅  
for all x y X, .Î  Then T has the unique fixed point.
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2.  Main results

Firstly, let us note a simple fact, there exist some a-Lipschitzian mappings which are not 
α-nonexpansive; however, their minimal displacement is equal to zero; moreover, they may 
have the unique fixed point.

This is illustrated by:
Example  2.1. Let T l x l x i l x l x ii i: { : , } { : , }∞ ∞ ∞ ∞∈ ≥ ∈ ∈ ≥ ∈∩ → ∩0 0N N  

be defined in the following way: T x x x Tx
x
x

x

x
: ( , , ) : , , ,= → =

+ +









1 2
3

3

2

2
1
2
1

1
2
1



 

2
1

1
2
1

5

5

4

4

x
x

x

x+ +









, , .  Then T is not a-nonexpansive for any a; however, for properly chosen 

α α α= ( , )1 2  the mapping T is a-Lipschitzian with constant k arbitrarily close to 1. Moreover, 
T has the unique fixed point.

Obviously, the mapping T has the unique fixed point (1, 0, 0, ...).

Also, we have Tx Ty x y T x T y x y ii i− − − −≤ ≤ ≥2 2and ,  for any 

x y l x l x ii, { : , }.∈ ≥ ∈∞ ∞∩ ∈ 0 N  On the other hand, taking x
n

n = 





0 0 1 0 0, , , , ,  and 

y
Tx Ty

x y
n

n

n
n

nn
n n

n n
=

−

−
=

⋅

+
=

+
→ →( , , ) we have , ;0 0

2 1

1 1
2
1

2 ¥  therefore, k(T  )  =  2. 

Similarly, k T k T ii( ) ( ) , .2 1 1 3= and ³ ³

In l¥ ,  it is not possible to choose a such that a1 >  0 and T is a-nonexpansive; 

however, 
1 1 12 2

n
Tx Ty n

n
T x T y n

n
x y− +

−
−

+
−£ ;  therefore, assuming n to be big 

enough, the  mapping T is α = −







1 1
n

n
n

, -Lipschitzian with constant k T( , )α  arbitrarily  

close to 1.
It is worth mentioning that the existence and uniqueness of the fixed point 

of  T also follows from Theorem 1.3. Indeed, we have T x x

x

x
x

2 2

2

3

3
1
1 3
2

1 3
=

+ +








, , ,
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x

x

x
x

4

4

5

51 3
2

1 3+ +









, ,  and 
x

x

y

y

x y

x y x y

x y
x y

i

i

i

i

i i

i i i i

i i

i i1 3
2

1 3
2

1 3
2

9
4

1+
−

+

−

+ + +

−

+ +
£ £ £

( )
 

≤ ≤ ∈
x y
x y

x y
x y

ii i

i i

−

+ +
−

+ −1 1
, .N  The latter inequality follows from the fact that t t

t
→

+1  

is an increasing function on [ , ).0 ¥  Similarly, 
x
x

y
y

x y
x y

i

i

i

i1 3 1 3 1+
−

+
−

+ −
£ ;  therefore, 

T x T y
x y

x y2 2 1
1

−
+ −

−£ ,  so T satisfies the assumptions of Theorem 1.3 with 

φ( ) : .t
t

=
+
1
1

Now, let us exchange the condition α1
1
12³ −n  with the other regularity condition 

of a mapping T.
Theorem 2.1. Let X be a Banach space, let 0ÎC X⊂  be nonempty, closed, convex 

and bounded. Let T C C: →  be a α α α= ( , , )1  n -nonexpansive mapping such that 

T x T y T x T yi i i i( ) ( ) ( ) ( )µ µ λ λ− −£  for any x y C i n, , , { , , }.∈ ≤ ≤ ∈0 1µ λ 

Then d T( ) .= 0

Proof. Fix k ³ 1. Define S
k
Tk : .= −






1 1  Obviously, S x

k k
Tx Ck = ⋅ + −








1 0 1 1
Î .  Then 

S x S y
k

Tx Tyk k− = −





 −1 1 .

Next, we have:

S x S
k
Tx

k
T

k
Txk k

2 1 1 1 1 1 1
= −
















 = −






 −
















 ;

therefore, by assumptions:

S x S y
k
T

k
Tx

k
T

kk k
2 2 1 1 1 1 1 1 1 1
− = −






 −
















 − −






 −


















= −





 −
















 − −












Ty

k
T

k
Tx T

k
Ty1 1 1 1 1 1







−





 −£ 1 1 2 2

k
T x T y .
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Similarly, for i ³ 3 we have:

S x T
k
Tx

k
T

k
T

kk
i

k
i= −
















 = −






 −






 −


−1 1 1 1 1 1 1 1 1

 
































Tx  ;

therefore:

S x S y
k
T

k
Tx

kk
i

k
i− = −






 −


























 − −






1 1 1 1 1 1

  TT
k
Ty

k
T

k
T

k

 



1 1

1 1 1 1 1 1

−



























= −





 −






 −




































 − −






 −













Tx T
k
T

k
Ty 1 1 1 1























−





 −
































 £ 1 1 1 1
k
T T

k
Tx







 − −






































−







T T
k
Ty

k
T i

 1 1

1 1
£ xx T yi− .

By assumptions, αii

n i iT x T x x y
−∑ − −
1

£  for some α α α= ( , , )1  n  satisfying 

0 1 1
1

£ £α αi ii

n
and =

=∑ .  Therefore:

min , ,S x S y j n S x S y
k

x yk
j

k
j

i k
i

k
i

i

n

−{ } − −





 −

=
∑1 1 1

1

£ £ £ £α

By Theorem 1.2, Sk has the unique fixed point. Denote this fixed point by xk. We get:

x Tx S x Tx
k
Tx Tx

k
Tx kk k k k k k k k− = − = −






 − = → →1 1 1 0, ,¥

this completes the proof.

¨

For k  ³  3, there exists a mapping T which does not satisfy the assumptions of 
Theorem 1.1; however, for k ³ 2, it satisfies the assumptions of Theorem 2.1. This will be 
illustrated by the following example:

Example  2.2. Fix k ³ 2. Let τ : [ , ] [ , ]− → −1 1 1 1  be a non-decreasing function, 

having the Lipschitz constant k k( ) ,τ =  concave on [‒1,0], convex on [0,1] and such that  

t(0) = 0. Now define T B x x x Tx x k
k

x x x Bl l: ( , , ) : ( ( ), , , , ) .
1 11 2 2 2 3 4 51
∋ = → =

−
 τ Î

We will show that the assumptions of Theorem 1.1 are not satisfied for any multi- 
-index a of length n. Notice, that:
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Tx Ty x y k
k

x y x y

k x y k
k

x y

i ii
− = − +

−
− + −

− +
−

− +

=∑τ τ( ) ( )2 2 2 3 3 4

2 2 2 3 3

1

1

∞

≤ xx yi ii
−

=∑ 4

∞
,

T x T y k
k

x k
k

y k
k

x y x yi ii
2 2

2 3 2 3 2 4 4 51 1 1
− =

−






 − −







 + −

− + −
=

τ τ
∞∑∑

∑−
− +

−
− + −

=
≤

∞k
k

x y k
k

x y x yi ii2 3 3 2 4 4 51 1
.

Therefore, k T k k T k
k

ii( ) ( ) , .= =
−

and
2

2 1
1 2> ≥

It is easy to see that for k ³ 3, the assumptions of Theorem 1.1 are not satisfied for any 

multi-index a of length n. Indeed, we would need to have α1
1
1

1
1 32 2 2

2
1
2

≥ ≥ >− − =n
 

and thus for any such α α α= ( , , ),1  n  the mapping T would not be a-nonexpansive.
We will now show that T satisfies the assumptions of Theorem 2.1; therefore, 

d T( ) .= 0

It is enough to take n = 2. It is easy to check that 1 1 2 2

k
Tx Ty k

k
T x T y− +

−
− £

 

£ x y− ;  therefore, T is 1 1
k

k
k

, −





 -nonexpansive. We only have to show that

	 T x T y T x T y x y Bl( ) ( ) ( ) ( ) , , .µ µ λ λ µ λ− −≤ ∈ ≤ ≤for any
1
0 	

If τ µ τ µ τ λ τ λ( ) ( ) ( ) ( ) ,x y x y2 2 2 2− −£  then obviously,

T x T y x y k
k

x k
k

y x yi ii
( ) ( ) ( ) ( )µ µ τ µ τ µ µ µ µ µ

τ

− = − +
−

−
−

+ −
=∑2 2 2 3 2 3 41 1
∞

≤ (( ) ( )

( ) ( )

λ τ λ λ λ λ λ

λ λ

x y k
k

x k
k

y x y

T x T y

i ii2 2 2 3 2 3 41 1
− +

−
−

−
+ −

= −

=∑∞

It is enough to prove that τ µ τ µ τ λ τ λ( ) ( ) ( ) ( )v w v w− −£  for v w≠ < <and 0 µ λ.  
Firstly, assume that v w, .> 0  Without the loss of generality, we can assume that w < v. 
Therefore, 0< < <µ µ λ λw v w v, .
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Assume that 0< < ≤ <µ µ λ λw v w v.  Choose a w vÎ ( , ]λ λ  such that a w v w− = −λ µ µ .  

Of course, such an a exists since λ( ) ( ).v w u v w− −³  Therefore, µ µ
µ

µv a v
a w

w=
−
−

+
 

+
−
−

µ µ
µ

v w
a w

a  and λ λ
µ

µ
λ µ

µ
w a w

a w
w w w

a w
a=

−
−

+
−
−

.  Due to the convexity of t on [0,1]

τ µ τ
µ
µ

µ
µ µ

µ

µ
µ

τ µ
µ µ

µ

( )

( )

v a v
a w

w v w
a w

a

a v
a w

y v w
a w

=
−
−

+
−
−











−
−

+
−
−

£ ττ( )a

τ λ τ
λ
µ

µ
λ µ

µ

λ
µ

τ µ
λ µ

µ

( )

( )

w a w
a w

y w w
a w

a

a w
a w

y w w
a w

=
−
−

+
−
−











−
−

+
−
−

£ ττ

µ µ
µ

τ µ
µ
µ

τ

( )

( ) ( )

a

v w
a w

w a v
a w

a=
−
−

+
−
−

Adding the above estimates side-by-side and taking into consideration the fact that t is 
non-decreasing, we get:

τ µ τ λ
µ
µ

µ µ
µ

τ µ
µ µ

µ
µ( ) ( ) ( )v w a v

a w
v w
a w

w v w
a w

a v
a

+
−
−

+
−
−









 +

−
−

+
−
−

£
µµ

τ

τ µ τ τ µ τ λ

w
a

w a w v











= + +

( )

( ) ( ) ( ) ( ),£

this implies that τ µ τ µ τ λ τ λ( ) ( ) ( ) ( ) .v w v w− −£

On the other hand, if 0< < ≤ <µ λ µ λw w v v,  then let us choose a v vÎ ( , ]µ λ  such 

that a v w w− = −µ λ µ .  Of course, such an a exists since ( ) ( ) .λ µ λ µ− −v w³  Then 

λ
λ
µ

µ
λ µ

µ
µ

µ
µ

µ
µ µ

µ
w a w

a w
w w w

a w
a v a v

a w
w v w

a w
a=

−
−

+
−
−

=
−
−

+
−
−

and .  Due to the convexity of t on 

[0,1], we have:

τ λ τ
λ
µ

µ
λ µ

µ

λ
µ

τ µ
λ µ

µ

( )

( )

w a w
a w

w w w
a w

a

a w
a w

w w w
a w

=
−
−

+
−
−











−
−

+
−
−

£ ττ( )a
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τ µ τ
µ
µ

µ
µ µ

µ

µ
µ

τ µ
µ µ

µ

( )

( )

v a v
a w

w v w
a w

a

a v
a w

w v w
a w

=
−
−

+
−
−











−
−

+
−
−

£ ττ

λ µ
µ

τ µ
λ
µ

τ

( )

( ) ( )

a

w w
a w

y a w
a w

a=
−
−

+
−
−

Again, adding the above estimations side-by-side, we get:

τ λ τ µ
λ
µ

λ µ
µ

τ µ
λ µ

µ
λ( ) ( ) ( )w v a w

a w
w w
a w

w w w
a w

a w
a

+
−
−

+
−
−









 +

−
−

+
−
−

£
µµ

τ

τ µ τ τ µ τ λ

w
a

w a w v











= + +

( )

( ) ( ) ( ) ( ),£

this leads to τ µ τ µ τ λ τ λ( ) ( ) ( ) ( ) .v w v w− −£

Similarly, it is easy to check that the estimation τ µ τ µ τ λ τ λ( ) ( ) ( ) ( )v w v w− −£  
remains true for v w, < 0  and for other cases. This shows that T satisfies the assumptions 
of Theorem 2.1.

A set satisfying λ λ λx y C y C0 1 0 1+ −( ) , [ , ]Î Î Îfor all  we call star-like set C with 
respect to x0.

Theorem  2.2. Let X be a Banach space, x X N0 Î Î, ,N  let C X⊂  be a bounded,  
star-like set with respect to x0. Let T C C: →  be such that

1.  min , , ,T x T y j N x y x y Cj j−{ } −1≤ ≤ ≤ ∈for all

2.  there exists 0 10£ £b  such that for all 0 1 10≤ ≤ ≤ ≤ ∈b b j N x y C, , ,−   
T T x T T y b T x T yb

j
b
j j j( ) ( ) ( ) ,− + −+ +£ 1 1 1

where T x b Tx bx Then d Tb = − + =( ) . ( ) .1 00

Proof. Fix arbitrary x y C, Î  and take j NÎ{ , , }1  such that T x T y x yj j− −£ .  
Let us note that:

T x T y T T x T T y

b T T x bx b T

b
j

b
j

b b
j

b b
j

b
j

− = −

= − + − −

− −

−

( ) ( )

( ) ( ) ( ) (

1 1

1
01 1 TT y bx

b T T x T T y

b b T x T y

b
j

b
j

b
j

j j

−

− −

−

= − −

− + −

1
0

1 11

1 1

1

)

( ) ( ) ( )

( )( )

(

£

£ −− −b x y2 )
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Therefore, for any x y C, Î  there exists j NÎ{ , , }1  such that T x T yb
j

b
j− £

 
£ ( ) .1 2− −b x y  Theorem 1.2 ensures, that Tb has the unique fixed point.

Now, fix an arbitrary ε> 0  and choose 0 0£ £b b  such that T z Tzb − =  
= − + − = −( )1 0 0b Tz bx Tz b x Tz £ ε  for any z Î C.

Let zb Î C be such that Tbzb = zb.
Therefore, z Tz z T z T z Tzb b b b b b b b− − + − + =£ £ 0 ε ε,  this proves that d T( ) .= 0

¨

Let us illustrate the possible application of Theorem 2.2.
Example 2.3. Let T be the same as in Example 2.2. Then T satisfies Theorem 2.2 

(we have already shown that T does not satisfy Theorem 1.1 for k ³ 3).
Indeed, let us calculate

T T x b k
k

x k
k

b x b x b xb( ) ( ) , ( ) , ( ) , ( ) ,= −
−







 −

− − −

τ 1

1 1
1 1 12 3 2 4 5 6 









and

T x k
k

x k
k

x x x2
2 3 2 4 5 61 1

=
−







 −









τ , , , ,

We have:

T T x T T y b k
k

x b k
k

y

k
k

b b( ) ( ) ( ) ( )− = −
−







 − −

−








+
−

τ τ1
1

1
12 3 2 3

2 11
1

1
1 1 1

1

4 2 4 5 5

2 3

( ) ( ) ( ) ( )− −
−

− + − − − +

−






 −

b x k
k

b y b x b y

k
k

x k



£ τ τ
kk

y k
k

x k
k

y x y

T x T y b T x T y

2 3 2 4 2 4 5 5

2 2 2 2

1 1 1

1

−






 +

−
−

−
+ − +

= − + −



£ ( ) ..

We have already taken into account the fact, that τ µ τ µ τ λ τ λ( ) ( ) ( ) ( )s t s t− −£  for any 

0 1 1≤ ≤ ∈µ λ, , [ , ].s t −  We proved this fact in Example 2.2.

The estimate min ,Tx Ty T x T y
k
Tx Ty k

k
T x T y x y− −{ } − +

−
− −2 2 2 21 1

£ £
 

shows that T satisfies Theorem 2.2.
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1.  Introduction

This paper is related to the Generalized Banach Contraction Principle (we will refer to it 
as GBCP for short) formulated as follows:

Theorem 1.1. [1] In a complete metric space X if for some N ³ 1 and 0 < M < 1  the 
mapping T X X: →  satisfies min{ ( , ), } ( , )d T x T y j N Md x yj j 1£ £ £  for any x y X, ,Î  
then T has a unique fixed point.

Firstly, let us have a quick look at a history of this theorem.
For N = 1 the above theorem is obviously the celebrated classical Banach contraction 

principle, see [B].
In [2], it was shown that if X is compact and if for x y X, Î  and ε> 0  there exists 

n ÎN  such that d T x T yn n( , )≤ ,ε  then T has a unique fixed point.
In [7], it was shown that GBCP is true for N = 2 and for N = 3, if  T is continuous.
In [6], it was shown that it is true for any N ³ 1, if T is uniformly continuous.
In [11], it was shown that it is true for any N ³ 1, if T is strongly continuous.
In [8], it was shown that it is true for N = 3 and for any N ³ 1, if T is continuous.
In [9] and [1] the above theorem was finally proved.
Before we proceed, let us recall some definitions:

Finite set A n n nk= ⊂{ }1 2< < < N  is said to be S-syndetic with constant S ÎN,   
if n n S for i ki i+ − −1 1 1£ £ £ .

Infinite set A ⊂ N  is said to be S-syndetic with constant S ÎN,  if for any l ÎN,  there  
is { : }: [ , ] .i l i l S l l S A∈ + ≤ ≤ + = + + ∩ ≠ ∅ 1 1

Infinite set A ⊂ N  is said to be piecewise S-syndetic with constant S ÎN,  if for any 
N ÎN,  there exists B A⊂  such that #B N³  and B is S-syndetic.

We call set A syndetic (or piecewise syndetic), if it is S-syndetic (piecewise S-syndetic) 
for some S ÎN.

Both proofs of Theorem 1.1 presented in [9], [1] are not elementary. In [1], the proof 
uses, among other tools, the strong result of H. Fürstenberg stated that if N ⊃ = ∪ =B Bi

N
i1  

is piecewise syndetic, then Bi is piecewise syndetic for some i NÎ{ , , }.1  In [9], the proof 
uses Ramsey’s theorem.

Another approach to the metric fixed point theory, presented in ([10]), resulted in the 
following:

Theorem  1.2. [10] Let (X, d) be a complete metric space. Let φ : [ , ) [ , ]0 0 1¥ →  be 

a non-increasing function such that φ( )t =1  if, and only if, t = 0. Assume that T X X: →  
is a contractive mapping such that:

1.  d x Tx
d x x d Tx Tx

x M( , )
( , ) ( , )

,0 0
0 0

2
≤ ∉

−
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2.  d Tx Ty d x y d x y x y M( , ) ( ( , )) ( , ), ,≤ ∈φ

for some M X x M⊂ , .0 Î  Then, T has a unique fixed point.
This instantly led to the following result regarding contractive mappings in complete 

metric spaces:

Corollary  1.3. For j as in Theorem 1.2, if d Tx Ty d x y d x y x y X( , ) ( ( , )) ( , ), , ,≤ ∈φ  
then  T has the  unique fixed point.

2.  Main results

In this paper, we try to mix two approaches presented in Theorem 1.1 and Corollary 1.3, 
in order to achieve, under some additional assumptions, the following:

Theorem  2.1. Let (X, d) be a complete metric space, N ³  1. Let φ : [ , ) [ , ]0 0 1¥ →  
be a continuous, non-increasing function satisfying φ( )t =1  if, and only if, t = 0. Assume  

that T X X: →  satisfies min{ ( , ), } ( ( , )) ( , ), , .d T x T y j N d x y d x y x y Xj j 1≤ ≤ ≤ ∈φ ⋅  
Then T has a unique fixed point.

The above theorem, in this general form, was proved in the author’s PhD thesis [12]. 
The  proof is mainly based on the above mentioned Fürstenberg theorem. In this paper, 
we will  show some special but important cases in which it is not necessary to apply this 
strong tool, which significantly simplifies the proof.

Firstly, we assume that T is a continuous mapping having the N-syndetic Cauchy  
orbit.

Theorem  2.2. Let (X, d) be a complete metric space, N ³ 1. Let T X X: →  be 
a continuous mapping such that:

1.  for all y z X≠ ∈ ,  there exists n ÎN1  such that d T y T z d y zn n( , ) ( , )<

2.  there exists x X NÎ Î, N1  and { }n j j= ⊂1
¥ N -increasing, N-syndetic such that  

{ }T xn j
j

=1
¥  is a Cauchy sequence.

T then has exactly one fixed point.

Proof. Let x T xn
n j

0 : lim .= →¥  Since 1 1£ £n n Nj j+ − ,  there exists b NÎ{ , , },1  
{ } { }n nj jl

⊂  such that n n bj jl l+ − =1 .  On the other hand, T x T T xj b nl jl+ =1 ( ).  By 

definition of x0, there is T x x ljl + → →1
0 , ,¥  and due to the continuity of T, we have 

T T x T x lb n bjl( ) ( ), .→ →0 ¥  Therefore, T 
b has a fixed point x0.

Let c b T b: min{ : }.= ÎN1 has a fixed point  Let us assume that c < 1.
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Let r d T x T x j k cj k: min{ ( , ), }.= −0 0 0 1≤ < ≤  Of course, r > 0 ‒ the opposite case 

would contradict with the choice of c. Since the minimum was taken over a finite set, there 
exists j k c0 0 0 1, { , , }Î  −  such that j0 < k0 and d T x T x rj k( , ) .0 0

0 0 =

By assumption, we can choose n ÎN  such that d T x T x d T x T xn j n k j k( , ) ( , ).+ +0 0 0 0
0 0 0 0<  

But n j p c j+ = ⋅ +0 0
 .  On the other hand, n k q c k+ = ⋅ +0 0

  for some j k c0 0 0 1

, { , , }.∈ −  
Of course, j k0 0



¹ .  Moreover, T x T T x x T T x T xq c c c c c p c⋅ ⋅= = = =0 0 0 0 0( ( ) ) ( ( ) ) .   

Therefore, d T x T x d T x T x d T x T xj k p c j q c k n j n k( , ) ( , ) ( ,







0 0 0 0 0 0
0 0 0 0 0= =⋅ + ⋅ + + +

00 0 0
0 0) ( , ),< d T x T xj k

 
which leads to a contradiction with the choice of  j0, k0.

We will now show that there is exactly one fixed point. Let us assume on the contrary, 
that there are x y0 0¹  such that Tx x Ty y0 0 0 0= =, .  By our assumption, there exists n ÎN  
such that d x y d T x T y d x yn n( , ) ( , ) ( , ),0 0 0 0 0 0> =  which leads to a contradiction.

¨

If there exists x X0 Î  such that d T x T xn n( , )0
1
0 0+ →  with n → ¥,  we can directly 

point out the Cauchy orbit. This fact is a subject of the following:

Theorem 2.3. Let (X, d) be a complete metric space. Assume that φ : [ , ]+ → 0 1  
is  a  continuous, non-increasing function such that φ( )t =1  if, and only if, t = 0. Let 
T X X: →  be a mapping satisfying the following conditions:

1.  there exists N ÎN1  such that min{ ( , ), } ( ( , )) ( , )d T x T y j N d x y d x yj j 1£ £ £ φ  for  
all x y X, ,Î

2.  d T x T x nn n( , ) ,+ → →1 0 ¥  for some x Î X.

Then { }T xn n=1
¥  is a Cauchy sequence.

Proof. Let x T xn
n: .=  Assume for indirect proof, that { } { }T x xn

n n n= ==1 1
¥ ¥  is not a Cauchy  

sequence. Therefore, there exists e >  0 such that for all n Î N, there exists k l nn n, >  
such that d x xk ln n

( , )≥ .ε  For n Î N let kn >  n be the smallest possible such that there 

exist ln > kn satisfying d x xk ln n
( , )≥ .ε  For kn > n, let ln be the smallest possible such that 

d x xk ln n
( , )≥ .ε  Fix n0  Î  N such that for all n  ³  n0, d T x T x d x xn n

n n( , ) ( , ) .+
+=1
1 2

£
ε

 
Let us notice, that for n ³  n0 there is l kn n³ + 2.  Then, for fixed l kn n³ +2  we have 

d x x d x x d x x d x xk l k l l l l ln n n n n n n n
( , ) ( , ) ( , ) ( , )≤ <− − −+ + →1 1 1ε ε  with n → ¥.  Therefore, 

lim sup ( , ) .n k ld x x
n n→∞ ≤ ε  However, since d x xk ln n

( , ) ,³ ε  we have d x xk ln n
( , ) ,→ ε  

n → ¥.
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On the other hand, for all n Î N there exists j Nn Î{ , , }1  such that d x xk j l jn n n n
( , )+ + £

 
£ φ ( ( , )) ( , ).d x x d x xk l k ln n n n

 Define c i i Nn
i

jn: ( ) { , , },{ , , }= ⋅ −−χ 0 1 0 1


Î  where c is an 

indicator function. Let us estimate:
	 d x x d x x d x x d x xk l k k k l l ln n n n n n n n

( , ) ( , ) ( , ) ( , ).£ + + + ++ +1 1 1 1 	

Repeating this procedure, we get:

d x x d x x d x x d xk l k i k i k j l ji

j
ln n n n n n n n

n

n
( , ) ( , ) ( , ) (£ + + + + +=

−
+ +∑ 11

1
++ + +=

−∑ i l ii

j
x
n

n
11

1
, )

= + ++ + + + +=

−

+ +∑ d x x d x x d xk c k c k j l ji

N
l cn n

i
n n

i
n n n n n n

i( , ) ( , ) ( ,11

1
1 xxl ci

N

n n
i+=

−∑ )
1

1

£ d x x d x x d x x d xk c k c k l k li

N
ln n

i
n n

i
n n n n n

( , ) ( ( , )) ( , ) (+ + +=

−
+ +∑ 11

1
φ ++ + +=

−∑ c l ci

N

n
i

n n
ix11

1
, ).

By assumptions d x xk c k cn n
i

n n
i( , )+ + + →1 0  and d x xl c l cn n

i
n n

i( , )+ + + →1 0  with n → ¥  for 

i N∈ −{ , , }.0 1  Therefore, with n → ¥  in the above estimates, due to the continuity of f, 

we have ε φ ε ε£ 0 0+ ⋅ +( ) .  This implies φ ε( ) ,³1  which gives e = 0 and we therefore get 
a contradiction.

¨

Theorem 2.3 ensures the existence and uniqueness of a fixed point.
Theorem  2.4. Mapping T, which fulfils the assumptions of Theorem 2.3, has exactly one 

fixed point.

Proof. Using notations from Theorem 2.3, let z T xn
n

0 0: lim .= →¥  Due to the 

properties of T for any n Î N, there exists j Nn Î{ , , }1  such that d T x T zn j jn n( , )+
0 0 £  

£ φ ( ( , )) ( , ).d T x z d T x zn n
0 0 0 0  Therefore, there exists j NÎ{ , , }1  and { }nk ⊂ N  

such that d T x T z d T x z d T x zn j j n nk k k( , ) ( ( , )) ( , )+
0 0 0 0 0 0£ φ  for k ÎN.  Due to this fact, 

T x T zn j jk + →0 0  with k → ¥.  But on the other hand, T x zn jk + →0 0 ,  so T z zj
0 0= .

Let Z T x zn
n: { } { }.= ∪=0 1 0
¥  Let us notice, that T Z Zj ( ) .⊂

We will show that z0 is the only one fixed point of T j
Z

.  Indeed, if there is z w Z0 0≠ ∈  
‒ another fixed point of T j ,  then w T xn0 0=  for some n Î N. Then

	 w T w T w T T x T x z kj k j k j n k j n
0 0 0 0 0 0= = = = = → →⋅ ⋅ ⋅ +

 ( ) , ,¥ 	

which leads to a contradiction.
We will show that z0 is a fixed point of T. Let j be the smallest natural number such 

that T z zj
0 0= .  Let 0 0 10 0 0 0

0 0< ≤ < ≤ε : min{ ( , ), } ( , )= − =d T z T z k l j d T z T zk l k l  for 
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some 0 10 0≤ < ≤k l j − .  There exists m NÎ{ , , }1  such that ε£ £d T z T zk m l m( , )0 0
0 0

+ +
 

£ φ φ ε ε( ( , )) ( , ) ( ) .d T z T z d T z T zk l k l0 0 0 0
0 0 0 0 =  Due to this fact, e = 0 – this leads to 

a contradiction.
We will now show that z0 is the only fixed point of T. Indeed, if there is z w X0 0≠ ∈   

‒ another fixed point of T, then for any n Î N there is T z zn
0 0=  and T w wn

0 0= .  For 

points z w0 0, ,  there exists j NÎ{ , , }1  such that d z w d T z T wj j( , ) ( , )0 0 0 0= £  
£ φ ( ( , )) ( , ).d z w d z w0 0 0 0⋅  This inequality implies that either d z w( , )0 0 0=  or  

φ ( ( , )).d z w0 0  Due to the properties of f, in both cases d z w( , )0 0 0=  – this contradicts  

with z w0 0¹ .

¨

The theorem below is useful for proving Theorem 2.1 for N = 2.
Theorem 2.5. Let (X, d) be a complete metric space, N ³ 1 and let φ : [ , ) [ , ]0 0 1¥ →  

be  a  continuous, non-increasing function such that φ ( )t =1  if, and only if, t = 0. Let 

T X X: →  satisfy min{ ( , ), } ( ( , )) ( , )d T x T y j N d x y d x yj j 1£ £ £ φ ⋅  for any x y X, .Î

Moreover, for fixed x y X, Î  let the sequence { } { , , }j Nn n= ⊂1 1¥
  be 

chosen (by the above assumption) in such a way, that for n ³ 2  we have  

d T x T y d T x T y d Tj j j j j j j j jn n n n( , ) ( ( , )) (1 1 1 1 1 1 1+ + + + + + + +− − ⋅   £ φ ++ + + +− − j j jn nx T y1 1 1, ).  Let 

z d T x T yn
j j j jn n: ( , ).... ...= + + + +1 1  Then zn → 0  with n → ¥.

Proof. Obviously zn ³ 0.  Since z z zn n n£ φ ( )− −1 1  and φ ( ) , { }t zn n≤ ∞1 1= , is non- 
-increasing.

If there exists n ÎN  such that z zn n= +1,  then z z z zn n n n= +1 £ φ ( ) ;  therefore, either 

zn = 0  or φ ( ) .zn ³1  Due to the properties of φ, in both cases zn = 0.

In the opposite case (when for every n ÎN  there is z zn n¹ +1)  the sequence { }zn n=1
¥

 
is decreasing and bounded from below; therefore, it has a limit. Let g zn n: lim .= →¥  
We will show that this limit is 0. Assume for the purpose of contradiction that g > 0.  
Since φ ( )g <1  and φ φ( ) ( ),z gn →  due to continuity of f, for any δ> 0  there exists 

n0 ÎN  such that for any n n z gn≥ ≤0 φ φ δ( ) ( ) .+  Choose d such that φ δ( ) .g + <1  
Then φ φ δ( ) ( )z gn ≤ <+ 1  for n n³ 0.  On the other hand, 0 1 1£ £ £z z zn n nφ ( )− −  
£ £φ φ φ δ( ) ( ) [ ( ) ]z z z g zn n n

n n
n−

−+ →1 0 0
0

0
0  with n → ¥;  therefore, zn → 0  with 

n → ¥.
¨
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Now we will show proof of Theorem 2.1 for N = 2 without applying the Fürstenberg 
theorem.

Theorem  2.6. Let (X, d) be a complete metric space. Let φ : [ , ]+ → 0 1  be 

a  continuous,  non-increasing function such that φ ( )t =1  if, and only if, t = 0. Let 

T X X: →  be a mapping such that min{ ( , ), } ( ( , )) ( , )d T x T y j d x y d x yj j 1 2£ £ £ φ  
for any x y X, .Î

Then d T x T x nn n( , ) ,+ → →1
0 0 0 ¥  for any x X0 Î  and T has exactly one fixed  

point.
Proof. Assume for indirect proof, that there exists x X0 Î  such that   

d T x T xn n( , ) ;+1
0 0 0  therefore, there are x X kn n0 10∈ > ∞, , { }ε = ⊂ N  such that 

d T x T xk kn n( , )0
1
0

+ ≥ .ε

For k = 1, 2 let us create two sequences { }nm
k
m=1
¥  in the following way:

Let nk0 0: ;=  Having already chosen n nk
m
k

0 , , ,  define z d T x T xm
k n n km

k
m
k

: ( , )= +
0 0  and

	 n
n d T x T x z z

n
m
k m

k n n k
m
k

m
k

m
k

m
k

m
k

+

+ + +

=
+ ⋅

+
1

1
0

1
01

2
:

, ( , ) ( )

,

gdy

gdy

£ φ

dd T x T x z zn n k
m
k

m
km

k
m
k

( , ) ( )+ + + ⋅






2
0

2
0 £ φ

	

The sequences { } , ,n km m= =0 1 2¥  are increasing and 2-syndetic. Moreover, due to 

Theorem 2.5, we have z m km
k → →0 1 2, , { , }.∞ ∈

Let us notice, that for all m0 ÎN ,  there exists m m³ 0  satisfying k nm p p∉ ∞{ } .1
0=  

Otherwise, there exists m0 ÎN  such that for any m m³ 0 ,  there is k nm p p∈ ∞{ } ;1
0=  

therefore, k nm p m= ( ) .
1  Taking, if needed, the subsequence of { }km m=0

¥  and renumbering 

it, without loss of generality, we can assume that m p m£ ( ).  Then d T x T xk km m( , )0
1
0

+ =  

= → →+d T x T x mn np m p m( , ) , ,( ) ( )
1 1

0
1
0 0 ¥  which leads to contradiction.

Therefore, for all m0 ÎN ,  there exists m m³ 0  satisfying k nm p p∉ ∞{ } .1
0=  For such m, 

there exists p m( )ÎN  satisfying n k np m m p m( ) ( ) .
1

1
1< < +  Without the loss of generality, 

we can assume that m p m£ ( ).  Obviously, n k np m m p m( ) ( ) .1
1

11 1+ = = −+

Since { }nq q
2

0=
¥  is a 2-syndetic sequence, there exists q m( )ÎN  such that either 

k nm q m= ( )
2  or k nm q m− =1 2

( ) ,  because { , } { } .k k nm m q q− ∩ ∅=1 2
0

∞ ≠  Without the loss of 

generality, we can assume that m q m£ ( ).
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If k nm q m− =1 2
( ) ,  then d T x T x d T x T x d T x T xk k k k k km m m m m m( , ) ( , ) ( , )0

1
0 0

1
0

1
0

1
0

+ − − ++£ £
 

£ d T x T x d T x T xn n n np m p m q m q m( , ) ( , ) ,( ) ( ) ( ) ( )
1 1 2 2

0
1
0 0

2
0 0+ ++ →  with m → ¥  – this follows from 

Theorem 2.5, and leads to contradiction.
If k nm q m= ( ) ,

2  then d T x T x d T x T x d T x T xk k k k k km m m m m m( , ) ( , ) ( , )0
1
0 0

2
0

2
0

1
0

+ + + ++£ £  

£ d T x T x d T x T xn n n nq m q m p m p m( , ) ( , ) ,( ) ( ) ( ) ( )
2 2

1
1

1
1

0
2
0 0

1
0 0+ ++ →+ +  with m → ¥  – this also leads 

to contradiction.
Therefore, d T x T xn n( , )+ →1

0 0 0  with n →∞.  Theorem 2.4 completes the proof.

¨

We will now show a proof of Theorem 2.1 for uniformly continuous mappings.

Theorem  2.7. Let (X, d) be a metric space. Assume that φ : [ , ]+ → 0 1  is 
a  continuous,  non-increasing function such that φ ( )t =1  if and only if t = 0. Let 

 T X X: →  be a uniformly continuous mapping such that

	 ∀x y X d T x T y j N d x y d x yj j, min{ ( , ), } ( ( , )) ( , )∈ ≤ ≤ ≤1 φ 	 (1)

for some N ³ 1.
Moreover, if X is complete, then T has exactly one fixed point.

Proof. First we show, that d T x T x nn n( , ) ,+ → →1
0 0 0 ¥  for any x X0 Î .  Assume 

on  the  contrary, that d T x T xn n( , , )0
1
0 0+   for some x X0 Î ;  therefore, there exists  

x X0 Î ,  ε>
∞0 1, nk k{ } ⊂= N  such that:

	 d T x T x kn nk k( , ) ,0
1
0

+ > ∈ε N 	 (2)

Due to the uniform continuity of T, for the ε chosen above, there exists δ> 0  such  
that d Tx Ty( , )< ε  for any x y X, Î  satisfying d x y( , ) .< δ

Repeating this procedure N times, d can be chosen in such way, that:

	 d x y( , )< δ   implies  d T x T yj j( , )< ε   for any  1≤ ≤ ∈j N x y X, , 	 (3)

Due to the assumption (1) for x X0 Î  chosen in (2), there exists j N1 1Î{ , }  such  

that d T x T x d x Tx d x Txj j( , ) ( ( , )) ( , ).1 1
0

1
0 0 0 0 0

+ £ φ  There then exists j N2 1Î{ , , }  such  

that d T x T x d T x T x d T x T xj j j j j j j j( , ) ( ( , )) ( , )1 2 1 2 1 1 1 1
0

1
0 0

1
0 0

1
0

+ + + + +£ φ ..

Continuing the above procedure, we will get j jl l1 1+ +{ } =... ¥  – an increasing and 

N-syndetic sequence, which fulfils the assumptions of Theorem 2.5 for the pair ( , ).x Tx0 0  
Therefore, d T x T xj j j jl l( , )... ...1 1

0
1
0 0+ + + + + →  with l → ¥.  Define m j j ll l: , .= + +1  ÎN  
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Let l0
 ÎN  be such that d T x T xm ml l( , )0

1
0

+ < δ  for l l³ 0
 .  Since the sequence ml l l{ }

= 0


¥

  

is N-syndetic (because ml l{ } =1
¥  is an increasing); therefore, we can choose l l0 0³  such  

that { ,..., } .m m N nl l k k0 0
1 1+ + ∩{ } ∅=

∞ ≠

Therefore, there exists j N0 1Î{ , , }  and k0 ÎN  such that:

	 m j nl k0 00+ = 	 (4)

By (2), it follows that d T x T xn nk k( , ) ,0 0
0

1
0

+ > ε  and also d T x T xm ml l( , ) ,0 0
0

1
0

+ < δ  

it  therefore (3) implies that d T x T xm j m jl l( , ) ,0 0 0 0
0

1
0

+ + + < ε  which, in respect of (4), leads 
to contradiction.

¨

Now we can make use of the above theorems in the following example:

Example 2.1. Let T l x l x i l x l x ii i: { : , } { : , }∞ ∞ ∞ ∞∈ ≥ ∈ ∈ ≥ ∈∩ → ∩0 0N N  be 

defined in the following way: T x x x Tx
x
x

x

x
x
x

x

x
: ( , , ) : , , , , ,= → =

+ + + +






1 2

3

3

2

2

5

5

4

4
1
2
1

1
2
1

2
1

1
2
1

 









.

 

Obviously, Tx Ty x y− −∞ ∞≤ 2 .  We also have T x x

x

x
x

2 2

2

3

3
1
1 3
2

1 3
=

+ +








, , ,

 

x

x

x
x

4

4

5

51 3
2

1 3+ +









, ,

 

Let us estimate:

x

x

y

y

x y

x y x y

x y
x y

xi

i

i

i

i i

i i i i

i i

i i

i

1 3
2

1 3
2

1 3
2

9
4

1+
−

+

−

+ + +

−

+ +

−
≤ ≤ ≤

( )

yy
x y

x y
x y

i

i i1 1+ −

−

+ −
≤ ∞

∞

,

i ÎN.

The latter inequality follows from the fact that t t
t

→
+1

 is an increasing function  

on [ , ).0 ¥  Similarly, 
x
x

y
y

x y
x y

i

i

i

i1 3 1 3 1+
−

+

−

+ −
≤ ∞

∞

,  and therefore, T x T y2 2−
∞
≤
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≤
∞

∞

1
1+ −

−
x y

x y .  The mapping T satisfies the assumptions of both Theorem 2.6 

and Theorem 2.7 with φ ( ) : ,t
t

=
+
1
1

 it therefore follows that T has a unique fixed point. It is 

of course ( , , , ).1 0 0  However, the mapping T does not satisfy assumptions of Theorem 1.1.

I would like to thank Professor Grzegorz Lewicki for his valuable suggestions and remarks.
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1.  Introduction and prerequisites

In [1], the authors proved a deep result that is now considered fundamental in the theory 
of extensions of separately holomorphic functions with singularities.

Theorem 1.1. (Theorem 1 from [1]) Let f be a holomorphic function on the polydisk 
′×U Un  in C C Cn n= ×−1 ,  and for each fixed ′a  in some nonpluripolar set E UÌ ′,  the 

function f a zn( , )′  can be continued holomorphically to the whole plane with the exception 

of some polar set of singularities M a( ) ,′ ÌC  then f can be continued holomorphically to 

( ) ,′×U SC   where S is a closed pluripolar subset of ( ).′×U C

Theorem 1.1 remains true if ′U  is a domain of holomorphy in Cn−1  and Un is a domain 
in C. Moreover, a set S in the conclusion can be minimalised in the sense that for any 

′a EÎ ,  the fiber S z a z Sa n n( , ) : { : ( , ) }′ ⋅ = ′Î ÎC  is contained in M a( )′  and for any ′ ′z UÎ ,   
the fiber S z( , )′ ⋅  is polar (see, for instance, Theorem 9.2.24 in [5] for details).

Applications in mathematical tomography found by O. Öktem (see [7], [8]) revived an 
interest in the theory of extensions of separately holomorphic functions with singularities 
(see [2], [3], [4]) and possible generalisations of the theory to the general case of complex 
manifolds (see [6], [9]). However, one of the main problems in the development of the theory 
in the case of manifolds is the lack of analogs of many fundamental results. In this paper, 
Theorem 1.1 is generalised to the case of s-compact Josefson manifolds.

Recall that a manifold is called s-compact (or countable at infinity) if it is a union 
of countably many compact subsets. A complex manifold X is called a Josefson manifold 
if every locally pluripolar set in X is globally pluripolar.

2.  Main Theorem

Theorem 2.1. Let D be a s-compact connected Josefson complex manifold of 
dimension n and let A Ì D not be pluripolar. Let D be a nonempty domain in C. For any 
a Î A, let M a( )ÌC  be a closed polar set such that ∆∩M a( ) .= ∅  Let S D⊂ ∆ ( )×  
be such that for any f Î S and a Î A, there exists a function f M aa

 ÎO \( ( ))C  such that 

f f aa
 ( ) ( , ) .⋅ = ⋅ on D

Then there exists a closed pluripolar set M D Ì ×C  such that:

(a)  M D∩ ∆( ) ,× = ∅

(b)  M M a a Aa( , ) ( ), ,⋅
 ⊂ ∈

(c)  M z Dz( , ) is polar, ,⋅
 ⊂ ∈C

(d)  any f Î S extends holomorphically to f D M� �ÎO \(( ) ).×C
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Proof of Theorem 2.1.
Step 1.

Let U be a domain in D such that there exists a biholomorphism Φ Ω: ,U U→  where 

WU is a domain in Cn. Assume that A A UU := Ç  is not pluripolar. Then B AU U: ( )= Φ ΩÌ  
is not pluripolar. For any b Î B, define M b M a( ) : ( ),=  where a b AU= −Φ 1( ) .Î  Thus M(b) 

is closed, polar and M b( ) .∩∆ = ∅  Define a family S f f SU U: : .= { }×∆ ∈  From the 

assumptions for any f Î SU and a Î AU there exists a function f f M aU a a, : ( ( ))=  ÎO \C  

such that f w f a w wU a, ( ) ( , ), . = ∈∆  Define a new family F : { ( , ) ( ( ), ) := = −g b w f b wΦ 1
 

f SUÎ }.  Then F O⊂ ∆( )ΩU ×  and for each g Î F and b Î B, a function g wb ( ) :=  
: ( ), ( )= −f wU bΦ 1

  is, from its definition, holomorphic on CM b( )  and g wb ( ) =  
= =−f b w g b w w( ( ), ) ( , ) .Φ 1 for ∈∆

Hence, from Theorem 1.1, there exists a relatively closed pluripolar set M U
 ÌΩ ×C  

such that:

‒  M M b b Bb( , ) ( ), ,⋅
 ⊂ ∈

‒  M bb U( , ) , ,⋅
 ⊂ ∈C is polar Ω

‒  M U
 ∩ ∆( ) ,Ω × = ∅

–	 for any g Î F, there exists a function g MU
� �ÎO \(( ) )Ω ×C  such that g g=   on  

ΩU ×D.

Define a set M b w b w M� �: {( ( ), ) : ( , ) }.= −Φ 1 Î  Fix a z Î U and let b = F(z). Then

M w z w M w b w M w b w Mz( , ) { : ( , ) } { : ( ( ), ) } { : ( , ) }⋅
−= = = =� � � �Î Î Î Î Î ÎC C CΦ 1 MM b( , )⋅

�

Hence, M M aa( , ) ( )⋅
 Ì  for each a Î AU and M z( , )⋅

  is polar for z Î U. Now, assume  

that  there exists a point ( , )a w MÎ   such that ( , ) .a w U∈ ∆×  Let b a= Φ( ).  Then 

( , )b w U∈ ∆Ω ×  and, since ( , ) {( ( ), ) : ( , ) }, ( , ) .a w b w b w M b w MÎ Î ÎΦ−1    Thus, 

M U
∩ ∆ ≠( )Ω × ∅  ‒ a contradiction.

For fixed f Î SU, define f a w g a w

( , ) : ( ( ), ).= Φ  Because ( , )a w MÎ   if, and only  

if, ( ( ), ) , (( ) ).Φ a w M f U MÎ Î� � �O \×C  Moreover, f z w g z w g z w

( , ) ( ( ), ) ( ( ), )= = =Φ Φ  
= f z w( , )  for ( , ) ,z w U∈ ∆×  where last equality follows from the definition of the  
family F. Thus, any function f Î S has an extension
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f f U M

f D
U
�

� �

: ( ) ,= ×

×







on

on

C 

D

which is well defined and holomorphic on ( ) (( ) ).D U M× ×∆ ∪ C  

Step 2.
Let U denote a domain in D such that there exists a relatively closed pluripolar set 

M UU
 Ì ×C  with the following properties:

(1)  ( ) ( ), ,( , )M M a a A UU a ⋅
 ⊂ ∈ ∩

(2)  ( ) ,( , )M z UU z ⋅
 ⊂ ∈C is polar,

(3)  M UU
 ∩ ∆( ) ,× = ∅

(4)  for any f Î S, there exists an extension f D U MU U
� �∈ ∆ ∪O \(( ) (( ) ))× ×C  such  

that f f DU= × on D.
Let V be a domain in D, biholomorphic to a domain in Cn, such that V U∩ ≠∅.  

Define a family S f f SV V= { }×∆ ∈: .  For any a U V∈ ∩ ,  define M a MU a( ) : ( ) .( , )= ⋅
  If 

the set ( )V A UÇ   is not empty, for a V A U∈ ∩( )  let M a( )  be as in the assumptions 

of Theorem  2.1. For any f S a U VV∈ ∈ ∩for  define f f aV a U, ( ) : ( , )⋅ = ⋅� �  and for 

a V A U∈ ∩( )  (if not empty) let f fV a a, :
 =  from the assumptions. From Step 1, with V 

playing the role of U and AU replaced by ( ) ( )V U A V∩ ∪ ∩ 1 there exists a relatively closed, 

pluripolar set M VV
 Ì ×C  such that:

‒  ( ) ( ) ( ), ,( , ) ( , )M M M a a A V UV a U a
 

⋅ ⋅⊂ ⊂ ∈ ∩ ∩

‒  ( ) ( ), ( ) ,( , )M M a a A V UV a


⋅ ⊂ ∈ ∩ 

‒  ( ) , ,( , )M z VV z


⋅ ⊂ ∈C is polar

‒  M VV
 ∩ ∆( ) ,× = ∅

‒  for any f Î S, there exists f D V MV V
� �∈ ∆ ∪O \(( ) (( ) ))× ×C  such that f fV=   on D ×D.

Then a set M M M U VU V
  : ( )= ×∪ ⊂ ∪ C  is relatively closed and pluripolar, 

M D ∩ ∆( ) ,× = ∅  for each a  Î  A, the fiber M M M M aa U a V a( , ) ( , ) ( , )( ) ( ) ( )⋅ ⋅ ⋅=  ∪ ⊂  
and for any z D M z∈ ⋅, ( , )

  is polar. Fix f SÎ .  The function f has two extensions: 

1	 V Ç U is necessary, because A Ç V alone could be pluripolar.
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f D U MU U
� �∈ ∆ ∪O \(( ) (( ) ))× ×C  and f D V MV V

� �∈ ∆ ∪O \(( ) (( ) ))× ×C  such that on 

D × D the equality f f fU V
 = =  holds. Define a function

f

f U M

f V M

f D

U

V
�

� �

� �:

( )

( ) .=

×

×

×














on

on

on

C

C





D

Observe that any connected component of (( ) )U V MÇ ×C    is a domain  

intersecting D ×D.  Thus, from the identity principle, the functions f fU V
 and  agree 

also on (( ) ) .U V MÇ ×C    Hence, f  is well defined and holomorphic on ( )D ×∆ ∪  

∪ ∩((( ) ) ).U V M×C  

Step 3.

Since D is σ-compact, there exists a countable covering { }U j j=1
¥  such that each Uj  

is biholomorphic to a domain in Cn. Because A is not pluripolar, there exists j0 such that 
A U jÇ

0
 is not pluripolar. From Step 1, we obtain a relatively closed pluripolar set 

M UU jj0 0

 Ì ×C  having properties (1) to (4). From Step 2, for any U Uj j¹
0

 such that 

U Uj j∩ ≠
0

∅  there exists a relatively closed pluripolar set M UU jj

 Ì ×C  having same 

properties. Define D U U Uj j j1 0
: { : },= ∅


∩ ≠  a set M M U DD U jj1 1
 : { : }=


Î  and 

a function

f

f U M j j

f U M

f D

D

U j D

U j D

j

j1

1

0 0 1

0

�

� �

� �:

( ) ,

( )=

×

×

×









on

on

on

C

C





≠

∆






From Step 2, fD1

  is well defined and holomorphic on ( ) (( ) )D D MD× ×∆ ∪ 1 1
C    and 

f f DD1
 = ×on D.  Thus, MD1

  has properties (1) to (4). Now, for any U Dj Ï 1  such that 

U Dj ∩ ≠1 ∅  from Step 2 there exists a relatively closed pluripolar set M UU jj

 Ì ×C  having 

properties (1) to (4). Define D U U Dj j2 1: { : },= ∅∩ ≠
  M M U DD U jj2 2

 : { : }= Î


 and
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f

f U M U D

f D M

f D

D

U j D j

D D

j

2

2

1 2

1

1
�

� �

� �:

( ) ,

( )=

×

×

×











on

on

on

C

C





∉

∆




Once again, fD2

  is well defined and holomorphic on ( ) ( ) ),D D MD× ×∆ ∪ 2 2
C  

 
f fD2

 =  on D ×D  and MD2

  has all properties (1) to (4).

We obtain an open covering { }Dk k=1
¥  of D such that for each k =1 2, ,  there exists 

a relatively closed pluripolar set MDk
 having properties (1) to (4). Define M MDk k

 :=
=1

¥

  

and a function f f D MD kk

� � �: ( ) .= ×on C   Thus, f  is well defined and holomorphic on 

( ) .D M f f D× = ×C  � �and on D  Hence, the set M̂ has all properties (a) to (d) and proof 
of Theorem 2.1 is finished.
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1.  Introduction and prerequisites

In [2], the authors proved a result which states that almost all sections of Riemann 
domains of holomorphy are regions of holomorphy.

Let (X, p) be a Riemann domain over C C Cn k l= × ,  where p u v X k l= → ×( , ) : ,C C  
and define D u Xk : ( ).=  Let ∅≠ ⊂F O ( ).X  For a DkÎ ,  define a fiber X u aa : ( ),= −1

 
a function p va Xa

: ,=  and a family F Fa Xf f
a

: { : }.= Î

Theorem 1.1. (Theorem 2.2 from [2]) Let ∅≠ ⊂F O ( )X  and assume that (X, p) 

is  an F-domain of holomorphy. Then there exists a pluripolar set S Dk kÌ  such that for 

every a D S X pk k a aÎ  , ( , )  is an Fa-region of holomorphy.
Remark 1.2. Theorem 1.1 remains true if we assume that (X, p) is a countable at infinity 

F-region of holomorphy (see Theorem 9.1.2 in [3]).
Now, recall the definition of a singular set. For an n-dimensional complex manifold X, 

let M be a closed subset of X such that for any domain Ω Ì X, the set Ω  M is connected 
and dense in W (for instance, let M be a pluripolar set). Let F be a family of functions 
holomorphic on X M .

Definition 1.3. A point a MÎ  is called singular with respect to the family F, if for 

any open connected neighborhood Ua of the point a, there exists a function f ÎF ,  that 
does not extend holomorphically on Ua. We call M singular with respect to the family F, if 
every point a Î M is singular with respect to F.

A consequence of Theorem 1.1 is a similar property of fibers of singular sets in the 
Riemann regions of holomorphy from [3].

Theorem 1.4. (Proposition 9.1.4 from [3], see also Lemma 3.3 from [2]) Let ( , )D pD   
and ( , )G pG  be Riemann domains over C Ck land ,  respectively. Let ΩÌ D G×  be 
a Riemann region of holomorphy and let M Ì Ω  be a relatively closed pluripolar set that 
is singular with respect to a family  S Ì   (Ω  M) There then exists a pluripolar set 
P DÌ  such that for any a PDÎ π ( )Ω   the fiber M b G a b Ma( , ) : { : ( , ) }⋅ = ∈Î  is singular 

with respect to the family S f a f S Ma a a: { ( , ) : } ( ),( , ) ( , )= ⋅ ⋅ ⋅∈ ⊂O \Ω  where pD(W) denotes 

the projection of W to D.
Following the proof of Theorem 1.4, it becomes clear that we can replace the assumption 

of M being relatively closed and pluripolar by a weaker assumption: we need only that the set 
{a Î D : the fiber M a( , )⋅  is not pluripolar} is pluripolar.

Theorem 1.4 proved to be one of the key properties used in the theory of extensions 
of functions separately holomorphic on different kinds of objects called crosses. This topic 
has a long history in complex analysis (for the details of its evolution, see the introduction 
to [3]) and was started by W.F. Osgood and F. Hartogs with the famous theorem stating that 
every separately holomorphic function is, in fact, holomorphic ([1, 5]). One of the latest and 
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most general and technically demanding results in the case of crosses with singularities on 
Riemann domains (see Theorem 3.2 in [2], Theorem 10.2.9 in [3], Main Theorem in [6]) 
are obtained using, among other strong tools, Theorem 1.4.

Recently, the context of cross theory has moved from Riemann domains to more general 
objects, such as complex manifolds or even analytic spaces (see [4]). However, the case 
of extensions on crosses with singularities on complex manifolds still remains open, partially 
because of a lack of necessary base results which were available for Riemann domains.

In this paper, we show proof of generalisation of Jarnicki and Pflug result which is 
one of  the main tools needed to build a theory of crosses with singularities on complex 
manifolds. Since the proof of original Theorem 1.1 (and thus the proof of Theorem 1.4) was 
based on strong results, it is surprising that the proof of the main theorem presented in the 
next section is so elementary.

Main Theorem. Let D1 be a connected s-compact Josefson manifold (i.e. D1 is 
a countable at infinity complex manifold such that every locally pluripolar set in D1 is globally 
pluripolar) of dimension n1 and let D2 be a s-compact complex manifold of dimension n2. Let  
ΩÌ D D1 2×  be a domain and let  M Ì Ω be a singular set with respect to the family  

 Ì  (Ω  M)  such that the set {a1 Î D1: the fiber M a( , )⋅  is not pluripolar} is pluripolar 

in D1. Then there exists a pluripolar set Q DÌ 1  such that for every a QD1 1
Î π ( ) ,Ω   the fiber 

M a( , )1 ⋅  is singular in Ω( , )a1 ⋅  with respect to the family F F Oa af a f: { ( , ) : } ( ),( , )= ⋅ ⋅1 1
∈ ⊂ Ω  

where πD1 ( )Ω  denotes the projection of W to D1 and for B D DÌ 1 2×  and a D1 1Î ,  we put 

B a D a a a Ba( , ) : { : ( , ) }.
1 2 2 1 2⋅ = =Î Î

2.  Proof of Main Theorem

Fix a a a M= ( , ) ,1 2 Î  where a D a D1 1 2 2Î Î, .  Let Φ j j jU U: →   be a biholomorphic 

mapping such that Uj is an open neighbourhood of a Uj j,   is an Euclidean ball in Cn j ,  
Φ j ja j( ) , , ,= =0 1 2  and U U Ua : .= ×1 2 ÌΩ

Define Φ Φ Φ: ( , )= 1 2  and N M Ua: ( ),= Φ Ç  
F Fa Uf f

a
: { : },= Î

 

F Fa af f : { : }.= −
Φ 1 Î  Then N is a relatively closed subset of U U U  := ×1 2  and 

F O \a U N

Ì ( ).  We show that N is singular with respect to the family Fa
 .

Fix a w  Î  N and define b u M: ( ) .= −Φ 1 Î  Assume that there exists an open  

neighborhood Vw
  of w such that every function f a

� �
ÎF  extends holomorphically  

on Vw
 .  Let V Vb w: ( ).= −Φ 1   Fix f aÎF  and define f f a

� �: .= −
Φ 1 ÎF  Then f  extends 
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to a function F  holomorphic on Vw
 .  Define F F VV b

b
: ( ).= Φ Î  Since F F= =

Φ
 

= =f f

Φ  on the nonempty open set V Mb  ,  we conclude that F is a holomorphic 
extension of f to Vb – a contradiction.

Now, from Theorem 1.4, there exists a pluripolar set Qa
n ÌC 1  such that for any 

w U Qa1 1Î    the fiber N w w w Nw
n

( , ) : { : ( , ) }
1

2
2 1 2⋅ = Î ÎC  is singular with respect to 

the  family F Fw af w f
1 1

� � � �: { ( , ) : }.= ⋅ Î  Define b w U1 1
1

1 1: ( ) ( ) ,= −Φ Î  Q Qa a: ( ) ( ).= −Φ1
1 

 
Then Qa is pluripolar in D1 and

N w b U b w b b M Mw
n

b( , ) ( , ){ : : ( ) , ( , ) } ( ).
1

2
12 2 2 2 2 2 1 2 2⋅ ⋅= ∃ = =Î Î ÎC Φ Φ

Using similar reasoning as before, we show that for any b U Qa1 1Î   the fiber M b( , )1 ⋅  
is singular with respect to the family F Fb af b f

1 1= ⋅{ ( , ) : }.Î

From { } ,Ua a MÎ  we choose a countable covering { }Ua jj =1
¥  of the set M. Define 

Q Q b D the fiber Ma bj j
: { : ( , )= ⋅=

∪ ∈
∞

1 11 1

 is not pluripolar}.

Because D1 is a Josefson manifold, Q is pluripolar in D1. We show that for 
any b QD1 1

Î π ( ) ,Ω   the fiber M b( , )1 ⋅  is singular with respect to the family 

 F Fb f b f
1 1: { ( , ) : }.= ⋅ Î

Fix b Q b MD b1 21 1
Î Îπ ( ) , .( , )Ω  ⋅  Assume that there exists an open neighbourhood 

Vb2
 of b2 such that any function f b f( , ), ,1 ⋅ ÎF  extends holomorphically on Vb2 .  Fix 

f ÎF .  Because ( , ) ,b b M1 2 Î  then there exists a jj , { , , },Î 1 2  such that ( , )b b Uaj1 2 Î =  
= ×U Uj j1 2, , .  Thus b U Q f bj a Uj a j

1 1 1Î , ( , ) and ⋅  extends holomorphically on 

( ),,V Ub j2 2Ç  but we already know that the fiber M b( , )1 ⋅  is singular with respect to the  

family { ( , ) : } { ( , ) : }f b f f b fa Uj a j
1 1⋅ = ⋅Î ÎF F  – a contradiction.
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1.  Introduction

The theoretical problems of how to determine the kinetic properties of a semiconductor 
crystal are connected mainly with the following problems:
–	 determining the energy spectrum ε ( p)

���
,

–	 determining the scattering function u ( )ε ,

–	 determining the reduced chemical potential µ∗.
 In this paper, a theoretical analysis of the kinetic properties of the semiconductor 

crystals is presented. The kinetic properties of the semiconductor crystals are considered 
in the framework of the statistical theory of the solid state. This discussion is based on 
general formulas which are expressed in terms of the Fermi integrals.These formulas 
provided algorithms for the calculation of the kinetic properties and, together with other 
relations, constitute the mathematical model of the charge carrier transport phenomena 
in semiconductor crystals.

The calculation or identification of the kinetic properties of a crystal and the prediction 
of its useful technological properties are closely related [1, 2, 4, 8, 10, 13].

2.  Theoretical analysis of the kinetic properties of semiconductor crystals

According to the statistical theory of the solid state, in the presence of a weak magnetic 
field, or when the magnetic field is absent, the kinetic properties of isotropic doped 
semiconductor crystals may be described by general formulas ‒ these are expressed in terms 
of the Fermi integrals.

Some of these properties are as follows:
–	 the resistivity r (T, m*)
–	 the Hall coefficient R (T, m*),
–	 the thermopower (the Seebeck coefficient) a (T, m*),
–	 the Nernst – Ettingshausen constant N (T, m*),
–	 the thermal conductivity c (T, m*),
–	 the conductivity s (T, m*),
–	 the carrier density n (T, m*),
–	 the carrier mobility UD (T, m*),
–	 the Hall mobility UH (T, m*),
and the apprioprate formulas based on the Fermi integrals take the forms:
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In the above expressions for the kinetic properties of semiconductor crystals, the symbols 
Jij (T, m*) are reserved for the Fermi integrals (the kinetic integrals) given by the following 
formulas:
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The analysis of the kinetic integrals (10) shows us that the following inequality takes 
place [6]:
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From this inequality, it follows that:
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Commonly, the function fR (T, m*) in lecture courses on solid state and semiconductor 
physics is called the Hall factor [7, 8]. It is easy to show that this function has a minimum 
value equal to 1 in a semiconductor crystal, where the current carriers are degenerated.

Using the function (10), formulas (8) and (9) describe the carrier and Hall mobilities:

	 U T J T
J TD ( , ) ( , )

( , )
µ

µ
µ

∗
∗

∗
= 01
00

, 	

	 U T J T
J TH ( , ) ( , )
( , )

µ
µ
µ

∗
∗

∗
= 02

01
. 	



42

Thus, we have:

	
U T
U T

J T J T
J T

f TH

D
R

( , )
( , )

( , ) ( , )
( , )

( , )
µ

µ
µ µ

µ
µ

∗

∗

∗ ∗

∗
∗= 00 02

01
= 1.2 ³ 	

Consequently, we also have UH  (T,  m*)  =  UD  (T,  m*)  fR  (T,  m*), that is UH  (T,  m*)  >  
> UD (T, m*).

From definition of the carrier mobility UD (T, m*), there is:
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In statistical physics, this expression has mathematical sense of the average value of 
the function u ( )ε ,  for all values ε ε, ∈ ∞[0, )  and this value is denoted by < > .  Clearly, 
in statistical physics, the carrier mobility UD (T, m*) is given by:

	 U T uD T( , )µ ε µ
∗

∗= ( ) ,( , )< > 	

where the subscripts (T,  m*) denote that the average values <  u  (ε) > are analytically 
dependent of the chemical potential and temperature. Hence, the carrier mobility UD (T, m*) 
equals the average value of the function u ( )ε  for all values of e.

We will now consider the Hall mobility which by formula (9) is given as:
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The Hall factor can be expressed in terms of the averages of the scattering function 
u u( )ε ε( ( )  is the average velocity of carriers in the presence of the unit electric field E

��
)  

in the following way:
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In statistical physics is proved that < > ≥< >u uT T( ) ( )2 2ε εµ µ( , ) ( , ) ,∗ ∗  then we obtain 
fR (T, m*) ³ 1.

Analysis of formulas (1)‒(10) for the kinetic properties of semiconductor crystals that 
is based on the above calculations shows that these kinetic properties analytically depend 
on the average values < > < >u uT T( ) ( ) 2ε εµ µ( , ) ( , ) .∗ ∗and

Carriers in semiconductor crystals are scattered by defects in the crystals hence 
the concept or notion of the scattering function u ( )ε  which describes the effect of 
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these scattering  processes on kinetic properties of these crystals is a serious problem in 
semiconductor and solid state physics.

Formula (10) shows that the kinetic integrals Jij  (T,  m*) depend on the Fermi-Dirac 
equilibrium distribution function

	 f
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 From this formula, and from formulas (1)‒(10), it follows that all properties of the crystal, 
which are described by formulas (1)‒(10), analytically depend on the reduced chemical 
potential m*.

There is also an analytical dependence of kinetic properties on G g d( ) = ( )
0

ε ε ε
ε

∫  [8] 

in these formulae. Here, g ( )ε  is the density of states (DOS) lying in allowed bands which 

depends on the analytical form of the energy spectrum ε εp p��
��

= ( ).

In isotropic crystals ε ε εp p p��
��

= = ( )( ) ,| |  where p p p px y z= 2 2 2+ + .  Thus, all kinetic 

properties of these crystals which are described by formulas (1)‒(10) analytically depend on 
the energy spectrum ε εp p�� = ( ).

Formulas (1)‒(10) show that with the exception of the density n (T, m*) of current carriers 
in a semiconductor (formula (7)), all kinetic properties of crystals explicitly depend on the 
scattering function u (e) ‒ this describes the effect of these scattering processes on the kinetic 
properties of these crystals [8, 9]. Computations of values of the scattering function u (e) 
are connected with problems on determination the energy spectrum ε ( )p

��
 and scattering 

probability W p p(
�� ���
, ).′  The explicit form of this probability depends on the nature of 

the semiconductor crystal and the type of defects in this crystal by which free charge carriers 
are scattered [1, 10].

3.  The energy spectrum and the discrete density of states (DOS) of the charge carrier 
energy in a semiconductor crystal

In the quantum theory of crystal structure, the energy spectrum is called the function – this 
describes the dependence of the total charge carrier energy ε on this carrier quasimomentum 
p
��

 in this crystal, that is ε εp p��
��

= ( )  [8].

According to quantum mechanics, the charge carrier quasimomentum p
��

 in crystals 

varies  discretly and there are as many values of p
��

 as there are structure particles in the 
crystal. In this connection, it should be noted the charge carrier energy is quantised. Moreover, 
it was proved [7] that the energy spectrum has symmetry properties being a periodic and 
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even function of the vector p p p p p P
�� �� �� �� �� ��
: ) ), ) ),ε ε ε ε( = ( ( = (− − +  where P Kn

��
�
���

= .  In this 

relationship,   is the Planck’s constant, Kn
���

 is the reciprocal lattice vector.

A free charge carrier with energy ε εp p��
��

= ( )  in crystals has the velocity of chaotic 

motion ν ε
� ��
�� ��p p p= (∇ )  and this carrier subjected to the action of a force F

��
 will acquire an 

acceleration a p
�
�� ,  which is defined by formula [8]:
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 is called the reciprocal effective mass tensor. Once 

the symmetry properties of the energy spectrum are known, it is easy to approximate this 
energy spectrum of the free energy carriers in a semiconductor crystal.

It can be seen from these calculations that in the case of anisotropic crystals, the energy 
spectrum is described by the constant energy ellipsoid S, having the following anisotropic 
parabolic form:
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and in isotropic crystals, it is the constant energy sphere S, having the isotropic parabolic 
form:
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where m11, m22, m33 are the diagonal components of the charge carrier effective mass  
tensor [8].

In quantum mechanics, the quantity G (e), which determines the number of states of 
particles in a crystal, with the energy range between e = 0 and ε ( p

��
),  is given by the well- 

-known general expression:
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From the definition of the density of the energy states (DOS), we obtain:
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Substituting the value G (e) into equation (13), we have:
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where the integral has to be evaluated for the constant energy surface S, which is defined 
by the energy spectrum ε εp p��
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= ( ).
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It is clear from formulas (12) and (14), that to determine the density of state (DOS), 
the constant-energy surface S must be known.

4.  The calculation of the kinetic properties of isotropic doped semiconductor crystals

The presented formulas provide algorithms for the calculation of the kinetic properties 
(1)‒(9) of isotropic doped semiconductor crystals.

In isotropic crystals, the energy spectrum is isotropic and it takes the form: ep = e (p), 

where p p p p p= = 1
2

2
2

3
2| |

��
+ + .  It can then also be rewritten in the form: p = p (e).

We shall use formulae (12) and (14) to determine the quantities G (e) and g (e), taking 
into consideration the crystal with the isotropic energy spectrum. Now, the quantities G (e) 
and g (e) have the following forms:

	 G
h
p( ) = 8

3
( ),3
3ε

π
ε 	 (15)

	 g dG
d h

p dp
d

( ) = ( ) = 8
3

( ) ( ) .3
2ε

ε
ε

π
ε

ε
ε

	 (16)

In the above formulae, the function p = p(e) is defined by the isotropic energy spectrum 
ep = e (p).

There are the different modes of the charge carriers scattering in semiconductors [1, 8, 
9, 13]. Here, the main mechanisms of interest are scattering by the acoustic phonons, the 
optical phonons, the point defects in semiconductors, and the charged impurities (the ions).

The scattering function of the main scattering modes is given by [1, 2, 3, 10]:
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where U(r)(T) is the temperature dependent function known for the actual scattering mode, 
r is the parameter and it has the following values [1]:
–	 r = 0 for the scattering by the acoustic phonons and the point defects in semiconductors.
–	 r = 1 for the scattering by the optical phonons when the crystal’s temperature is larger than 

the Debay temperature Q.
–	 r = 2 for the scattering by the charged impurities (the ions) in the crystal lattice.
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In the case of the combined scattering mode, the general scattering function u is given by 
the formula:

	
1 = 1

( )
1
( )

1
( )

,
1 2u u r u r u rn

+ + + 	 (18)

where 1
( )u ri

 is the scattering function of the simple scattering mode with the parameter ri,  

i = 0, …, 2.
Now, we can use the formulae (1)‒(9) to the calculation of the kinetic properties 

of isotropic doped semiconductor crystals with a narrow energy gap Eg.
In these crystals, the electrons and holes energy spectra are described by the nonparabolic 

Kane’s band [1, 5]:
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where m* is the parameter of the spectrum which plays a role of the electron or hole 
effective mass, Eg is the energy gap width.

For the energy spectrum (19) and the actual scattering modes (which are defined by 
the parameter r in formula (17)) taking into consideration formulae (15) and (17), the kinetic 
integral (10) takes form:
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In formula (20), the following notations were used:
Nc (T ) is the conduction band effective density of states and is defined by [8]:
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U(r)
 (T ) is the temperature dependent function, which has dimension of the mobility and 

is defined by [1, 3, 10]:
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where UA, UO, UI are the constants, which depend on the nature of the semiconductor crystal 
and the scattering mode of charge carriers in the crystal – the subscripts A, O, I are for the 
scattering by the acoustic phonons, the optical phonons, and the ions in the crystal lattice, 
respectively. d (…) is the Kronecker symbol.

Iij (T, m*) is the dimensionless functional and is given by:
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In formula (23), β ( ) =T kT
Eg

 is the parameter of nonparabolicity of the energy spectrum 

– this parameter is near zero in the semiconductor crystals with a wide energy gap Eg, 
and  the nonparabolic Kane’s band turns into a parabolic band, i. e. the semiconductor 
crystal has a parabolic energy spectrum, x kT= / .ε

We substitute the value Jij (T, m*) from (20) in formulae (1)‒(9) of the kinetic properties. 
For example, the selected kinetic properties of the crystal take the forms:
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From formulae (24)‒(30) for the kinetic properties of the semiconductor crystals, it will 
be obvious that in order for the theoretical determination of these properties, the following 
experimental data should be known: the parameter of scattering r (i. e. the actual scattering 
mode or modes in the crystal), the reduced chemical potential m*, and the carriers’ effective 
mass m*. There are well-known experimental techniques capable of determining these 
experimental data [11‒13] including the actual scattering modes from the temperature 
dependence of the Hall mobility UH.

5.  Conclusions

We have proposed general formulae for the kinetic properties of semiconductor crystals 
expressed in terms of the Fermi integrals.

The formulae constitute the mathematical model of the charge carriers transport 
phenomena in the semiconductor crystals.
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Possibly, it is useful to have a method of evaluating these properties without resorting to 
the Boltzmann equation, we do then not use this equation as the basis for our model and our 
analysis of the kinetic properties of semiconductor crystals.

The theoretical analysis of the model shows that for the calculation of the kinetic 
properties of isotropic doped semiconductor crystals, the following experimental data should 
be known: the actual scattering mode or modes in the crystal, the reduced chemical potential, 
and the carriers’ effective mass.
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1.  Introduction

The name dynamic discrete event systems (DDES) applies to a group of systems, 
usually of a human design, exhibiting a dynamic behaviour. It includes output systems 
(flexible workshops, assembly lines) [8], communication networks, computer networks [24] 
and transportation systems (road, rail or air) [28, 34]. It is widely known that to achieve 
an effective design and operation techniques of different discrete event systems (DES’s), 
methods and tools are needed to model complex material and control flows, to analyse the 
behaviour and interactions of manufacturing resources and to predict performance measures 
such as productivity, cycle times and work-in-process. 

Many other discrete event dynamic systems, such as transportation networks [35] and 
communication networks [18], are subject to synchronisation phenomena. DDES often 
appear in the context of parallel computing, especially in application specific integrated 
circuits (ASICs) [21], project management systems [19], or telecommunication networks 
etc. The diversity of these systems naturally leads to different models, including ones based 
on finite state automata [12], Markov chains [1] and Petri nets [38].

The thesis about the importance of systems in our society leads many researchers to 
propose mathematical models that describe the behavior of these systems in order to evaluate 
their performance, optimization, control and design. Recent years have seen a quantitative 
growth of research on discrete systems that can be modelled as max-plus linear systems 
(MPLSs). Previously, the majority of literature on this class of system discussed the 
modelling, performance and analyses of their properties [2, 20] rather than their control.

A Petri net model playing the role of an event graph, max-plus algebra and min-plus 
algebra make it possible to write linear equations and model the aforementioned systems. 
Timed event graphs (TEG’s) form a subclass of timed Petri nets and are suitable for modelling 
these systems. A TEG is a timed Petri net in which all places have exactly one upstream 
transition and one downstream transition. Its description can be transformed into a (max; +) 
or a (min; +) linear model and vice versa [2].

A single transition for each output of a place has the practical result that all possible 
conflicts concerning the use of tokens in the places have already been established. This 
means that there is no competition on either side of the transition but this is the unavoidable 
cost of maintaining the linearity of the system. Some problems must be accepted for these 
restrictions to be guaranteed. 

More than two decades have now passed since the max-plus algebra and similar algebraic 
tools started to play a central role in the simulation and analysis of discrete processes. 
Actually, however, the use of these theories led to the creation of a linear theory for certain 
discrete event systems [16]. Therefore, working in the field of linear systems, max-plus uses 
guidelines and concepts presented by classical theories. However, the number of researchers 
involved in this new area of DES system theory is rather small compared to the hundreds 
of other scientists who contributed to the classical theory. Historically, some specific control 
theory for DDESs was developed including, for example, optimal feedback [26, 31, 37], 
open loop control [27, 29, 32] and predictive control for a perturbed system [36].

To handle more complex models, it was necessary to adapt mathematical tools while 
keeping most of the concepts provided by earlier developments. Differential geometry, 
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power series of noncommutative variables and differential algebra have all been used to 
develop such models for which essential questions concerning, for example, controllability 
and observability, stabilisation and feedback synthesis, etc., have been revisited. Max-plus, 
min-plus and other idempotent semiring structures turn out to be the right mathematical tools 
to at best, bring linearity back, or to at least achieve a certain suitability to the nature of the 
phenomena to be described in this field of DES.

This paper presents the problem of stabilising discrete processes of the system by 
using output feedback control. The issue of stabilising DES was considered by Commault 
[9] and  Cohen [8]. Just as in classical models of continuous systems, stability is closely 
linked to the structure of the system. A TEG is structurally stable if its number of markers 
is restricted for all sequences of data input [2].

Commault defines a sufficient condition for the stability of the TEG which is satisfied if 
the network graph strongly associates events by closing the circuit from the exit to the entry. 
Some quantity of markers which limit the marking of the system should be added along 
the extra path (in the simplest method).

Furthermore, it is shown in [2] that a controllable and observable TEG can be stabilised 
by adding feedback output without changing its own bandwidth. Gaubert showed in [15] 
that the number of tokens that must be placed in the feedback to stabilize the TEG represents 
the  optimisation of resources that can be formulated as an integer linear programming 
problem.

The approach presented here is based on Gaubert’s work [15]. Other methods are 
presented  as the greatest linear feedback in [30], where this represents the synthesis 
of dynamic feedback which minimizes the number of markers required to retain the original 
throughput.

 Section 2 serves as a reminder of the algebraic tools necessary for synthesising feedback. 
Section 3 briefly explains max-plus modelling with a practical example. Section 4 shows 
how the existing feedback in a TEG can improve the stability of the system and how it can 
be implemented. Section 5 aims to present an illustrative example.

2.  The mathematical basis of max-plus algebra

This section aims to concisely present formal definitions and key algebraic tools used 
in  subsequent sections. More precisely, it reiterates Chapter 4 of [2] and [7] and certain 
theses [10, 17, 25, 30]. The max-plus theory is based on the lattice theory and largely reverses 
applications defined on ordered sets [4, 11]. Algebra max-plus use a structure of idempotent 
semiring algebras S.

This semiring S has two internal operations denoted by ⊕ and ⊗ which have many 
properties:
–	 operation ⊕ is associative, commutative and idempotent, that is a ⊕ a = a;
–	 operation ⊗ is associative (but not necessarily commutative) and distributive on the left 

and on the right with respect to the ⊕;
–	 neutral elements for ⊕ and ⊗ are represented by e and e respectively;
–	 e  is an absorbing element of the right ∀a = e ⊗ a =  a ⊗ e  = e;
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–	 just like in classical algebra, operator ⊗ will often be omitted in equations (as in classical 
multiplication) and ai = a ⊗ ai‒1 as well as a0 = e.
Zmax= {Z, ‒¥, ¥} is the set of numbers endowed with the maximisation as the operator 

⊕ (symbol pronounced ‘o-plus’) and the sum as the ⊗ operator (pronounced ‘o-times’) and 
neutral values e = ‒¥ and e = 0.

For example:
	 y = 14 ⊗ 32 ⊕ 3 ⊗ 58  = max ((14 + 2 × 3), 3 + 8 × 5) = 43	

The implicit equation x = a ⊗ x  ⊕ b determines a = a* ⊗ b where the Kleene star operator:

	 a a
i

i∗

=

=⊕
0

¥

	 (1)
For matrices if A B C, ,max maxÎ ÎZ and Zm n m p× ×  then:

	 ( ) max( , )A B⊕ = ⊕ =ij ij ij ij ija b a b 	

	 ( ) max ( ) , .
...

A C⊗ = ⊗ = ⊗
=

=⊕ij
k

n

ik kj k n ik kia c a c i j
1 1

for all 	

The Kleene star operator can also be applied to matrices:

	 A A A A A A I∗

=

+= = ⊗ =⊕
i

i i i

0

1 0
¥

with and 	 (2)

where the identity matrix I that is ( )I ij
e i j

i j
=

=



if
ifε ¹

Equation (2) which has a nilpotent matrix, achieves convergence (all coefficients e).

3.  Timed Event Graph as Max-Plus Linear System

A Petri net is called an event graph if all arcs have the weight 1 and each place has 

exactly one input and one output transition, that is, ∗ ∗= = ∀p p p Pi i i1, .Î  P is the (finite) 

set of places but ∗ ∗p pi i,  is the quantity of the input and output transition, respectively 

of, place pi. In general (standard) Petri nets, and consequently also event graphs, only the 
logical behaviour and the precise ordering of the events, that is, the possible sequences 
of firings of transitions, are modelled. However, in many applications, the timing of the 
events plays an essential role and specific firing times or the earliest possible firing times 
of transitions are of particular interest. Consequently, event graphs have been equipped with 
timing information. Time can be associated either with transitions (representing transition 
delays) or with places (representing holding times) and provides the TEG.

In TEGs, transition delays can always be converted into holding times (by simply 
shifting each transition delay to all input places of the corresponding transition). However, 
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it is not possible to convert every TEG with holding times into a TEG with transition 
delays. In a TEG with holding times, a token entering place has to spend some time units 
before it  can contribute to the firing of its output transition. The example of a TEG with 
the determined holding time of 2 units in place P1 is given in Fig. 1 [5].

State-space descriptions in the max-plus algebra for a certain class of discrete-event- 
-systems become linear representations which are similar to state-space equations in the 
traditional modern control theory [36]. Generally speaking, for any TEG system, one obtains 
the following kind of equations as a MPLS [6]:

	 x A x B u( ) ( ) ( )k k i k i
i

M

i i= − ⊕ −
=
⊕
0

	 (3.1)

	 y k k i
i

M

i( ) ( )= −
=
⊕
0

C x 	 (3.2)

where x, u, and y are vectors of dimensions equal to the numbers of internal, input and 
output  transitions, respectively. Ai, Bi, and Ci are matrices of the appropriate dimensions 
with entries in the max-plus algebra, and M is the maximal number of tokens in the initial 
marking. The variables of (3) are time instances and the represented events occur at k-times. 
Entries of A0 correspond to places with no tokens and (3) has an implicit form.

The implicit part can be eliminated by successive substitutions or by using the Kleene 
star (2). Finally, the MPLS has an explicit form:

	 x Ax Bu( ) ( ) ( )k k k= − ⊕1 	 (4.1)

	 y Cx( ) ( )k k= 	 (4.2)

where:

A Î Zmax
m n× 	 ‒	state-transition (or system) matrix,

B Î Zmax
m p× 	 ‒	 input matrix,

CÎ Zmax
m n× 	 ‒	output matrix,

x Î Zmax
n 	 ‒	state vector,

Fig.  1.  Graphical representation of a TEG
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u Î Zmax
p 	 ‒	 input (control) vector,

y Î Zmax
m 	 ‒	output vector.

As there are transforms similar to the Laplace and Z-transforms (used to represent 
continuous and discrete time trajectories in the classical theory), the input-output behaviour 
of a TEG can be represented by another transfer relation.

For trajectories x (k), this can be the g-transform X x k
k Z

k( ) ( )γ γ=⊕
Î

 where g can be 

considered as the backward shift operator i.e. γx k x k( ) ( ).= −1

Below, the model of the system is represented by (g, d) ‒ transform ‒ Min
ax[[ , ]]γ δ  

a  set of  formal power series for two variables g and d. A finite series of Min
ax[[ , ]]γ δ  is 

a polynomial and is used to code a set of information concerning the transition of a TEG. 
Monomial g 

kdt may be interpreted as the k-th event occurring at least at time t.

4.  Synthesis of a feedback system

The feedback stabilisation requires a certain quantity of starting markers in the feedback, 
e.g. when the TEG describes a production system with markers for the initial resource, 
which may be any transport or recycling equipment (robots, pallets or raw materials). 
For  computational processes, extra resources can represent some units of memory. 
Consequently, it is of particular importance to limit their quantity as far as possible. What 
is being considered is the problem of minimising the marking for both restrictions (stabilise 
and preserve throughput). The problem of optimising resources is solved by the (min, +) 
algebra in [14] and also by other authors who solved the problem, possibly without defining 
an approach (max, +). The TEG system consists of m inputs and p outputs, as well as some 
arcs of places between outputs and inputs to make the system strongly consistent.

The problem is solved using an the algebraic structure Min
ax[[ , ]]γ δ  of the open  

system

	 y Hu= 	 (5)

where:

H ÎMin
ax

p m[[ , ]] .γ δ ×

Fig.  2.  Block diagram of a system with feedback
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By applying (2), the closed system (Fig. 2) is

	 y H FH u= ∗( ) 	 (6)

where:

F ÎMin
ax

p m[[ , ]]γ δ ×   ‒  output feedback

The feedback system is a matrix transfer (transmittance) with elements Fij
qij= γ  

where  arcs containing the qij markers connect the output yj with the input signal ui at the 
initial state. If Fij = e, then there is no arc. In practice, it is not always necessary to connect 
all outputs to all inputs for a strong relationship.

The stabilisation problem refers to calculating and minimizing q = {qij} in a closed-loop 
system to maintain the same throughput as an open loop has. Authors of [14] have shown 
that  this problem can be solved as an integer linear programming task with a linear cost 
function

	 J q qij ij
j

j p

i

i m

( ) =
=

=

=

=

∑∑ α
11

	 (7)

where:
aij	 ‒	 weighting factor associated with the price of each resource to maintain the same 

throughput with a restrictive condition
	 λ λ( )q p³ 	 (8)

where:
λp	 ‒	 throughput for the open loop system,
λ (q)	 ‒	 throughput for the feedback system.

Throughput λ (q) is derived from the formula

	 λ( ) min
( )

q
w q
wc
Nc

Tc
= 	 (9)

where:
wNc(q)	 ‒	 sum of markers in circuit c,
wTc(q)	 ‒	 sum of holding times in circuit c.

From (8) and (9), the following constraints are satisfied for each cycle:
	 w q wNc p Tc( )³ λ 	 (10)

To summarise, the stabilisation method of solving the problem with limited resources 
consist of the following steps:
–	 determine the transform of H for an open system (5);
–	 formulate transform feedback F (6);
–	 solve the problem of integer programming (7, 9) and get the values of F;
–	 verify the results (e.g., by a simulation).

Feedback F stability provides a closed system retaining the same throughput and 
minimising the cost function.
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5.  Example

An example of the practical application of the above described theoretical considerations 
is presented here. Consider the controllable and structurally observable marked TEG 
in Fig 3.  Its matrix transfer as Min

ax[[ , ]]γ δ  is obtained as follows:

	 H =
+

+







∗ ∗ ∗

∗

δ γ δ γδ δ γ δ δ γ δ

ε δ γδ γ δ ε

10 2 12 8 2 4 5 2 3

11 12 2 4

( ) ( ) ( )

( )( ) 



	 (11)

This TEG represents a system process consisting of 5 units P1 to P5. Due to the difference 
in the throughput of the units, it is noted that the model is not a stable because is accumulated 
markers (T2, P53) before of the P3 (Fig 4). The stability of this system can be obtained 
by adding a feedback output and this is enough to make the TEG strongly consistent 
and  achieve  stability. In this particular case, it becomes highly coherent by adding TEG 
feedback in the form of:

	 F =



















γ ε

γ γ

γ ε

q

q q

q

11

21 22

31
	 (12)

The problem here can be considered as the optimisation of resources in order to minimise 
the following cost function (9)

	 λ( ) min , , ,q q q q q
= 








11 21 22 31

10 8 11 5
	 (13)

This problem can be solved by taking into account the sum of expression tokens 
and times for each elementary circuit determining the rate of the TEG process.

A naive algorithm for calculating the elementary circuits is simpler than writing 
a  linear  program which is unpractical for large graphs i.e. for full graph vertices, the 
complexity  is  O((n ‒ i)!). Gaubert’s approach [12] allows only the n2 inequality to be 
considered.

The feedback FR (12) which stabilises the system while maintaining its original 
performance and minimising the amount of resources (marked in Fig. 3 as qi,j places) is:

	 F =



















γ ε

γ γ

γ ε

5

4 6

3

	

Subsequent figures present some results for the considered example (interpolated to 
make them more visual): time evolution for u1 = u2 = u3 = µ in an open system Fig. 4 and 
closed system Fig. 5 and Fig. 6.

Results have been calculated using a self-developed software package  
based on
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Fig.  3.  TEG of the system with feedback

Fig.  4.  Time evolution states of markers in open system
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Borland libraries TeeChart, Component and Software Tools for Manipulating Periodic 
Series: http://www.istia.univ-angers.fr/hardouin/outils.html and Toolbox TINA http://
projects.laas.fr/tina/home.php.

6.  Conclusions

This paper presents the synthesis of stabilisation feedback control for limited resources. 
It describes the synthesis of feedback control to stabilise the quantity of resources. This 
is only an initial example of the application of the max-plus systems theory and further 
research will include applying the system to larger practical system optimisation procedures 

Fig.  5.  Time evolution states of markers in closed system

Fig.  6.  Time evolution count of activity processes in closed system
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and synthesising process control with state feedback as well as using models for predictive 
and adaptive control. More than a decade ago, the authors [6] concluded that: “By comparison 
with classical linear system theory, there are areas which are practically untouched, mostly 
because the corresponding mathematical tools are yet to be fabricated”. Nowadays, 
problems of using max-plus systems are still a reality [3, 13, 15, 22, 23, 25, 33].
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1. Introduction
Cartesian tensors are identified with matrices. In contrast, in curved coordinates, even more
so in a curved space, viewing the tensor matrix in extenso is not instructive. The subject of
interpretation are equations, invariants, symmetries, and observables, while the tensor compo-
nents values — except for certain privileged frames of reference — are of minor importance.
This follows directly from the general principle of covariance, which states that the physical
sense is independent of the choice of coordinate system, whereby each coordinate choice is
allowed.

The vast majority of the computer tensor tools — including those build in Wolfram
Language/Mathematica, the symbolic language which we use here — identify tensors with
matrices, providing them with procedures for tensor contraction, tensor product and the rules
of symmetry. Objects of such a class require the evaluation of complete tensor matrices.
A sequence of intermediate steps evaluates quantities, most of which are irrelevant to the
actual goal of the calculation, and are an unnecessary burden. A few tensor packages can
operate on abstract level, where the differential manifold is not specified. They cover the
entire tensor algebra, and essentially, form the sophisticated programming languages [8, 12,
13]. On the other hand, all of them depend on the primary computer algebra languages they
employ (Mathematica, Mapple) — the languages which constantly develop. The risk of losing
compatibility between the primary language and the computer algebra package is greater the
more complex the package.

The project we realized in 2013–2014 was aimed at constructing an open source pack-
age [1] for Mathematica, which defines some basic concepts and rules, and is open to devel-
opment by users. The syntax is kept as close as possible to standard textbook notation [2] and
typical scheme of manual calculations. On the other hand, we employ dynamic programming
with modern computational techniques, a call-by-need strategy and memoization. The ques-
tion is not how much can be computed, but how flexible the software can be? The results are
discussed in this paper.

We have taken into account that physicists have in mind co- and contravariant tensor
components, rather than individual tensors of a precised valence (covariant or contravariant
tensors). Rising and lowering tensor indices is a basic manual technique which comes directly
from the Einstein convention. What physicist actually do is they aggregate tensors of arbitrary
valence (all combinations of upper and lower indices) into a single object. The choice of
particular valence is left for the future, and decided upon later. In order to stick to that, while
the matrix representation is employed, one would need to evaluate and store all the co- and
contravariant index combinations. In the case of the Riemann tensor in four dimensions, this
gives 84 expressions, while only a small proportion of them will probably be used further on.
Although they are not independent as subjects to tensor symmetries, the benefits of this fact
are not straightforward. Modern techniques of differentiation, and reducing terms are quick
enough, while the evaluation of conditions If still cost time. As a result, computing the same
component twice may cost only slightly more than retrieving it from another matrix element.
But there still remains the problem of memory. In the matrix approach, thousands of array’s
components are build of long algebraic expressions.

The functional representation of tensors allows one to avoid some of these problems.
In this paper, we focus on the ccgrg-package (the open source code written for Mathematica
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9–10, and distributed from Wolfram Library [3]). The goal of the article is to argue for some
particular computation technique. We do not give here the precise tutorial to the package. The
same approach to tensors in Python is presented in [4].

2. Dynamic paradigm of programming
The idea is not new, as it dates back to the famous Richard Bellman book Dynamic Pro-
gramming (1957). Bellman introduces the concept of the goal function. This means that the
starting point is identical to the final expression in the search. To evaluate this expression,
the algorithm automatically splits tasks into sub tasks down to elementary level. The tree of
calls is not explicitly known to programmers, and the computational process does not require
any intelligent interference. For tensors, this means that the subroutines do not evaluate all
the components but some of them, acting on demands of routines from a higher level. Most
tensor components remains unknown. Only these are computed which contribute to the fi-
nal expression. This process is known as lazy evaluation or call-by-need strategy [5, 6]. To
evaluate Ricci scalar for Schwarzschild metrics (33), ccgrg calls 16 Riemann components.
40 Riemann components are needed for full Ricci tensor, and 808 Riemann components for
Carminati–McLenaghan W1 invariant [7] W1 =

1
8 (Cabcd +i ∗Cabcd)Cabcd build of the Weyl

C and dual Weyl ∗C contractions. In each case, the appropriate components are selected auto-
matically and the rest of components remains unevaluated.

Tensors form a class of functions, where the tensor indices are the innermost group of
arguments. For instance, the covariant derivative we denote as:

Ti j;m → ∇[T][i,j,m], (1)
Ti jk;mn → ∇[T][i,j,k,m,n]. (2)

The outer argument contains the tensor name, while the inner argument lists the tensor in-
dices. In the case of Lie derivative

£UVi → LieD[U][V][i], (3)
£U Ti j → LieD[U][T][i,j], (4)

the outermost argument U is the vector field that generates the dragging flow, the middle (V
or T) is the tensor name, and the innermost, according to the general rule, specify indices.
The grouping of arguments, and the appropriate ordering of groups allows one to work with
headers ∇[T], LieD[U][T], etc., treating them as operators. Inserting new groups of outer ar-
guments does nor affect the methods governing tensor index operations. Indexes run through
{1, . . . ,dim} for covariant components and through {−dim, . . . ,−1} for contravariant com-
ponents (the inverse Parker–Christensen notation [8]). Thus we write:

Ti j → T[i,j], (5)

T j
i → T[i,−j], (6)

T i j → T[−i,−j], (7)
T i j

k → T[−i,−j,k], (8)
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and so on. Tensor valence operations (conversions from covariant to contravariamt compo-
nents, and vice versa), and the covariant differentiation are the only methods of the object.
Other tensor operations like contractions, products, etc. are realized by elementary algebra
and the Einstein convention. Conversions are called just by placing or removing the sign
“minus” in front of selected tensor indices.

3. The manifold
Tensors live on a manifold. This manifold is declared in the opening procedure open[x,g],
where the list of coordinate names x and metric tensor g are the arguments. When the man-
ifold is ‘opened’, tensors are evaluated on this particular manifold. The metric tensor can be
uniquely defined, or may contain arbitrary functions of coordinates. In the last case, open
indicates the class of manifolds distinguished by the specified structure of the metric tensor.

Tensors are created by setting object data in the form of the pair: tensor matrix, and the
associated tensor valence (all covariant components as a default). By calling
tensorExt[matrix, valence] one creates a tensor object which can return components
for arbitrary valence, on demand. Tensors which are in frequent use (Ricci, Riamann, Weyl,
the first and the second fundamental forms on hypersurfaces), as well as covariant and Lie
derivatives are predefined in the ccgrg-package. Tensor components are not evaluated in ad-
vance, only when called for the first time. This is guaranteed by the SetDelayed (:=) com-
mand. For instance, when calling the Riemann curvature tensor in the Schwarzschild space-
time one obtains:

R1212→ In[1] := tRiemann[1,2,1,2]

Out[1] := −2M
r3 (9)

R121
2→ In[2] := tRiemann[1,2,1,−2]

Out[2] := −2M(2M− r)
r4 (10)

Ri jmnRi jmn→ In[3] := Sum[tRiemannR[i,j,m,n]tRiemannR[−i,−j,−m,−n]
{i,dim},{j,dim},{m,dim},{n,dim}]

Out[3] := 48
M2

r6 (11)

The tensor rank is fixed, except for the covariant derivative, where each differentiation rises
the rank by one. Covariant differentiation is realized by header ∇ (or its full name, cov-
ariantD), and by extending the list of indices by one. Extension of this list by more than one
returns derivatives of a higher order.

R121
2

;2→ In[1] := ∇[tRiemannR][1,2,1,−2,2]

Out[1] := −6M(2M− r)
r5 (12)

R121
2

;22→ In[2] := ∇[tRiemannR][1,2,1,−2,2,2]
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Out[2] := −6M(9M2−4Mr)
r6 (13)

Rising the tensor rank by differentiation does not affect the general ability to rise or lower
indices by choosing appropriate signs, both for the original and the differentiation indices.
The flexibility of tensor indexes stems directly from the functional representation of tensor
and the call-by-need strategy.

4. Memoization and symmetries
Trees of calls for different tasks may have nonempty intersections (and typically this is the
case). The SetDelayed function which enables call-by-need strategy at the same time forces
the multiple evaluation of components whenever trees of calls overlap. To avoid unwilling
effects, one needs to store computed values, and to have a mechanism that can recognize
known and unknown components. This process is called memoization. The term memoization
was introduced by Donald Michie in 1968 [9] and refers to the class of functions that can learn
what they found in past calls. In C or Python, the memoization tools are usually constructed by
programmers (see [4]). Wolfram Mathematica provides dedicated tool in the core language.
The construction consists in the recursive definition of the form

f [x ] := f [x] = expr[x, . . .] (14)

where the same name of the function appears twice, first followed by SetDelayed and next,
by Set. The definition of f which is initially equivalent to expr[x, . . .], is successfully sup-
plemented by the values found during each function call. The memoized (memorized) values
form cache. The cache is searched first; therefore, no tensor component is evaluated twice.
This means that each of the expressions in the examples (10)–(14) is evaluated only once.
Whenever called again, the values are instantly retrieved from the cache. The same refers
to expressions called by subroutines. In the Schwarzschild space time (33), the Carminati–
McLenaghan invariants W1 and W2, when evaluated separately, call 808 and 552 Riemann
components, respectively. Jointly, they call 1046 Riemann components which means that 296
components are taken from the cache.

Calls appeal to tensor symmetries. The symmetry rules are the argument conditions
within the same memoizing function scheme

f[x ]/; 〈test[x]〉 := f[x] = expr[x, . . .] (15)

For instance, for the Ricci tensor Ri j, the conditional definition takes the form

tRicciR[i ,j ]/;i> j := tRicciR[i,j] = tRicciR[j,i] (16)
tRicciR[i ,j ] := tRicciR[i,j] = Sum[tRiemannR[−s,i,s,j],{s,dim}]

with positive i, j (covariant components). The rules of symmetry are introduced directly in the
definition of the tensor. In order to recognize Ricci symmetries, the kernel does not refer to
the symmetries of the Riemann tensor. Subsequently, the Riemann tensor symmetries are not
the result of the evaluation of Christoffel symbols, etc. Symmetries defined as the argument
conditions in lazy-evaluated functions put constraints directly on computational processes.
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5. The confidence of results in dynamic programming

Dynamic programming allows one to reach the goal at a minimal cost of time and memory.
The call-by-need strategy avoids computing unnecessary components. Memoization protects
against multiple evaluations. The cost we pay, however, is confidence in the results. Functions
that can learn and remember are reluctant to forget. The user must not change the tensor
definition during the same session. The cache has priority over evaluation. A new definition
does not affect the values which are already found. If definitions change, one may readily
collect a mixture of results belonging to different definitions.

The content of the cache together with the general tensor definition can be viewed by the
Mathematica command Definition[tensorname]. Based on this command,
cacheview[tensorname] returns the list of the memorized tensor components. For instance

In[26] := cacheview[tRiemannR]

Out[26] := {{tRiemannR,{−4,1,4,1}},{tRiemannR,{−3,1,3,1}}} (17)

means that R4
141 and R3

131 Riemann components have been already called and stored in the
cache. To view all the memoized quantities which refer to tRiemannR, one writes

In[27] := associated[tRiemannR]

Out[27] := {{tRiemannR,{−4,1,4,1}},{tRiemannR,{−3,1,3,1}}
{covariantD[tRiemannR],{1,2,1,2,2}}}} (18)

Commands

In[31] := retreat[tRiemannR]

In[32] := retreat[tRiemannR,associated] (19)

clear the stored values displayed in (17) and (18), respectively. In contrast to the core-languge
Mathematica commands Clear and Unset, thr command retreat does not affect the gen-
eral definition of a tensor. Calling cacheview after retreat returns the empty list.

For sake of safety, the name of each memoizind tensor shall be appended to
memRegistry. This is realized by erasable[tensorname]. memRegistry allows the au-
tomatic erasing of the whole cache content whenever open[x,g] is called. User may safely
redefine the manifold with no risk of unwanted remnants from the past computations. ccgrg
is equipped with extensive random tests of memory clearance. The above mentioned security
tools do not prevent some incidental mistakes such as those shown below

In[41] := f[k ] := f[k] = k;f/@Range[8];
In[42] := f[k ] := f[k] = 1/k;f/@Range[8];

To effectively implement memoization to algorithms, minimal training and discipline are in-
dispensable.
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6. Tensor definition scheme
This is the place to show the typical construction of a tensor. We choose the induced metrics
(the first fundamental form) hi j = gi j−viv j on the hypersurface orthogonal to the vector field
vi in the space with the metric gi j.

erasable/@{hcov,h}; (20)
hcov[v ][j ,i ]/;i< j := hcov[v][j,i] = hcov[v][i,j];
hcov[v ][i ,j ] := g[i,j]−v[i]v[j]/vectorsquared[v]//simp[];
h[v ][i ,j ]/;indeX[i,j] := h[v][i,j] = tensorExt[hcov[v]][i,j]//simp[];

In the first line we append memRegistry. The next line contains the symmetry settings. The
third line defines the matrix of the covariant tensor (hcov is not a tensor in the meaning of the
ccgrg package and will be invisible in the general context.) The last line creates the tensor h
as an object containing data (hcov), methods to control the index values (condition indeX),
and methods to rise or lower indices (provided by the tensorExt procedure).

Following the scheme above, users may define their own tensors and append to the pack-
age, or just use them in notebooks. Summation, multiplying tensors by numbers or functions
(not containing indices as arguments!), and covariant differentiation return tensors which not
need to be separately defined as in (20). Yet, even in these cases, the definition scheme (20)
is strongly recommended to assure effectiveness.

7. Examples of use

7.1. Differential operators in an arbitrary coordinate system
In technical sciences there is a need to express differential operators in some particular curved
coordinates or on curved surfaces. The task may appear as a part of the heat transport or dif-
fusion problems for systems of more complex geometry. Many typical gradient or Laplacian
expressions are catalogued in the literature, but still the range of geometries that can be en-
countered in nature is much richer. Below, we choose a catenoid — one of the best known
minimal surfaces — for which, we hope, Laplacian is not published in print.

The family of catenoids numbered by r and parametrized by u and v define a curved
coordinate system in the Euclidean space. The first step is to find the Euclidean metric form
in coordinates r,u,v (the core Wolfram Language)

In[1] := Needs[”ccgrg‘”];
In[2] := x[r ,u ,v ] = rCosh[v/r]Cos[u];
In[3] := y[r ,u ,v ] = rCosh[v/r]Sin[u];
In[4] := z[r ,u ,v ] = v;
In[5] := crd= {r,u,v};
In[6] := form= Dt[x[r,u,v]]2+Dt[y[r,u,v]]2+Dt[z[r,u,v]]2//FullSimplify
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Out[6] := Cosh[
v

r
]2(r2Dt[u]2+Dt[v]2)+

Dt[r]2(rCosh[ v
r
]−vSinh[ v

r
])2

r2
+

Dt[r]Dt[v](v−vCosh[ 2v
r
]+rSinh[ 2v

r
])

r
(21)

The second step is to evaluate the covariant differentiation f,i;i of an arbitrary function f on
the manifold with the metric form (21):

In[7] := open[crd,toMatrix[form,crd]];
In[8] := Sum[∇[f[r,u,v]][i,−i],{i,dim}]//FullSimplify

Out[8] :=
r2f(2,0,0)[r,u,v](
r−vTanh

[
v
r

])2 + Sech2
[
v
r

]
f(0,2,0)[r,u,v]

r2
+f(0,0,2)[r,u,v]+

2rf(1,0,1)[r,u,v]

v−rCoth
[
v
r

] − (
rSinh

[
2v
r

]
+2v

)2
Sech4

[
v
r

]
f(1,0,0)[r,u,v]

4
(
r−vTanh

[
v
r

])3
(22)

The only time-consuming operations are simplifications FullSimplify, which are inevitable
in this code. Similar computations can be easily performed for an arbitrary transformation
defined by inputs the In[2]−In[4].

7.2. Riemann curvature invariants: the case of spherical symmetry
Carminati–McLenaghan invariants [7] form a complete set of Riemann invariants for the
spacetime which obey the Einstein equations with the hydrodynamic energy-momentum ten-
sor. These invariants read

R1 =
1
4

Sa
bSb

a, (23)

R2 = −1
8

Sa
bSb

cSc
a, (24)

R3 =
1
16

Sa
bSb

cSc
dSd

a, (25)

W1 =
1
8
(Cabcd + i∗Cabcd)Cabcd , (26)

W2 = − 1
16

(Cab
cd + i∗Ce f

ab)Ccd
e fCe f

ab, (27)

M1 =
1
8

SadSbc(−i∗Cabcd +Cabcd), (28)

M2 =
1
8

i∗CabcdSbcSe fCae f d +
1
16

SbcSe f (CabcdCae f d− ∗Cabcd
∗Cae f d), (29)

M3 =
1
16

SbcSe fCabcdCae f d +
1

16
SbcSe f

∗Cabcd
∗Cae f d , (30)

M4 = − 1
32

SagSc
dSe fCac

dbCbe f g−
1

32
SagSc

dSe f ∗Cac
db∗Cbe f g, (31)
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M5 =
1
32

SbcSe f (i∗Caghd +Caghd)(∗Cabcd
∗Cge f h +CabcdCge f h). (32)

Sab stands for the Plebanski tensor (the traceless Ricci tensor Sab = Rab− 1
4 Rgab). Invariants

W1 and W2 are complexes, which are defined by means of contractions of the Weyl C and the
dual Weyl ∗C tensors.

In the case of vacuum and spherically symmetric spacetime (Black Hole)

ds2 =−
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 (dϑ
2 + sin2

ϑdϕ
2) , (33)

the complete computation appears as follows:

In[1] := Needs[”ccgrg‘”];
In[2] := x= {t,r,ϑ ,ϕ};
In[3] := g := DiagonalMatrix[−(1−2M/r),(1−2M/r)−1,r2,r2Sin[ϑ ]]2];
In[4] := $Assumptions= And@@{0< t,0< r,0< ϑ < π,0< ϕ < 2π,0< M};
In[5] := open[x,g];
In[6] := {CMinvR1,CMinvR2,CMinvR3}
Out[6] := {0,0,0}
In[7] := {CMinvW1,CMinvW2}
Out[7] := {6M2/r6,−6M2/r6}
In[8] := {CMinvM1,CMinvM2,CMinvM3,CMinvM4,CMinvM5}
Out[8] := {0,0,0,0,0}
In[9] := {TimeUsed[],$MachineType,$Version,$ProcessorType,

$ProcessorCount}
Out[9] := {8.80264,PC,10.0forLinuxx86(64-bit)(December4,2014),x86-64,2}

(34)

As see result of these operations, two nonvanishing invariants were found, while 1320 of
4096 components of the Riamann tensor object were evaluated and memorized. For the PC
computer with AMD64 processor and Linux Mint x86 (64-bit), the whole operation took
8.80264 seconds CPU.

8. Final remarks
The degree of complexity in a symbolic programming is much less predictable than in numer-
ical computation. This is due to the fact that the quantity of algebraic terms in an expression
is not a uniquely determined number. This number significantly depends on the ability of
the algorithm to recognize mathematical identities, and for the same function, may differ in
orders of magnitude. In this circumstance, the economic style of the dynamic programming
(call-by-need strategy, memoization) may take the first rank role.

The research supported by grant from the John Templeton Foundation.
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1.  Introduction

Cooperation is fundamental to numerous biological and social systems. Multicellular 
organisms, social insects, herds of animals and human societies are all examples of systems 
dependent on cooperative interactions. Explaining the emergence of cooperation has been 
a  challenge since the time of Darwin. Cooperators are defined as those who help others 
at a cost to themselves, while the term ‘defectors’ is used to describe those who receive 
the benefits of altruism without providing any help in return.

With regard to cooperation, the players are usually given the options of working alone, 
trusting another in cooperation, or cheating another who has trusted them The choice is 
usually done by a consistent strategy (an algorithm). Certain pieces of research demonstrate 
‘wars’ of played by actors utilising different strategies. The aim of finding the best strategy, 
i.e. the one which defeats the others, is achieved through evolutionary selection.

Cheating requires individuals who are being cheated; therefore, not all actors can enter 
into a cheating strategy at any one time. Too many cheaters also undermine the fraction 
of cooperators that may lead to the extinction of the cooperators. An equilibrium is therefore 
desirable, where a specified fraction of cooperators is able to displace another fraction 
of cheaters.

In contrast to concepts where the cooperation is a result of consistent strategy exercised 
in a game of skill, our system shows that the cooperation can be a product of two simple 
factors: mutation and inheritance, both of which are widely observed in nature. For instance, 
micro-organisms are not expected to make rational decisions. Consequently, an important 
question immediately arises of whether or not it is possible to propose a social dilemma 
model capable of evolving towards cooperation when driven only by these two basic natural 
phenomena. Discovering such models is as important for our understanding of the emergence 
of cooperation, as models based on rational strategies. In the present paper, we propose 
a social dilemma game which extends the public goods game [1] and leads to cooperation 
supported by mutation and inheritance only.

In the public goods game [1], the players contribute to a common pool which is then 
enhanced by a linear function and distributed evenly among the contributors. Our system 
investigates a comparable approach, with the main difference being that the enhancement 
is provided by a power function. With specific restrictions over the exponent value, we are 
able to introduce social dilemma to this problem. Thus, by contributing, an agent exposes 
themselves to a potential risk of being cheated, over the prospect of receiving profitable 
return. The question regarding such an arrangement is how much the agents become willing 
to contribute.

Another major difference is that there is no common pool in our system. Each agent 
establishes their own pool with a number of agents from their neighbourhood. The outcome 
of participation is shared evenly. The problem of reciprocity arises – if an agent A has 
included B, will B return the favour? By the fact that the agent A is in neighbourhood of a few 
other agents, another agent C, as a replacement for B, may include A in its group, that will 
make A treated fairly. This may enable a society-wide indirect reciprocity where each agent 
is cheated by another but cheats another themselves. Whether such an arrangement would 
work and under which conditions is another question that is answered in this paper. A certain 
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biological analogy here is a multicellular organism where a single unit (a cell, an  organ, 
a system) provides a service for other units whilst simultaneously receiving services of other 
units, not necessarily the same units to which they are providing a service.

2.  Related Works

The emergence of cooperation has been studied based on tools developed within the 
framework of evolutionary games theory [2] to emphasise the problem of cooperation and 
defection for the evolution of social behaviour [3]. The prisoner’s dilemma [4] game is 
a model game used to study aspects related to corruption [5], incorrect social information [6], 
shared rewards [7], multiple players [8], fraternity and egoism [9]. Similarly, the snowdrift 
game [10] has been used to study the problems of structured populations [11], random 
rematching [12], invasion and expansion of cooperators [13], and other problems. In the 
stag-hunt [14] game, individual fitness and past group decisions are taken into consideration 
[15]. The problems of shared rewards [7], sanctions as honest signals [16] and the optimal 
sizes of groups [4] have been studied within the framework of the volunteer’s Dilemma 
game [17]. Future research should be directed into the area of automatic crawling systems 
[18], where cooperation can improve crawling performance. The cooperation modelling 
could be based on Petri net modelling [19] so that the formal and informal presentation could 
be clarified. The public goods game seems to be a basis for tender behaviour; therefore, 
results of such research could have a practical application [20, 21]. Additionally, research 
in the area of emotions and reactions [22] should be performed because they play an equally 
essential role as rational reasoning when it comes to judging the intelligence of a partner. 
Another important aspect of the research field is the species formation process [24] in agent- 
-based algorithms, where the basis of this process is sexual selection and the persistent 
genetic diversity of the population [23].

3.  Aim of the study

The aim of the study was to investigate the effect of the mutation and the process 
of  succession to evolutionary games such as the prisoner’s dilemma game. In the present 
method, a higher degree of freedom was introduced which allows the player to determine 
the number of participants in the game. In this system, the process of natural selection tends 
to favour cheats, while the second main mechanism, fluctuation, leads to cooperation as 
a result of mutation. As mentioned, natural selection favours cheats, this means that this 
process disrupts cooperation. 

It is shown at a later stage of testing the system, that the interaction between these two 
mechanisms leads to balance, and the mutation is an integral factor in maintaining the already 
established cooperation between agents.

Consequently, even if the initial population consists of non-cooperating groups 
of agents, as a result of an evolutionary process, it may become a population that consists 
of the cooperating group of agents.
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4.  Methodology

In this section, we propose methodology which is experimentally verified in section 4. 
There are M agents in the system. During the game, each agent can establish cooperation with 
its neighbours. For simplicity of analytical derivation, we assume that:
1.	 the number of neighbours is fixed for all agents and equal to system parameter N
2.	 reciprocity: if A is a neighbour of B, then B is a neighbour of A

We assume that the game is played in ring topology and each agent has a neighbourhood 

of 
N
2

 agents in both directions. Our numerical simulations show that populations defined 

over random networks behave identically to ring topology, on average, only if N is small 
enough to keep the above assumptions correct.

The lifetime of an agent is divided into the following steps:
1.	 Within the neighbourhood, establish a group with other agents
2.	 Receive a profit from participation in own and other groups
3.	 Produce an offspring if possible

The establishment of a group of size 0 £ k £ N is governed by the agent’s genetic trait 

p and population-wide fluctuation rate q. The genetic trait p k
N

= ,  with a willingness to 

cooperate, is established in the agent’s direct predecessor as fraction of the size of its group. 
It should be expected that an agent bearing such a trait establishes a group of the same 
size as  its predecessor; however, we want the fluctuation to interfere in this process. The 
decision to include a particular neighbour is made by a stochastic process accommodating 
both p and q in following formula:
	 B p xorB q( ) ( ) 	 (1)

repeated N times for each one agent in the neighbourhood, where B(x) stands for a single 
Bernoulli trial, returning true with the probability of x. The exclusive-or (xor) is the only 
logical operator that provides deserved symmetry ‒ it allows fluctuation to affect the 
genetic trait both ways: if B(p) produces a negative decision, it still can be changed with 
the probability of q; additionally, if B(p) gives a positive decision, it may be revoked with 
the same probability.

Once the groups are established, the participants are awarded for their participation. 
For  each agent, the total income is represented as WA + WC, where WA is the share from 
a group the agent has established, and WC is the sum of the shares from other groups where 
the agent was included. With the trait p, the agent has an influence over the part WA but has 
no control over WC as this depends on other agents and their p. The cooperation emerging 
from the game proposed in this paper regards this exact interdependence of the agents. 
The next section will discuss in detail the problem of fair or unfair cooperation.

The last step in an agent’s lifetime is reproduction. Each agent presents its genetic trait 

and income. The genetic trait p k
N

=  is different from the one that the agent receives from 

its predecessor due to a stochastic process and an interference from fluctuation q (1). A new 
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generation of M agents is created. For each new agent, its trait p is taken from an agent 
of the departing generation, chosen by the means of geometric probability where the income 
is the weight.

The games of dilemma are typically characterised by four parameters: income as 
a  traitor  T,  income in fair cooperation R, income in no cooperation P and income when 
being cheated S. A simplified example of only two players A and B will be helpful: let the 

income function per player be n
n

,  where n is the number of participants in the given 

group. If both A and B work alone, then each earns P = 1. If A makes B a participant, then 

both of them earn 2
2

1< ,  but B has the option to reciprocate. If so, then both will end 

the round with R = =2 1 41. .  Otherwise, B cheats A by not returning the favour, then B 

earns  T = + =1 2
2

2 41.  and A earns only S = =
2
2

0 71. .  As shown, this example has 

the  configuration of T R P S> > > ,  exactly like the prisoner’s dilemma. It means that 
this  problem is a social dilemma: by going into cooperation, A may improve its income 
at the risk of losing considerably if B cheats.

In the actual system, we generalise profit function as nα αfor 0 1< < .  In this interval 
of a, the property of social dilemma is retained. An agent X assuming a group of size k will 
receive its share:

	 W k
kA =
α

	 (2)

In order to receive fair return, the agent X must be included in other groups set by agents 
who have X in their neighbourhood, such that the sum of shares WC would be equal to:

	 W k k
kR = −α
α

	 (3)

If W WC R< ,  then we can consider the agent X to be cheated, otherwise, X is a cheat. 

However, even if W WC R< ,  it can be such that W WA C+ >1;  therefore, it is not guaranteed 

that always P S> .  Certainly, T R P k> > >for 1.  It is important that in such a system, 
it is no longer an absolute statement if the cooperation is fair or not. It is relative to the wager, 
established by the agent setting a group of size k. This shows how different this system 
is compared to known games of dilemma. The iterated prisoner’s dilemma investigates 
cooperation among n players, but participation is always in pairs. Stag-hunt and snowdrift 
are  games that allow n-player participation, but the number is arbitrary. In the system 
presented herein, players independently choose the size of the participation pool.

The above considerations are correct for 0 1< <α .  In case of α ³1,  the participation 
is disproportionally profitable (the larger the group, the better the income); therefore, agents 
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trying to gain advantage by cheating are facing a different dilemma to the risk described 
above. For this reason, the problem in α ³ 1

 
is not in the scope of this paper.

As shown, the outcome of the system is dependent on the values of p which are being 
carried over the generations. An agent with a lower p relative to the other agents should 
accumulate greater income than the others. This will result in greater offspring count bearing 
that low value of p, but cheating in the next generation will be tougher due to a lower average 
value of p. We expect this dependency to provide a point of equilibrium between cheaters 
and altruists.

5.  Experiment

As already stated, the process of creating a group of participants out of the neighbourhood 
is stochastic and is governed by two variables p and q, where p is the agent’s property 
inherited from the direct predecessor, and q is a population-wide variable. The result of this 
process  (1)  is a set of participants, whose count k will determine the agent’s direct share 
WA (2), the fair sum of indirect shares WR (3) and ultimately, the new value of p dubbed 

′ =p k
N

 that will be passed to the next generation provided that the agent will be successful 

in reproduction. Because the value of p is key in the behaviour of this system, we will now 
try to estimate its value. First, we will calculate the expected value of formula (1), which 
we shall call a vertex:

	 vertex p q B p xorB q p q p q p q pq( , ) ( ) ( ) ( ) ( )= = ⋅ − + − ⋅ = + −1 1 2 	 (4)

The value of this function has two functions. Firstly, it is the expected value of probability 
that one particular agent will be added to the group of a given agent A. Secondly, as the 
formula  (1) is executed N times by the agent A in a stochastically independent way, it 
determines ′p .  This is the case because the expected value of k vertex p q N= ⋅( , ) and   

′ = ′ =p k
N

p vertex p q; ( , ).therefore,

However, the vertex function covers only part of the lifetime of agent. As mentioned 
before, the evolutionary process shapes the population of agents in a manner according to 
their income. This process we will call genetix: ( ) ( ; )p p genetix p pM M1 1 = α  which 
brings us to the full model of the process:

	 ( ) ( ( ; ), )p p vertex genetix p p qM M1 1 = α 	 (5)

The above equation treats agents independently – this is only important if their p ‒  s 
differ due to the stochastic process. In the analytical approach, we will focus on the average 
value of p that characterises the entire population simultaneously. For the average value, 
we will reduce (5) to the scalar equation:

	 p vertex genetix p q= ( ( , ), )α 	 (6)
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We will start with an analysis of the vertex function:

	 p vertex p q p q pq= = + −( , ) 2 	 (7)

This equation has a fixed point of p = 0.05. For 0 0 5< <q . ,  the equation has 
monotonic convergence towards the fixed point. For 0 5 1. ,< <q  the equation has 
oscillating convergence  towards 0.5 which introduces a certain level of instability in the 
process (5). For this reason, this paper will not regard q > 0 5.  and as q represents mutation, 
it is unlikely  that any real-world evolutionary process would rely on such a high level 
of mutation.

In order to analyse how the genetix function affects the value of p with the influence of a, 
we must perform the following steps:
1.	 Produce the Poisson distribution of agents with their values of p.
2.	 Assign the expected value of income for each class of distribution.
3.	 Transform the distribution in a way that an evolutionary process would do.
4.	 Recalculate the new value of average p out of the transformed distribution.

The first step is achieved as following P N0  is a vector in which the k-th coordinate 
represents the probability that an agent has k cooperators.

	 P
N
k

p pk
k N k=









 ⋅ ⋅ − −( )1 	 (8)

In the second step, we will calculate the expected value of income weighted by frequency 
Pk. In R N0 ,  the k-th coordinate represents the fraction of the whole income pool that 
is in  possession of the k class. It is important to note that out of k, we are only able to 
calculate the  agent’s income part WA. In this manner, it is impossible to calculate the WC 
part, as it  requires information not available in such plain partitioning. If the population 
is well-mixed, then all agents should receive a similar amount of WC. In such cases, this 
analysis is correct. In the numerical data, it is shown that this accuracy depends on certain 
circumstances, giving us the ability to determine whether or not the population is well-mixed 
at a given time.

	 R P k
kk k= ⋅
+
+

( )1
1

α

	 (9)

From the third step, we will receive the distribution as it should be reshaped by the 
evolutionary process. The Rk are frequencies weighted with respective incomes. S N0  
normalises those values to 1, which means that the k-th component bears the probability that 

a new agent will receive the genetic trait p k
N

= .

	 S
R

R
k

k

ji

N=

=∑ 0

	 (10)
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In the last step, we will recalculate the new average p by weighting k
N

 components  

of S.

	 ′ =
⋅

=
∑p
S k
N
k

k

N

0

	 (11)

′p  is value of the scalar version of the genetix for arguments of p and a. Fig. 1 presents 
Poisson distributions regarding the genetix function with N = 10. The initial plot, labelled 
p = 0.5, is derived from equation (8). Further plots, labelled with different values of a are 
derived from (10) after transformations with respective values of a. As it should be expected, 
the transformation causes the plots to lean left from the original plot, representing a tendency 
of going towards k = 0. For 0 < α < 1, the equation p = genetix (p, a) tends monotonically 
towards p = 0.0. The tendency becomes stronger with a lowering value of a – this means that 
the genetic selection is a process that disrupts cooperation.

Keeping in mind equation (6) as the simplest model of our system, we learn that its 
behaviour is an equilibrium of two opposite factors: vertex (p, q) tends to bring cooperation 
to the level of p = 0.5, while genetix (p, a) tends to disrupt cooperation down to p = 0.0. 
For a given q and a, Fig. 2 presents the average value of p, calculated from 200 iterations 

Fig.  1.  Different values of a deform the initial distribution of p = 0.5
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of (6). Each iteration represents one generation in the system. The plots validate the previous 
analysis: the higher the q, the stronger p tends to 0.5, and the lower the a, the stronger p 
tends to 0.0.

We will now investigate the role of mutation in sustaining the cooperation. For fixed 
values of q and a, we run 200 iterations of (6) where in the first 100 iterations, q is set at a 
certain level and then changed to zero – this effectively reduces formula (1) to only B(p). 
With q  =  0.0, vertex function (7) becomes an identity function. By doing so, we aim to 
discover if the trait p will sustain the cooperation on its own. As should be expected from 
the behaviour of the genetix function, the answer is negative. Without fluctuation, there is 
no mutation and the willingness to cooperate disappears. Fig. 3 and Fig. 4 present the course 
of this analytical experiment for initial values q = 0.25 and q = 0.05 respectively. As for the 
dynamical properties, the higher the rate of decline, the lower is the value of a– this ensures 
that it is the property of genetic selection that disrupts the cooperation.

6.  Results

In this section, we are presenting the results from running the actual system, as described 
in section 3. It appears that in a steady state, the system behaves quite like is expected from 
theoretical considerations with vertex and genetix functions. However, transient states 
require further attention.

Fig. 5 presents an average value of p from a numerical experiment of 200 generations 
of M = 1000 agents each. The experiment was performed independently for each value of q 
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(step 0:01) and a (as in the legend), it is the numerical counterpart of theoretical plots from 
Fig. 2. The plots are nearly identical – this shows that the analytic approach is correct at this 
scope. The mathematical difference is that plots in Fig. 2 represent an average of 200 scalar 
values of p out of (6) while plots in Fig. 5 represent an average of a population of 1000 per 
generation then averaged for 200 generations.

With closer observation, Fig. 6 and Fig. 7 provide the average values of p for a specific 
q. The value of p presented in those figures is an average of population of M = 1000 in the 
given generation. These plots are numerical counterparts of plots from Fig. 3 and Fig. 4 
respectively. It appears as though plots analytically follow the obtained curves very closely. 
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Fig.  5.  Mean p as a function of q and a
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Fig.  6.  The results of running the simulation with q = 0.25 for generations 0‒99  
and subsequently, q = 0.00
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The correlation coefficient between them varies from 93.23% to 99.2% with a median 
of 98.47%.

6.1.  Transient states

In steady states, the numerical results follow the theoretical plots very closely. Additionally, 
the tendency of change in transient states is correctly predicted, but the exact dynamics 
of change escapes the theoretical approach from equation (6). Fig. 8 juxtaposes selected 
corresponding plots from Fig. 3 and Fig. 6 in order to highlight the differences. The interesting 
part is to the right of generation no. 99, where q was set to 0.0. The plot for a = 0.1 

 
shows 

that for a few iterations, the system behaves as if nothing happened, but the cooperation 
then  falls down so abruptly that it even overtakes theoretical prediction. For a = 0.9, the 
changes also initially ignored but then, p starts to follow the theoretical prediction and falls 
down very quickly. That last part resembles the theoretical curve for a = 0.7, what suggests 
that the effective a was lower than the nominal a.

We attribute this discrepancy to the fact that the true system simulated here has M = 1000 
independent agents, each with its own property p, while the theoretical approach is based 
on a single value of p which mimics what we believe is an average value. The distribution 
of agents with different values of p is well-balanced, as assumed by theoretical analysis. 
However, in transient states, such a balance is apparently disturbed. Closer observation 
is appropriate – firstly, we will divide the population into four classes depending on their 
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placement in the process of cooperation. The classes are established in accordance with the 
nomenclature used in section 3 and named respectively. ‘P’ is the class of agents which do not 
establish cooperation nor are they included in other agents’ groups; ‘R’ is the class of agents 
which receive fair returns to their wager; ‘S’ is the class of agents which receive less than fair 
returns, i.e. they the losers; ‘T’ is the class of agents which receive more than a fair return, 
i.e. they are the cheats.

Fig. 9 presents the count of classes for M  =  1000 and initial q = 0.25 until the 100th 
generation. Before discussing the transient part, let us focus on the steady part. As seen, 
the fraction of fairly treated agents (R) is only about 15% of the total. The remainder is 
divided roughly in half between those which exploit and those which are exploited. This 
equilibrium complies with the assumption of a well-mixed population, what proves that the 
vertex-genetix analysis is correct is this state of the system.

In the transient state, where the cooperation is going to disappear, this equilibrium is 
destroyed, hence the population is no longer well mixed. The number of exploited agents 
lowers successively, while the number of cheaters grows until it reaches certain point. 
The intrinsic question is where the extra profit is coming from if the number of givers 
is diminishing. The  answer is provided by Fig. 10. We introduce a variable balance:

 
D = −W WC R .  For cheats, this means how much they gain over and above the fair value; 
for those who are exploited, this means how much they lose from a fair value. As seen in the 
figure, the balance for the S class grows up to extreme value where WC = 0.0 – this means that 
each member of the S class cannot count on any reciprocation. The amount of profit generated 
by the S class is fully absorbed by the T class. Without any reciprocation, the cooperating 
agents are dying off. In other words, cooperation becomes a deadly genetic disease.

7.  Conclusions

The system presented herein is a new evolutionary game that includes a social dilemma. 
It emphasises basic evolutionary phenomena: mutation and inheritance, over the strategies 
exercised in the prisoner’s dilemma and other such games. It also provides another degree 
of  freedom – players are able to establish their own number of participants. The question 
of fair and unfair cooperations has an answer relative to each player’s wager, that is set as 
a number of its participants.
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Statistical fluctuation introduces mutation into the inheritance. With the initial population 
of non-cooperating agents, mutation is able to introduce cooperation. As has been shown, 
mutation is important in keeping the established cooperation, being a counterforce to 
selection, that prefers cheaters, thereby is a disruptive force for cooperation.
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1.  Introduction

Cooperation is fundamental to numerous biological and social systems. Multicellular 
organisms, social insects, herds of animals and human societies are examples of systems 
that are dependent on cooperative interactions. Explaining the emergence of cooperation has 
been a challenge since Darwin. Apparently, cooperators help others at a cost to themselves, 
while defectors receive the benefits of altruism without providing any help in return. The 
emergence of cooperation has been studied based on tools developed within the framework 
or evolutionary game theory. Games such as prisoner’s dilemma games (PDGs) [1], 
snowdrift games (SGs) [2] and stag-hunt games (SHs) [3] form the standard set of social 
dilemmas. All aforementioned evolutionary games are played by a pair of players in which 
they receive a reward R for mutual cooperation and a punishment P for mutual defection. 
If one cooperates but the other defects, the defector (D) receives the payoff T, while the 
cooperator (C) gets the payoff S. In the case of PDG we have T R P S> > > .  In a SG, 
the payoff rank is T R S P> > > .  The stag-hunt game offers more support for cooperation 
because the rank of  payoffs ( )R T P S> > >  favours cooperation over defection. Public 
goods games (PGGs) [4] engage many players and the number of players is an adjustable 
parameter. Cooperating players contribute to a common pool, which is then enhanced by 
a factor h and equally distributed between cooperators and defectors. According to these 
models, a cooperator pays a price to receive a benefit; conversely, a defector pays no price 
but can receive extra benefits. It is commonly assumed that cost and benefit are measured in 
terms of fitness. It transpires that in any mixed population, defectors have a higher average 
fitness than cooperators and thus, after some time, cooperators vanish from the population. 
However, it is possible that under some circumstances, cooperators are not extinct in the 
course of system evolution.

In the present study, the case of a real system of cooperating agents, which adjust their 
cooperation preferences to the varying competitive pressure is described. As a result, 
the number of agents engaged in a single cooperation event changes over the course 
of the  evolution of the system. The analysis of the system is based on real-world data – 
a database compiling bibliographic details of articles published in scientific periodicals over 
the last 60 years. Publishing an article is a cooperative act and the cooperation preferences 
of the scholars can be quantitatively characterised by the features of the distribution of the 
number of co-authors of a single article. From the analysis of the database, it follows that 
the average number of co-authors increases with time. The modal value of the number of 
co-authors of a single article increased from 1 to 4 in the period from 1950 to 2010 – this 
is a clear sign of the increasing strength of cooperation. We propose a novel social dilemma 
model to explain the observed dynamics of the distribution of the number of co-authors; 
possible further developments of the model are also discussed.

2.  Related works

Mechanisms that facilitate cooperation, include kin selection [5‒9], direct and indirect 
reciprocity [1, 10‒13], network reciprocity [14‒17], trust [18, 19], group selection [20, 21], 
cooperation in game theory [22, 23], and evolution of cooperation [24, 25].
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An important quantitative aspect of cooperation is the number of players engaged 
in a single play. The number of players playing the aforementioned social dilemma games 
is always fixed, while in the case of real systems, the number of players engaged in a single 
cooperation event is a quantity that should be set by the dynamics of the game. For example, 
in studies of the behaviour of predators [26‒29], the group size is partially determined by food 
intake, which is maximized for an optimal group size [30]. The problem of an optimal group 
size has been considered recently in the context of another social dilemma ‒ the volunteer’s 
dilemma [31], but in that case, the group size is not set dynamically in the course of the 
system evolution. A mechanism of setting group size, based on ecology-inspired principles, 
has also been proposed within the context of the public goods game [32, 33]. An emerging 
field of co-evolutionary games [34, 22] can become a convenient framework for studying 
the problem of how the output of the games played by the players may affect the interaction 
network.

The evolution of the research of cooperation could be extended into crawling systems [35], 
where such cooperation would improve crawling performance. The cooperation processes 
are able to be modelled using Petri nets [36] to visualise various cooperation mechanisms. 
Computational intelligence methods [37] appear to be usable for evolution games, they are 
both based on nature laws and should be combined into one research strategy.

3.  Empirical data

The process of development of cooperation was analysed using data collected in the 
PubMed database (http://www.ncbi.nlm.nih.gov/pubmed). PubMed is a free resource, 
maintained by the National Center for Biotechnology Information (NCBI), at the U.S. 
National Library of Medicine (NLM). At present, PubMed comprises over 20 million 
citations for biomedical literature from MEDLINE, life science journals, and online books. 
PubMed citations and abstracts include the fields of medicine, nursing, dentistry, veterinary 
medicine, the health care system, and preclinical sciences.

The advanced search functionality of PubMed enables searching for articles that match 
user-defined patterns based on a set of predefined fields provided by the search engine. The 
results of a query can be returned in the form of XML files – these can be easily analysed due 
to their well-defined syntax. In the present study, we queried PubMed for articles published 
in a single, randomly picked month of the year (April), for years in the range 1950 to 2010, 
with 5-year intervals. Only records with a complete list of authors and valid authorship data 
were analysed. Additionally, for every valid record, the scholars who written the article were 
counted and the distribution of the number of authors of published articles was determined 
for every analysed year. The distributions of the number of co-authors are shown in Fig. 1. 
The probability of finding an article published in April 1950, written by more than three 
authors is equal to around 10%, the modal number of co-authors of a single article is equal to 
4 for articles published in April 2010. Articles co-written by less than three authors constitute 
only about 23% of the total number of articles published in April 2010.

Note that the outcome of standard evolutionary games is the change of the fitness 
of  the  players adopting different strategies. By contrast, for the system described above, 
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the available quantitative data is the distribution of the number of co-authors and one can 
only speculate as to how the fitness of the scholars is related to that distribution.

Because it appears that the standard evolutionary models of cooperation (PDGs, SGs, 
SHs or PGGs) do not have enough features to determine the outcome of cooperation 
in the form, for example, joint publications, there is a need of the new tool to model the kind 
of data described above. It is important that possible models account for the competition 
between scholars for limited resources as the total volume of accessible journals is limited. 
Additionally, to build their prestige, scholars attempt to prepare publications that are of as 
high a standard as possible, but an author cannot generally compare the quality of his or her 
publications to the quality of publications by other authors – this is the task of the reviewers 
who score the submitted publications.

3.1.  Model

To qualitatively explain the empirical data discussed in the previous section, we consider 
a population consisting of N agents. Each agent A is located on one site of a network G 
and can cooperate with other agents, provided that they are connected to agent A by an edge 
in G. Throughout this paper, it is assumed that G is a random graph, although other types 
of complex network underlying the model are clearly possible.

An agent is an abstract object characterised by the properties and actions which they 
can perform. The properties of an agent define their state, which is modified in the course 
of simulation. According to the proposed model, an agent’s properties are:
1.	 credit C
2.	 activity E

Fig.  1.  Empirical distributions of the number of co-authors of a single article
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3.	 quality Q
4.	 standard deviation of quality sdQ
5.	 probability of cooperation P
6.	 list of neighbours L in the underlying network G

An agent can perform two actions. First, they can update their probability of 
cooperation P. The formula for probability of cooperation update can possibly depend upon 
an agent’s properties (e.g. their actual credit) and defines an agent’s strategy of cooperation. 
Secondly, an agent can compete for resources, submitting proposals for resource allocation. 
A proposal can be submitted individually or in cooperation with other agents, depending on 
probability of cooperation P.

The state of the system (defined as the state of all agents) is modified iteratively. At 
the beginning of the simulations, credit CA, activity EA, quality QA and standard deviation 
of  quality sdQA of an agent A are drawn from normal distributions with the mean and 
standard deviation being the parameters of the model. Activity EA, quality QA and the 
standard deviation of quality sdQA are kept fixed during the simulations. The probability 
of cooperation PA of agent A is initially equal to 0 and is updated in every simulation step 
in accordance with the cooperation strategy of agent A. The list of neighbours LA is also fixed 
‒ it is assumed that the topology of G does not change in the course of simulation.

At every simulation step, the credit of each agent is decreased by a constant amount 
dC (which, for example, represents the costs of participating in the game). Then, with 
probability  EA, every agent generates a proposal for resource allocation. A proposal for 
resource allocation R is an abstract object characterised by its quality QR and the list 
of agents LR, which have authorised it. When an agent A generates a proposal R, the quality 
of proposal QR is drawn from a normal distribution with mean and standard deviation equal 
to QA and sdQA respectively. The list of agents, which have authorised see above note R 
contains initially only one element – the agent A. Then for every agent B in LA, the agent A 
invites the agent B to participate in the proposal R. The invitation is accepted with probability 
PA · PB. After accepting an invitation, the quality QR of R is increased by amount q which 
is drawn from a normal distribution with mean and standard deviation equal to QB and sdQB 
respectively. Agent B is then added to LR.

All agents submit their proposals synchronously and a pool of all submitted proposals 
is created. The proposals are then scored by their quality and the authors of each proposal 
receive the payoffs based on the scores of their proposals. Each payoff is shared in equal parts 
between all authors of a proposal and the credit of each author is increased accordingly. It 
is assumed in the model that the total sum of payoffs is adjusted so as to keep the total sum 
of credits constant. In the simulations, it was also assumed that the payoff depends linearly 
on the rank of a proposal in the pool ‒ the proposal with the lowest quality receives zero 
payoff, while the proposal with the highest quality receives the highest payoff.

Three strategies of cooperation were studied. Agents adopting the strategy ‘Never 
cooperate’ keep their probability of cooperation always equal to zero. Agents adopting the 
strategy ‘Cooperate when in trouble’ increase their probability of cooperation whenever 
their credit decreases, otherwise they decrease their probability of cooperation. Agents 
adopting the strategy ‘Cooperate’ update their probability of cooperation whenever their 
credit decreases but never decrease it below the actual value. Every agent updates their 
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probability of cooperation in every simulation step. It was assumed that the credit-probability 
of cooperation dependence is given by a sigmoid-like function approximating between 1 for 
low credits and 0 for large credits.

4.  Social dilemma in the network of co-authors

To see that the model described above belongs to a class of social dilemmas, consider 
the following simplified version of the model. Let each agent be characterised by the same 
constant probability of cooperation P and a constant number of cooperators N. Assume for 
now that P determines the probability that a given agent acquires another agent to authorise 
his proposal. Let every agent accept the invitation to authorise other agent’s proposal with 
probability equal to 1. It should also be assumed that all agents submit their proposals at 
every time step and the payoff of the proposal authorised by k ³1  co-authors is equal to 

f k( ).  In the following equation, it is assumed that f k k( ) ,= α  where α ³ 0  is an exponent. 
Then the average payoff S of a single agent can be split into two parts: the payoff SA from 
the proposal submitted by the agents and the payoff SC from the proposals of the agents, 
which have invited the agent to write their proposals. One has:
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After basic manipulation, it can be shown that:
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It follows immediately from Eq. 1 and 2 that if f k k( ) ,= α  then for any α ³ 0  smaller 

than 1, the payoff SA of an agent which cooperates ( )P > 0  is smaller than 1, which is the 
payoff SA of a defector (P = 0). Consequently, a defector facing cooperators would have 
higher fitness than his cooperating co-players; thus, a rational player will choose the strategy 
to defect. On the other hand, it follows from Eq. 3 that the average payoff (equal to 1) 
in a network of defectors is lower than the average payoff in a network of cooperators. Thus, 
in the described system, the agents are facing a social dilemma. Note that the cooperation 
strategy is always advantageous if α> 0.

To solve the social dilemma described above, an additional constraints must be 
introduced  to promote cooperation. In the present study, the reciprocity mechanism is 
adopted. In the case described above, cooperation cannot emerge because the probability 
P of acquiring a co-author is independent on the probability (equal to 1) of accepting other 
agents’ invitations to authorise their proposals. If each agent is instead characterised by 
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a single probability of  cooperation which determines both the probability of proposing 
authorship to other agents  and the probability of accepting other agents invitations, then 
cooperation emerges, as is described in the next section.

4.1.  Results

The results presented in the current section were obtained for the following values 
of model parameters. A random network of 1000 agents was created with the average number 
of neighbours being equal to 20 (the total number of network links was 10 times larger than 
the number of agents). The initial credit of the agents was drawn from normal distribution 
N (30, 2) with the mean and standard deviation equal to 30 and 2 respectively. At every 
simulation step, the credit was decreased by 0.1. The quality of agents was drawn from 
normal distribution N (2, 0.5). The standard deviation of quality was set to 0.2 and the activity 
was set to 0.5 for all agents. The credit-probability of cooperation dependence was given 
by the function:

	 P C
eC

( ) /=
+
1

1 10 	 (4)

where P stands for the probability of cooperation and C stands for an agent’s credit.
The credit of agents adopting the strategy ‘Never cooperate’ is plotted against their quality 

in Fig. 2 for three points in time. Note that the destiny of an agent is completely determined 
by their quality; thus, in a sense, an agent has no way to escape their destiny. Inequality 
of  credit share or social inequality increases over time. The distribution of credit values 
is more or less uniform after an initial transient period (Fig. 3).

Fig.  2.  Credit plotted against the quality of agents in a network of agents adopting the strategy 
‘Never cooperate’. The results for time (measured in simulation steps) equal to 1 unit 

(triangles), 5,000 units (circles) and 10,000 units (squares)
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The credit of agents adopting the strategy ‘Cooperate when in troubles’ is plotted against 
their quality in Fig. 4 for four points in time. Also in this case a strong dependence between 
an agent’s quality and their credit is observed in some range of quality values, but that 
range shrinks with time. Comparison of Fig. 4 and Fig. 5, in which probability of cooperation 
is plotted vs. an agent’s quality indicates that that strong dependence is observed for agents 
which actually do not cooperate, keeping their probability of cooperation equal to zero. 
The group of non-cooperating agents disappears with time and a more or less egalitarian 

Fig.  3.  The distribution of credits in a network of agents adopting the strategy ‘Never 
cooperate’. The results for time (measured in simulation steps) equal to 1 unit 

(top panel), 5,000 units (middle panel) and 10,000 units (bottom panel)
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Fig.  4.  Credit plotted against the quality of agents in a network of agents adopting the strategy 
‘Cooperate when in trouble’. The results for time (measured in simulation steps) equal 
to 1 unit (top-left panel), 5,000 units (top-right panel), 10,000 units (bottom-left panel) 

and 30,000 units (bottom-right panel)

Fig.  5.  Probability of cooperation plotted against the quality of agents in a network of agents 
adopting the strategy ‘Cooperate when in troubles’. The results for time (measured in 
simulation steps) equal to 1 (top-left panel), 5,000 units (top-right panel), 10,000 units 

(bottom-left panel) and 30,000 units (bottom-right panel)
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society arises (Fig.  6). Although cooperation becomes yet more important in a  network 
of agents adopting the strategy ‘Cooperate when in troubles’, the distribution of the number 
of  co-authors of a single proposal converges to a profile which has a maximum  for one 
author  (Fig.  7). The  average number of co-authors of a single proposal converges to 
1.78 ± 0.04 (Fig. 8).

Fig.  6.  The distribution of credits in a network of agents adopting the strategy ‘Cooperate 
when in trouble’. The results for time (measured in simulation steps) equal to 1 unit 
(top-left panel), 5,000 units (top-right panel), 10,000 units (bottom-left panel) and 

30,000 units (bottom-right panel)
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Fig.  7.  Model distributions of the number of co-authors of a single article for the case of agents 
adopting the strategy ‘Cooperate when in troubles’

Fig.  8.  Average number of the co-authors of a single article plotted against the 
simulation step ‘time’ for the case of agents adopting the strategy ‘Cooperate 
when in trouble’. The error bars represent the mean square error of the average 

number of authors
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Fig.  9.  Credit plotted against the quality of agents in a network of agents adopting the 
strategy ‘Cooperate’. The results for time (measured in simulation steps) equal to 
1 unit (top-left panel), 5,000 units (top-right panel), 10,000 units (bottom-left panel) 

and 80,000 units (bottom-right panel)

Fig.  10.  Probability of cooperation plotted against the quality of agents in a network 
of agents adopting the strategy ‘Cooperate’. The results for time (measured in 
simulation steps) equal to 1 unit (top-left panel), 5,000 units (top-right panel), 

10,000 units (bottom-left panel) and 80,000 units (bottom-right panel)
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The credit of agents adopting the strategy ‘Cooperate’ is plotted against their quality 
in  Fig. 9 for four points in time. Relatively early, two branches develop on the quality- 
-credit plot. The branch observed for high values of quality is the trace of the existence 
of the high-quality agents which have not yet decided to actively cooperate, thus  keeping 
their probability of cooperation low (Fig. 10). On the other hand, can be observed a branch 

Fig.  11.  The distribution of credits in a network of agents adopting strategy 
‘Cooperate’. The results for time (measured in simulation steps) equal to 
1 unit (top-left panel), 5,000 units (top-right panel), 10,000 units (bottom-left 

panel) and 80,000 units (bottom-right panel)
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Fig.  12.  Model distributions of the number of co-authors of a single article for a case 
of agents adopting the strategy ‘Cooperate’

Fig.  13.  Average number of the co-authors of a single article plotted against simulation 
step ‘time’ for a case of agents adopting the strategy ‘Cooperate’. The error 

bars represent the mean square error of the average number of authors
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in the range of low qualities is the trace of the action of low quality agents, that cooperate 
and join their attempts to gain a higher share in the resource allocation. After a long time the 
credit of agents is decoupled from their quality and the cooperation is the main mechanism, 
which determines an agent’s credit. The distribution of the agents’ credits is broader than in 
the case of agents adopting the strategy ‘Cooperate when in trouble’ and has an exponential 
tail (Fig. 11). Because of high competitive pressure (agents never decrease their probability 
of cooperation) in a network of agents adopting the strategy ‘Cooperate’, the modal value 
of the distribution of the number of co-authors of a single proposal moves to the right in time 
(Fig. 12). Obviously, there exists a natural limit for the evolution of this distribution, namely, 
the distribution of the neighbours in the underlying network of contacts G.  The average 
number of co-authors of a single proposal increases with time (Fig. 13).

Finally, we studied competition between agents adopting different strategies within the 
same network of contacts. Even for the fairly small fraction of agents adopting the strategy 
‘Cooperate’, these agents gain a much higher share of the total credit compared to agents 
adopting the strategy ‘Never cooperate’ (Fig. 14). Similar results (not shown) were obtained 
for networks consisting of agents adopting the strategies ‘Cooperate’ and ‘Cooperate when 
in trouble’.

Fig.  14.  Average credit of agents adopting the strategy ‘Never cooperate’ (squares) 
and  ‘Cooperate’ (circles) in a network consisting of agents of both types 
plotted against the fraction of agents adopting the strategy ‘Cooperate’. 

The error bars represent the mean square error of the average credit values
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5.  Discussion

In the present paper, we have described the case of a database of scientific articles 
in which the emergence of cooperation between the scholars and the increasing 
strength  of  cooperation  between them is manifested by an increasing average number of 
co-authors of a single article, recorded in the database. We have also proposed a social 
dilemma model  to explain  the dynamics of the changes in the distribution of the number 
of co-authors. Among  three considered play strategies, the most successful strategy was 
selected.

Within the framework of the proposed model, the agents compete for common, limited 
resources, which are allocated to them based on their quality (or fitness). Based on the 
acquired  fitness, the agents adjust their behaviour. Commonly, a generation exchange is 
implemented within the framework of evolutionary games – this feature is not embedded 
in the presented model because the time scale of the dynamics of the average number of 
co-authors observed in the PubMed database is of the same order as the typical duration 
of an academic career.

The proposed model demonstrates the mechanisms which can induce changes in the 
distribution of the number of co-authors. It is worth noticing that the dynamics exhibited 
by the system of agents competing for resources and developing cooperation in the course 
of simulation is an example of Red Queen dynamics [38]. The agents with low quality must 
cooperate in order to be allocated the resources they request, otherwise, the resources would 
be allocated to high quality agents. After a time, groups of cooperating low-quality agents 
become more effective in gaining resources; thus, high-quality agents are forced to cooperate 
under increasing competition pressure. However, this has an effect on the low-quality agents, 
which must strengthen their cooperation.

Many further developments are possible. First, in the present model there is only 
one probability of cooperation, which determines both the probability of inviting others 
to cooperate and the probability of accepting cooperation. In reality, the probability of 
invitation can be different from the probability of accepting invitations. Next, the probability 
of cooperation can be associated not with an agent but with an arc of the graph of contacts 
– there is no need to assume an undirected graph in this case because an agent can prefer 
cooperation with one of his neighbours over cooperation with another individual. In that 
case, the probability of cooperation can depend on the history of joint publication (successful 
publication increases probability of cooperation, while a fault decreases it) and on the quality 
of both sides the link. Next, the network structure was static in the present model, but in reality, 
it can change at the time scale during the simulations – the number of agents, the number 
of links and the topology of the graph can evolve over time. Additionally, the resources and 
the strategy for allocating the resources are fixed and this assumption can be easily relaxed. 
Finally, the proposed model can be reformulated within the evolutionary framework with 
credit interpreted as fitness. Another dynamic variable is the function which specifies how the 
payoff depends on the number of players. In the present paper, a simple form of a function 
was assumed but there are other choices possible, leading to the formation of stable groups. 
This problem is currently under study.
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The dilemma one is facing when investigating models like PDG is how cooperation 
arises in the population of selfish individuals. In the model described here, the individuals 
cooperate because they are selfish – to gain the best resources for themselves, they must 
create alliances.
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1.  Introduction

There are several approaches to meta-modeling (defining modeling languages) known 
from scientific and industrial literature. The first approach assumes a fixed structure to the 
modeling language. In such a case, a particular modeling tool is dedicated to the application 
of one or several predefined modeling languages. This group of tools is represented by 
commercial solutions offered by IBM/Rational, Visual Paradigm, No Magic and many 
others. Some of these have free versions; however, these have limitations. There are also 
open-source solutions like, for example, Eclipse MDT. The second approach is focused just 
on meta-modeling [11]. This is represented by such commercial products as MagicDraw [10] 
or such open-source products as Eclipse EMF [1, 2, 5]. However, these tools are based on 
predefined and, as a consequence, limited elements that can be applied for the construction 
of the modeling language. Moreover, the result of the modeling process is a tool (appropriate 
plug-in) that is able to support the defined modeling language only.

It is worth noticing that there are also several modeling standards supported by the Object 
Management Group (OMG) [8]. These standards result from the long-term analyses of  
reasons for project failures which was initiated in the USA in the 1970s. This process led to 
the elaboration of dozens of software development methodologies from the 1980s and early 
1990s. On the basis of these methodologies the Unified Modeling Language (UML) standard 
[8, 9] was born in Rational, and then was acquired by OMG for standardization in 1997. After 
that, such standards as the Meta-Object Facility (MOF) [7] and Model-Driven Architecture 
(MDA) [4] built on top of them were defined at the beginning of the twenty-first century. 
All of these standards and appropriate tools evolve very dynamically, but they introduced 
important limits to the possible approaches to constructing modeling languages from the 
very beginning. The most important factor is that the modeling language customization 
possibilities are very limited. The user of the modeling language can customize the UML 
language through UML Profiles but he/she is not able to introduce changes to the language 
structure. Another important limit introduced to the MOF+UML concept is the nature of the 
standardization process itself. This process is very long lasting, so when new technology is 
born, its potential user must wait many years for the acceptance of the new version of the 
UML standard enriched in the notions introduced by the new technology. This problem is 
known from such old technologies as Aspect Oriented Programming (AOP) [3] which was 
born in 2002 and was not yet accommodated by UML. It is also known, from such new 
technologies as Scala programming language [6], which introduced new relationship – traits. 
This feature of standards and the unacceptably long standardization process are in opposite 
to the main assumption of MDA ‒ the ability of fast accommodating new technologies for 
the purpose of generating software project artifacts implemented in these new technologies.

In this paper, the new software framework is introduced. It is based on the Context-Driven 
Meta-Modeling Paradigm [12] – the new approach to meta-modeling. This approach can 
break the limits introduced into MOF&UML concepts. It results in the implementation of the 
general modeling tool that is able to support all current modeler requirements. In comparison 
to existing modeling tools, the new software framework provides extra opportunity to model 
in any user-defined modeling language. As a consequence, the modeler may reuse his/her 
previous modeling languages (both meta-model classes and relationships) and introduce any 
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structural changes to them according to the current demands. Another new option for the 
modeler is to customize the modeling language in the same manner as the one required 
when vertical OMG standards are applied for a particular application domain. The vertical 
standards being the superset of system of notions required by a modeler should be customized 
by the modeler to the needs of a particular software system. Moving this approach to the 
meta-modeling field, the modeler may customize an existing modeling language standard 
(such as UML) to any substructure of it. There are no tools on the market that offer such 
a possibility except from the tool which is introduced here.

2.  Problem solution concept

In order to construct the implementation of dynamic loading of any required meta-
model to the modeling tool, the right system of notions must be introduced. This problem is 
addressed in this section.. The concept of the solution to the problem is also presented here.

In contrast to the approaches presented above, the new approach introduced here results 
in the implementation of one general modeling tool for any modeling language. The user of 
the tool can define his/her own modeling language in the form of a graph composed of any 
kind of nodes and any kind of edges. This potentially unlimited language can be loaded to 
the tool from the meta-model file.

The solution concept is based on the observation that all contemporary known approaches 
to meta-modeling have a common disadvantage – namely, that the relationships between 
meta-model classes are represented in the form of hardcoded references. However, it is 
possible to represent them in the form of dynamically injected responsibilities. Thus, each 
meta-model can be decomposed into classes (pure entity classes) and relationship classes 
(entity relationship classes). They can remain unrelated on the level of the compiled 
source code. The meta-model can be created at run time from dynamically loaded meta-
model structure representation. This meta-model structure takes the role of the modeling 
application context. As a result, the modeling framework structure can reflect the application 
context. Moreover, the relationships injected into meta-model classes can take the role of one 
of many possible responsibilities the meta-model classes can dynamically take – this is why 
the ‘responsibility’ term is frequently used for relationships in the rest of the paper.

3.  Tool implementation

In this section, the implementation of the context-driven meta-modeling tool is presented. 
The tool is dedicated to construction and usage of a model which is compatible to the 
particular meta-model.

The implemented tool has the form of the framework. It is composed of fixed elements 
belonging to the framework, such as configuration, API classes and the distinguished meta-
model root element. However, the framework is able to construct itself from the meta-model 
specification. The most natural meta-model specification is the XML file containing this 
model. This file takes the role of the application context.
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In order to implement the framework, some research was performed. The most important 
programming language for the framework is Java, as all or almost all contemporary modeling 
tools are implemented in Java or at least expose their APIs for this programming language. 
The most attractive technology for this programming language is the Spring framework which 
supports the required dynamic injections and application context. But the Spring alone was 
recognized as insufficient. The lacking feature – the ability to introduce dynamic structural 
changes into classes was offered by AspectJ. Samples illustrating the method of combination 
of these technologies are presented in Section 4.

All these technologies made it possible to implement the framework briefly characterized 
in Section 2.

4.  Testing

Model-driven tools are difficult to test. The reason for this is that they are able to load 
a potentially infinite number of different data structures, so they cannot be tested against 
each of these data structure. However, in the context of the problem stated in the paper, 
the purpose of testing is not to perform commercial verification of the tool, but to focus on 
verification of the correctness of the tool implementation against the ability of loading the 
meta-model dynamically. Therefore, this section is dedicated to verifying whether the tool 
makes possible to:
–	 load several different meta-models,
–	 create models compatible to each meta-model through the tool’s API,
–	 navigate through the model structure and acquire model elements.

In order to check each of the functional features presented above, the following steps 
were performed:
–	 testing meta-models were created in the form of UML diagrams,
–	 testing simple XML graphs of these meta-models were created,
–	 testing Spring application contexts XML files for the framework for the above graphs 

were created,
–	 test scenarios for:

–	 creating models,
–	 navigating through each model structure,
–	 getting model elements and checking if they are the same as created before.
In order to illustrate the testing approach, which is done in Subsection 4.1, an example 

meta-model was chosen. The test scenario for this meta-model is also presented below to 
display the nature of the client’s code. Moreover, the different meta-model structures that 
were the subject of testing activities are shown below in Subsection 4.1.

4.1.  Different meta-model examples

Several different meta-model UML diagrams that are the subject of testing are presented 
below. They are very simple as they were intended to test meta-model relationship class 
and meta-model entity class features which are especially difficult for implementation.
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The set of meta-models presented in Figures 1‒6 is limited to chains and trees only. All 
the meta-models shown in these figures are elaborated to test the possibility of building any 
meta-model in the form of a graph and should be interpreted as the proof of the concept. 
Therefore, the ability of constructing meta-models from meta-model building blocks is tested 
through the meta-models presented below. This approach solves the typical problem also 
known from modeling tools – how to test the correctness of the potentially infinite number 
of models. However, the problem known from modeling discipline is moved here to meta-
modeling field.

Some notational conventions should be explained here:
–	 green rectangles ‒ class under test,
–	 red associations ‒ responsibility under test,
–	 stereotypes in red ‒ type of a responsibility (the relation class),
–	 stereotypes in black ‒ logical exclusions of a particular types of responsibilities, which are 

necessary to test all cases,
–	 j, k, l postfixes in class names ‒ particular domain classes that fulfill the following logical 

condition: i ≠ j and i ≠ k and j ≠ k,
–	 m, n postfixes in stereotypes ‒ particular responsibilities that fulfill the following logical 

condition: m ≠ n,
The particular classes: R for root class of the meta-model and Di for domain classes are 

always tested in combination with their responsibilities – this is why associations going out 
from the green rectangles are always red according to the convention rules.

The first group of Figures 1‒4 shows meta-models that share the same responsibilities 
between classes involved in testing process. Figure 1 presents a meta-model for testing 
the correctness of enrichment of root meta-model class (R) by the same responsibilities (Rm).

Enrichment of meta-model domain classes (Dj) in the same responsibilities (Rm) is 
presented in Fig. 2.

Figure 3 is focused on the meta-model which is dedicated to testing the transitiveness 
of  the enrichment of both the root meta-model class (R) and the domain meta-model 
class (Dj) in the same responsibilities (Rm).

Fig.  1.  The same responsibility (Rm) originated in the Root (R) meta-model element
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Similarly, Fig. 4 presents a meta-model used to test the correctness of the transitive 
enrichment of the two different meta-model domain classes (Dj, Dk) in the same 
responsibilities (Rm).

The Figs. 5‒6, on the other hand, contain meta-models that test the correctness 
of  combining different responsibilities injected into same classes. The meta-model root 
class (R) is enriched in different responsibilities (Rm, Rn) in Fig. 5.

Figure 6 presents enrichment of the meta-model domain (Dj) class in different 
responsibilities (Rm, Rn).

All meta-models presented above were tested by unit tests of each class. The meta-
models were also tested by scenario tests. Each scenario test has two parts: one for the 

Fig.  2.  The same responsibility (Rm) originated in the Domain (Dj) meta-model element

Fig.  3.  The same responsibility (Rm) originated in both Root (R) and Domain (Dj) 
meta-model elements

Fig.  4.  The same responsibility (Rm) originated in different Domain meta-model 
elements (Dj, Dk)

Fig.  5.  Different responsibilities (Rm, Rn) originated in the Root (R) meta-model element
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model construction and one for the model traversal. Several models (meta-model instances) 
were created to execute such a particular scenario test.

The framework passed all tests explained above.

4.2.  Sample meta-model testing

In this subsection, the sample test scenario is presented for the meta-model shown 
in Figure 5. However, first the Spring and AspectJ application-context file which constitutes 
the definition of the modeling language (meta-model) is shown in Fig. 7.

The test scenario for constructing a model which is an instance of the sample meta-model 
from Fig. 7 and then for traversing the model are presented in Fig. 8.

Such tests were created for all meta-models which were taken into account during 
the activity of tests strategy planning. They confirmed the correctness of the approach 
and  feasibility of the framework implementation based on the concept presented in the  
paper.

Fig.  6.  Different responsibilities (Rm, Rn) originated in the Domain (Dj)  
meta-model element
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Fig.  7.  Definition of the sample meta-model in the form of Spring and AspectJ 
application context
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5.  Conclusions

In this paper, the materialization of an idea based on the CDMM-P paradigm was presented. 
It was shown that the CDMM-F framework being the implementation of the CDMM-P can 
be realized in the form of a self-organizing software system the structure of which is defined 
by the application context of this system. The set of risks specific for such an approach 
was  identified and addressed by test cases. The CDMM-F was implemented and  tested 
against these risks. Thus, the proof of the concept for both CDMM-P and CDMM-F was 
made and presented in the paper.

There is a lot of possible investigative directions that are worthy of taking in future. 
However, the most important aim at the moment is to elaborate several API versions for the 
framework. Two such APIs have been defined and tested so far. These require information 
about the meta-model structure for the purpose of navigation through the model from the test 

Fig.  8.  Framework implementation scenario test for the sample model created for 
a particular meta-model
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or framework’s client source code. In the next step, the reflective API should be elaborated 
and tested. As the result of this step the client’s source code should become independent 
of the meta-model structure.
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1.  Introduction

Contemporary approaches to the creation of modeling languages for software engineering 
discipline are based on close ontologies – close systems of notions reflected by the static 
structure of modeling languages represented by meta-models. The characteristic feature of 
such systems is that each meta-model class is placed in a meta-model graph and this class 
depends on all other meta-model classes it is related to. As the result, close ontologies are 
difficult to change, in contrast to open ontologies.

This paper is related to a different approach to meta-modeling which is based on open 
ontologies named Context-Driven Meta-Modeling (CDMM). In contrast to the traditional 
approach briefly characterized above, in the CDMM approach, the whole meta-model graph 
consists of meta-model classes placed in meta-model graph nodes while the relationship 
classes characteristic for the CDMM approach are located at the graph edges. Moreover, the 
meta-model classes are unrelated to one another. This results in a very high level of flexibility 
in defining the meta-model structure as well as in defining the meta-model elements (entity 
classes and relation classes).

An important special feature of the CDMM concept is that it is not build on top of 
standards defined to support ontologies like the Resource Description Framework (RDF) 
by the World Wide Web Consortium (W3C) or the Web Ontology Language (OWL) by 
the Object Management Group (OMG). As a consequence, the CDMM approach differs 
significantly from [1, 11, 3, 4, 7, 8, 9, 10, 6]. In contrast to the ontology research domain, 
it is defined in the manner known from the meta-modeling of software intensive systems 
known, for example, from [2]. As a result, the CDMM approach can be compared to such 
extensively used OMG standards like the Meta-Object Facility (MOF) [13], the Unified 
Modeling Language (UML) [14] and Model-Driven Architecture (MDA) [12]. Thus, the 
CDMM constitutes the generalization of all the above-mentioned MDA-related standards.

This generalization was achieved through the introduction of a new modeling paradigm 
named the Context-Driven Meta-Modeling Paradigm (CDMM-P) presented in [15]. This 
paradigm makes it possible to replace traditional interrelated compact systems of notions 
both specified and implemented (references between classes inside classes to represent class 
relationships) via class diagrams by meta-models created during run-time from decoupled 
meta-model entity classes and meta-model relationship classes. The CDMM approach 
replaces fixed data structures with dynamically created data structures.

The CDMM-P has its implementation in the form of the Context-Driven Meta-Modeling 
Framework (CDMM-F) introduced in [16] and explored in [17] from the special perspective 
of the role the context takes in this framework implementation. The CDMM-F plays the role 
of proof of the concept for the CDMM-P idea. The CDMM-F framework is implemented 
in Java technologies – Java SE enriched by Spring and AspectJ. An illustrative case-study 
for the application of the CDMM-F framework is presented in [18], where the modeling 
language is defined from scratch just to illustrate the features of the CDMM-F. In this paper, 
the same meta-model is created from the CDMM-Meta-Modeler especially to illustrate 
the difference between both approaches.

This paper is related to the CDMM-F framework and the system presented here 
constitutes an extension for the CDMM-F. The first version of the CDMM-Meta-Modeler 
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was presented in [5]. The software system introduced in the paper is dedicated to creating 
static UML models of modeling languages (meta-models) via class diagrams. A meta-model 
created in this way is then used to create CDMM-F instance just for this meta-model (the 
model). The model can be then accessed via the API of the CDMM-F. In this way, the concept 
of MDA-like modeling in the open ontologies is achieved and implemented. Moreover, the 
paper contains a constructive illustration of the way the commonly known and widely applied 
close ontology based approach to meta-modeling can be used to define an open ontology 
based approach to the construction of modeling languages. Thus, the paper constitutes the 
proof of concept for such a new approach to meta-modeling.

2.  Context-Driven Meta-Modeling

Two elements of the Context-Driven Meta-Modeling set of tools that together constitute 
Context-Driven Meta-Modeling Technology (CDMM-T) are presented below in this section. 
Firstly, the most fundamental CDMM-F framework characteristic features are shown. 
Secondly, the role and the concept of visual modeling support for the CDMM-F is presented.

2.1.  Framework

The CDMM-F framework is the core element of the whole CDMM-T. It constitutes an 
implementation of the CDMM-P paradigm. The name of all the above-mentioned CDMM 
elements originated just from the way that the CDMM-F framework was implemented. 
The data structure representing the meta-model has the form of the application context XML 
file, as the CDMM-F is implemented in Java, Spring and AspectJ. As a consequence, the meta-
model takes the role of the context for the CDMM-F application. The running framework 
is created automatically from that file and the structure of the running framework reflects 
the meta-model structure. The XML file mentioned above has a relatively complex format 
and contents. It could be created from any text editor, but this approach is error-prone – this 
is why the visual modeling tool is desirable to design the meta-model which the application 
context file can be generated from by this tool.

2.2.  Visual Meta-Modeling

The Visual Meta-Modeling feature was added to the CDMM-F to simplify the meta-model 
designers’ job. This simplification was achieved by making the graphical tool available for 
meta-model graph creation and by minimizing the number and complexity of the solution’s 
user tasks. The graph is built from two kinds of elements:
–	 classes that are associated with graph nodes – meta-model entity classes,
–	 classes that are associated with graph edges – meta-model entity relationship classes.

Both groups of classes must be predefined with the same tool. For the association 
of  classes to the meta-model graph, the UML Profiles, and specifically UML stereotypes 
are applied. The association is via the stereotype name which is generated from the name 
of  the class that  is intended to be associated to the node or to the edge of the graph. The 
process of stereotype generating is one of the functions of the visual meta-modeling tool.
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The key concept of the tool is the application of the functionalities of close ontology- 
-based modeling tools for constructing the simple tool that makes it possible to define open 
ontology-based modeling languages.

3.  CDMM-Meta-Modeler Features

According to the concept of visual meta-modeling presented in section 2, and according 
to the characteristics of CDMM-F presented in [16, 17], the most important features of the 
CDMM-Meta-Modeler can be specified. They are shown below in this section.

The most desired features of the CDMM-Meta-Modeler at the current stage of research 
and implementation work are as follows:
–	 reuse of existing UML modeling (not diagramming) components,
–	 reuse of the mechanism of UML Profile modeling (not diagramming) offered by 

available components,
–	 reuse of the mechanism of extending UML modeling components via UML Profiles 

(the two above-mentioned components must be compatible),
–	 reuse of existing diagramming framework,
–	 potential reuse of existing modeling components for additional tasks like generating 

source code from the model, serialization of the meta-model via the standard UML XMI 
format for interoperability purposes,

–	 potential integration of the CDMM-Meta-Modeler with existing commercial 
modeling products (all features listed above support this feature),

–	 the ability to graphically model (diagramming) limited UML models containing:
–	 stereotypes in UML Profiles,
–	 classes with stereotypes for classes introduced in UML Profiles,
–	 associative relationships (composition, aggregation, association) with stereotypes 

for relationships introduced in UML Profiles,
–	 dependency relationships with stereotypes for dependency introduced in UML 

Profiles,
–	 packages with their hierarchies,

–	 the ability to define meta-model entity classes in separate package,
–	 the ability to define meta-model relation classes in separate package,
–	 the ability to customize predefined CDMM-F framework meta-model classes 

contained in the separate package,
–	 the mechanism of the reuse of the predefined CDMM-F framework meta-model relation 

class in the user-defined meta-models and vice versa,
–	 the ability to round-trip engineer the UML Profile for stereotyping entity and relationship 

meta-model classes,
–	 the mechanism of drag-and-drop meta-model entity classes to the meta-model 

diagram,
–	 the mechanism of introducing the UML Profile stereotypes for entity meta-model 

classes to these classes on the meta-model diagram,
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–	 the mechanism of joining meta-model entity classes on the meta-model diagram 
via associative and/or dependency relationships (creation of the meta-model graph 
composed of the user-defined entity and relationship meta-model classes),

–	 the mechanism of introducing UML Profile stereotypes for meta-model relations 
to the relationships put on the meta-model diagram,

–	 the ability to load/save the meta-model through the XMI file,
–	 the ability to export the meta-model to the XML file for the CDMM-F,
–	 the ability to generate the application context XML for the CDMM-F and to send 

this application context to the CDMM-F Plugin in the form of the string.
The most important functionalities from the list shown above were already implemented 

in the presented CDMM-Meta-Modeler (in bold) while the remaining functionalities are 
under development. A large number of both functional and non-functional requirements 
was formally specified according to the RUP’s FURPS+ classification and known good 
practices; however, these are not contained in this paper due to size limitations. However, 
both functional and non-functional tests discussed shortly in section 5 were implemented 
according to the requirements correctly specified.

4.  CDMM-Meta-Modeler Tool Implementation

The visual modeling concept was materialized in the form of the CDMM-Meta-Modeler 
tool. The existing modeling tools can be used for the implementation of the CDMM-Meta- 
-Modeler as the concept of the visual modeling assumes that close ontology based modeling 
can be applied to construct the open ontology based meta-modeling tool. The right source 
of such close ontology based modeling tools is the Eclipse framework with its Plugins – this 
is why the CDMM-Meta-Modeler tool was also implemented in the form of the Eclipse 
Plugin.

The implementation of the Eclipse Plugin makes it possible to achieve functionalities 
sufficient for the effective creation of open ontology based modeling languages with low 
expense and independently from commercial modeling software providers. At the same time, 
the approach typical for meta-modeling can be used in place of the approach characteristic 
for design and specification of ontologies which is based on RDF or OWL standards.

4.1.  Technologies

As previously mentioned, the Eclipse framework was chosen for CDMM-Meta-Modeler 
tool implementation. The tool itself consists of several Eclipse Plugins. The motivation for 
such a technological choice is as follows:
–	 reduction of specialized integrated development environments (IDEs) required by the 

CDMM-T user to the one based on Eclipse,
–	 extensibility of the CDMM-T implementation into newly required functionalities via the 

installation of new Plugins,
–	 operating system independence of the CDMM-Meta-Modeler tool resulting from Eclipse 

IDE operation system independence,
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–	 reuse of the UML2 SDK Eclipse Plugin for the UML model of the modeling language 
storage and for its conformity to the OMG UML standard,

–	 natural integration with CDMM-F which was already implemented in Java; in fact, 
it was  implemented in Java because all contemporary modeling tools are implemented 
just in Java, including the UML2 SDK.
The Eclipse framework itself is implemented in Java and is based on Equinox – the 

Eclipse implementation of Open Services Gateway initiative (OSGi).
Graphical libraries the Eclipse is based on are SWT and JFace. They offer application 

rendering which is native for Eclipse platform. This is why, in order to unify the presentation 
style of all platforms, the JavaFX library, the successor of Swing, was applied.

All these technologies are open source which helped to limit cost of the CDMM-Meta- 
-Modeler tool significantly.

The short characteristics of the technologies mentioned above and remaining ones 
is presented below. This characteristics constitutes motivation for choosing just these 
technologies.
–	 Eclipse RCP – This Eclipse Rich Client Platform facilitates the implementation of Rich 

Client applications based on the dynamic Plugin model via the introduction of a set of 
dedicated Plugins to the Eclipse Platform.

–	 Equinox – This is an OSGi implementation dedicated to Eclipse. It helps to manage 
Plugins and offers extensions that can extend the functionality of other Plugins.

–	 UML2 SDK – This is the Eclipse PlugIn that includes the implementation of OMG UML 
version 2.x. The main goals of this component are the provisions of:
–	 useful implementation of UML for the support of modeling tool development,
–	 common XMI schema for the facilitation of the exchange of semantic models,
–	 test cases for the verification of the specification correctness,
–	 validation rules as the medium for defining and executing conformance levels.

–	 SWT – graphical library for Java as an alternative for AWT/Swing libraries. This library 
has been developed by the Eclipse Foundation. The main idea of this library is to provide 
native system aspects such as key shortcuts, reactions to mouse behavior etc. as well as 
the creation of a native application view – this means that the view is unique for each 
platform.

–	 JFace – This is one of the Eclipse Foundation’s projects which provides graphical 
components based on SWT. The main goal of the library is to provide such components 
that are frequently used and, at the same time, are difficult to implement in SWT. As the 
JFace components constitute an extension of SWT components, they can be combined 
with SWT.

–	 JavaFX – This is graphical library which is a successor to Swing. It offers a wide spectrum 
of components together with the mechanism of their simple customization via CSS files. 
Moreover, it allows the nesting of its components into other graphical libraries like Swing 
or SWT. The possibility of nesting JavaFX in SWT allows the use of JavaFX in Eclipse. 
As a consequence, this allows creating advanced components through the combination of 
JavaFX, JFace and SWT.

–	 SWTBot – This is the Java library that allows the implementation of a user interface 
and/or functional tests for SWT and Eclipse. SWTBot integrates with Tycho very well. 
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As  a  result, these tests can be executed by Maven. SWTBot works on all platforms 
available for SWT. Both Tycho and Maven are used in the development process for the 
Plugin.

–	 JUnit – This is the most popular Java-oriented tool for unit testing support. These tests 
allow for the continuous testing of the product.

–	 TestFX - In contrast to SWTBot, this library is designed to support the manual development 
of automated user interface tests and/or functional tests for Swing and JavaFX.
The Eclipse RPC distribution was chosen as it is dedicated to support Eclipse Plugins 

development and constitutes the execution environment for the CDMM-Meta-Modeler. 
It allows the integration of all the above-mentioned technologies. The choice of technology 
was simple as there is no competing open source environment on the market.

4.2.  Design

The most challenging part of the design discipline was to take into account the design 
context resulting from the technologies applied to the CDMM-Meta-Modeler implementation.

The following technologies impacted on the design discipline of the CDMM-Meta-
Modeler project: Eclipse, JavaFX, SWT and UML2 Eclipse Plugin. Some parts of the 
CDMM-Meta-Modeler design elements and the nature of the impact of reused technologies 
on JavaFX is visible in Figure 1.

Another part of the CDMM-Meta-Modeler design is shown in the diagram presented 
in Figure 2. It shows the dependency of the design elements presented there on JavaFX and 
SWT.

The whole CDMM-Meta-Modeler system was carefully designed during the 
implementation. It is worth noticing here that both Figure  1 and Figure  2 were prepared 
after implementation of the presented CDMM-Meta-Modeler in this tool for the presentation 
purposes only.

5.  CDMM-Meta-Modeler Tool testing

The CDMM-Meta-Modeler was carefully tested. The test strategy was quite simple 
as most risks of the product are concentrated in the diagramming functionality and in the 
integration of the CDMM-Meta-Modeler with modeling tools and with the third-party 
software presented in section 4.1.

The correctness of the implementation of the CDMM-Meta-Modeler classes was verified 
by extensive unit testing. The JUnit tool was used to support the process of implementation 
and the execution of these tests. The testing process was included in Maven’s lifecycle.

Another group of tests addressed the verification of the CDMM-Meta-Modeler 
functionalities constitute functional tests. Some of the tests from this group were 
implemented  with SWTBot and TestFX tools ‒ they were executed automatically in 
the CDMM-Meta-Modeler development process. However, some of the tests from this 
group remained manual. The criterion that helped to decide which test should have which 
form was  based on the importance of the tests. The most important tests that covered 
more functionality had the form of automated tests and some less important and smaller 
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functionalities (sub functionalities) were executed manually. Moreover, due to the available 
testing tools, some components implemented in the CDMM-Meta-Modeler that were 
implemented in  technologies not covered by SWT and/or JavaFX technologies had to be 
executed manually. A sample automated SWTBot and JavaFX dependent test case in 
the  form of the appropriate script is presented in Fig. 3. This test verifies the correctness 
of the implementation of the functional requirement of creating a new meta-model project 
in the CDMM-Meta-Modeler.

GUI tests were performed with an approach similar to that applied to functional  
testing.

The remaining non-functional tests were also executed to check if all non-functional 
requirements were fulfilled by the CDMM-Meta-Modeler.

Fig.  1.  Class diagram for the Aggregation class
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Fig.  2.  Class diagram for the ‘Properties View’ class

Fig.  3.  Sample CDMM-F functional SWTBot and JavaFX dependent functional test case
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6.  Conclusions

The main goal of the research presented in this paper was to show that it is possible 
to implement a software system which may be used to define open ontology based meta- 
-models in CDMM-P for CDMM-F. This software system is in the form of the Eclipse 
Plugin  named the CDMM-Meta-Modeler which constitutes the physical form of the 
research  result. Moreover, it was shown that such a system can be built using available 
tools originally designed to support the close ontology based approach to meta-modeling. 
Specifically, the application of  the UML2 modeling Plugin and the UML Profile concept 
were reused in the CDMM-Meta-Modeler to express open ontology meta-models.

The CDMM-Meta-Modeler tool was carefully designed and tested. In future research, 
a  detailed case study illustrating how the CDMM-Meta-Modeler can be used will be 
presented.  This presentation will be done for a meta-model which is quite simple but 
expressive enough and applicable to commercial product software development processes.

Some useful functionalities marked in section 3 are still under development – these are 
planned to be implemented soon in order to make the whole vision of the CDMM-Meta- 
-Modeler presented in the paper workable.
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