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A b s t r a c t   

The oxidative coupling of methane is the catalytic conversion of methane into ethene. Carbon 

dioxide is generated as a reaction by-product and must be removed from the gaseous stream. 

In this paper, the application of a hybrid carbon dioxide removal process including absorption 

with amines and gas separation membranes is investigated through simulations and cost 

estimations. 
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S t r e s z c z e n i e   

Utleniające łączenie cząsteczek metanu do etenu możliwe jest na drodze katalitycznej 

konwersji metanu. Dwutlenek węgla powstaje jako produkt uboczny reakcji i musi być 

usuwany z gazowego strumienia. W niniejszym artykule, przedstawiono hybrydowy proces 

usuwania CO2: absorpcji z aminami i separacji membranowej oraz szacunek kosztów. 
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1.  Introduction 

Carbon capture and storage (CCS) has been suggested as a critical component to the 

reduction of greenhouse gas (GHG) emissions without limiting energy usage in the near 

future [1]. There has been an increasing number of publications in this field. A search on 

Science Direct with the keyword “carbon capture” filtering years 2000 to 2010 returns 

around 56,000 publications. The same search for the time frame from 2010 to 2016 yields 

nearly 90,000 results.  CCS is also not to be limited solely to power plants. The scenario 

entitled ‘2DS’ developed by the International Energy Agency describes how technology 

across sectors may be transformed by 2050 in order to limit the average global temperature 

increase to 2K. In this scenario, nearly half of the CO2 captured between 2015 and 2050 is 

from industrial sources, such as from the production of steel, chemicals, and cement [1]. 

Within this context, this contribution aims to study and further develop the carbon dioxide 

capture section for the oxidative coupling of methane process. 

The oxidative coupling of methane (OCM), which is the catalytic conversion of 

methane into ethene (ethylene), has been extensively investigated for the past thirty years 

due to its potential for methane utilisation. The OCM allows for the conversion of methane 

containing feedstock, such as natural gas or biogas, into ethylene. Thus, OCM enables the 

production of value-added chemicals directly from C1, avoiding the costly intermediate 

step involving syngas [2]. The ethylene product is the raw material for the production of 

nearly all plastic commodities, such as high and low density polyethylene, polyethylene 

terephthalate, polyvinyl chloride, and polystyrene. The global ethylene capacity in 2012 is 

estimated to be above 140 million tons per year [3], which is almost entirely covered by 

naphtha or ethane cracking. 

The USA has recently undergone the so-called shale revolution, bolstered by the 

exploration of deep underground shale formations through hydraulic fracturing and 

horizontal drilling [4]. Wet shale gas typically requires gas processing to produce pipeline-

quality natural gas for energetic purposes and an ethane rich stream which is cracked to 

produce ethylene. In this sense, OCM could be of significant advantage by increasing the 

ethylene output through the further conversion of methane. In 2015, the first OCM 

demonstration plant was commissioned in Texas [5]. 

 

Fig. 1. Conceptual Flow Diagram for the OCM Process 

The activation of most OCM catalysts occurs at temperatures around 973K, which also 

favours secondary reactions and limits the product yield. It is suggested in literature that the 

combined ethylene and ethane yield in the OCM reactor should not exceed 28% [6], 
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evidencing the need for efficient downstream separation sections. The carbon dioxide is an 

undesired by-product which is of major concern. The stream leaving the OCM reactor can 

be compressed, cooled, and flashed for bulk water removal. The removal of the 

unconverted methane and the C2 fractionation can be achieved through cryogenic 

distillation, even in a shared distillation section if OCM is to be an add-on unit for an 

ethane cracker. However, the carbon dioxide formed in the OCM reactor must be removed 

from the gas stream by a CO2 removal section before it can enter the distillation section. A 

conceptual process flow diagram for the OCM process is presented in Fig. 1. This 

contribution focuses on the design and improvement of an industrial scale CO2 separation 

section in the downstream section of an OCM reactor producing 100 kton of C2H4 per year. 

2.  Motivation 

Absorption with amines is the most commonly employed carbon dioxide removal 

technology for flue gas CO2 capture, natural gas sweetening, and biogas upgrading; 

therefore, it is an obvious initial candidate for OCM and also for industrial/process gas 

streams. Aqueous solutions of monoetanolamine (MEA), normally limited to 30wt% due to 

their corrosive nature, are widely used as solvents and are considered as the benchmark for 

comparison with new technologies.  

 

Fig. 2. Process flow diagram of a hybrid CO2 removal process employing a polyimide gas separation 

membrane and absorption 

In the absorption column, i.e. structured packing column, the amine solution is fed at 

the top and contacts the gas stream containing CO2, which is fed at the bottom. The amine 

chemically binds with the carbon dioxide releasing a CO2-free gas at the top and a rich 

amine solution, loaded with CO2, at the bottom. The rich amine stream is then flashed to 

near atmospheric conditions to partially remove the CO2, then pre-heated in a heat 

exchanger and fed to a stripping column. Heat is added through the reboiler in the stripper 

in order to reverse the reactions, producing a CO2 rich gas stream at the top and a lean 
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amine solution at the bottom which is cooled and recycled back to the absorber. A process 

flow diagram for the described process is presented on the right-hand side of Fig. 2. 

The current research and development in the field of CO2 capture concentrates on three 

different focal points according to [7]: 

 the development of new energy-efficient solvents; 

 process synthesis and optimization; 

 integration with the energy plant and CO2 compression system. 

An example of the first focal point is the utilisation of functionalised ionic liquids in 

order to increase the absorption rate and capacity as described in [8]. Within the second 

focal point, a generalized framework for the optimal design of CO2 capture flowsheets is 

presented in [9]. The models applied therein are based on inexpensive equilibrium 

calculations and orthogonal collocation on finite elements, resulting in a flexible 

superstructure that can handle flowsheets with multiple column segments in series and 

parallel, as well as side feeds and withdrawals. An example of research within the third 

focal point is the rigorous rate-based simulation of an integrated gasification combined 

cycle with pre-combustion CO2 capture as in [10]. 

Herein, a fourth focal point for carbon capture research and development is suggested – 

this involves alternative separation technologies. While absorption with amines is the most 

well established process, emerging technologies such as gas-separation membranes, low 

temperature distillation with controlled CO2 freezing, and pressure swing adsorption are 

also being investigated and comprehensively reviewed in [11].  

In this sense, membrane-based gas separation offers significant advantages such as 

simple operation, reduced start-up time, and easy and modular installation [12]. A major 

disadvantage of gas separation membranes is that scale-up occurs mainly by adding more 

modules operating in parallel. This results in an approximately linear increase of the capital 

investment cost, while well-established technologies, such as absorption, tend to scale up 

better. Nevertheless, membranes have been successfully employed for natural gas 

treatment, notably for small to medium capacities or even for large capacities in off-shore 

or remote applications [12]. Gas separation membranes can also offer significant 

contribution for biogas upgrading [13]. 

These four focal points are considered when developing the carbon dioxide capture 

section for the OCM process. Stünkel et al. investigated the absorption section 

experimentally in a mini-plant in Technische Universität Berlin, testing different solvents 

and operating conditions within the scope of the OCM process downstream section [14]. 

The use of gas separation membranes in combination with absorption in a hybrid process 

was described in [15]. A membrane module or cascade of modules was applied in order to 

remove the bulk CO2, with the remaining fraction being removed through absorption as 

seen in Fig. 2. In [16], the hybrid CO2 capture mini-plant was optimised to minimize the 

energy demand.  The integration of the carbon dioxide capture section with the other 

sections of the OCM mini-plant in a superstructure was proposed and optimised in [17].  

Given the successful proof of concept at the mini-plant scale, the design and economic 

evaluation of a hybrid system for CO2 removal at industrial scale was performed in [18]. 

Therein, the benchmark solvent 30wt% MEA was considered for the absorption section. 

This contribution is herein further extended by analysing the effect of switching the solvent 

to an aqueous solution containing 37wt% N-methyldiethanolamine (MDEA) and 3wt% 
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piperazine (PZ). The MDEA reacts slower with CO2 in the absorber, but its regeneration in 

the stripping column should demand less energy. The PZ is added to overcome the first 

disadvantage, for it reacts quickly with CO2. The membrane and absorption sections were 

modelled and simulated. A design was carried out aiming at the removal of 97% of the inlet 

CO2. The considered OCM reactor produces 100 kton of C2H4 per year. Two new design 

configurations were proposed, one is a standalone absorption process with the mixed 

solvent, while the other is a hybrid process employing a polyimide membrane and the 

mixed solvent. The size of the equipment is calculated, and the utility and equipment costs 

are estimated. The performance of the new process configurations was analysed by 

comparison with a benchmark process consisting of standalone absorption with 30wt% 

MEA. 

3.  Modelling 

The absorption section was modelled in Aspen Plus with an Electrolyte NRTL model 

for the liquid phase and the Redlich-Kwong equation of state for the vapour phase. The 

solubility of gaseous components in amine solutions was described by Henry’s law. The 

simulations made use of the example files in the software’s library, which are based on 

[19]. The implemented thermodynamic and reaction kinetic parameters from various 

literature sources were kept. The columns were simulated with rigorous rate-based models, 

using Aspen Plus’s built-in correlations for mass, heat, and momentum transfer, and for the 

packing hold-ups. Sulzer Mellapak 350X and 350Y were selected as the structured 

packings of the absorption and stripping columns respectively. The remaining units were 

modelled using the traditional MESH approach. 

A high-capacity, flat sheet, envelope-type membrane module was considered for this 

application. The applied membrane material was polyimide (PI), which has a high CO2 

selectivity towards hydrocarbons. This means that the permeate is a CO2 rich stream, while 

the other components tend to remain on the retentate stream. The membranes and modules 

were produced by research partners at Helmholtz-Zentrum Geesthacht Centre for Materials 

and Coastal Research, Germany, as outlined in [13]. 

A one-dimensional, solution-diffusion model based on balance and flux equations was 

applied [20]. Secondary transport effects such as pressure drop and concentration 

polarisation were neglected based on mini-plant experimental results. The flow was 

assumed to be isothermal with the permeate being 5K cooler to account for the Joule-

Thomson effect. The permeances were calculated using an Arrhenius type equation. 

Fugacities were calculated on the retentate side using the Peng-Robinson equation of state 

[21]. The set of differential algebraic equations was discretised using orthogonal 

collocation on finite elements (OCFE) with fourth-order Lagrangian polynomials on Radau 

roots. Ten finite elements were employed, as this provided reasonable computation time 

and identical results to simulations employing twenty finite elements. 

The model was first created using the online modelling environment MOSAIC, which 

allows for the automatic code generation for the numerical solution using different 

programming and domain-specific languages [22]. As an example, for the optimisation of 

the CO2 capture mini-plant performed in [16], an AMPL code for the membrane model was 
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automatically generated in MOSAIC to allow for its solution using the IPOPT solver [23]. 

Herein, the membrane model at mini-plant scale was further extended inside MOSAIC to 

allow for the simulation of industrial plants by applying a scale-up by numbering up 

approach. The inlet flow was divided by the design flow of a single membrane module, 

resulting in the required number of parallel operating modules. A single module was then 

simulated and the resulting flows were multiplied back by the number of parallel modules. 

The code was automatically generated in MOSAIC using the Aspen Custom Modeler 

modelling language, allowing for the model to be compiled and included as a custom unit 

operation in Aspen Plus simulations. Hence, MOSAIC offers a convenient modelling 

platform, allowing facilitated model exchange, reuse, and application across platforms. 

4.  Simulations 

The simulations were carried out using Aspen Plus version 8.8 with the available unit 

operation models of the software library and the custom membrane model exported from 

MOSAIC. Utility and equipment costs were calculated using Aspen Economic Analyzer, 

which allows for the process synthesis and the cost estimation steps to be performed 

simultaneously. The default utility costs of the software were kept.  

Different OCM reactor concepts, such as packed bed, fluidised bed, and membrane 

reactors, as well as different feeding policies, such as CH4-O2 ratio, N2 or CO2 dilution, are 

currently under investigation [24]. It has been previously demonstrated that membrane-

based CO2 separation is unlikely to bring any economic advantage unless CO2 is used as 

dilution gas in the OCM reactor [18]. When employing N2 for dilution, the driving force for 

the CO2 separation through permeation is not high enough, implying too high a product 

(ethylene) loss in the permeate stream. Therefore, a CO2 diluted gas stream was considered 

in this paper. It was assumed that the OCM reactor outlet gas stream is compressed, cooled 

and passed through the water removal section, thus delivered to the CO2 removal section at 

10bar, 313K, and dry, with the following molar composition: CO2: 24.5%; C2H4: 4.5%; N2: 

8.0%; CH4: 63.0%. 

4.1.  Absorption Section 

Given the degree of complexity of the absorption/desorption system with electrolytes, 

reactions, and rate-based calculations; no actual optimisation was performed in Aspen Plus. 

The design of this section was thus performed in terms of extensive simulations and 

sensitivity analyses. A similar systematic has been previously detailed in literature [7]. 

The absorption column was designed based on the liquid to gas ratio (L/G), which is 

determined as the ratio between the total liquid and gas mass flow rates in the column. 

Initially, one wants to use as little amine solution as possible for a given CO2 capture duty, 

which means the L/G ratio should be as small as possible. A reduction in the L/G ratio can 

be achieved by increasing the packed height of the absorber. On the other hand, increasing 

the packed height also increases the capital investment cost for the column. For the 

sensitivity analysis in Fig. 3, the packed height was varied and the necessary amine flow 

rate to achieve the given CO2 capture duty of 97% was calculated for each case.  
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Fig. 3. Sensitivity analysis for the packed height in the absorber 

It is clear from Fig. 3 that after a packing height of 14m, the effect of adding more 

packing in order to reduce the L/G ratio is greatly reduced. For steady operation out of the 

region where the L/G ratio dramatically increases, a packing height of 20 m was chosen for 

the absorber. The achieved rich loading in the bottom (RICH), expressed in 

molCO2/molAMINE, is also shown on the secondary axis. 

The design of the stripper was achieved through the NQ-curve shown in Fig. 4, which 

illustrates the relationship between the number of stages, in this case represented by the 

column’s packed height, and the heat duty. The CO2 mass fraction on the top of the stripper 

was fixed at 0.9 by varying the distillate rate, and consequently, the reflux ratio and 

condenser duty. The lean amine loading at the bottom of the column was fixed by varying 

the reboiler duty. A higher packed height implies lower energy consumption, but increased 

capital investment cost. It is clear that from 4.5 m of packing, the reboiler duty stabilises at 

around 3.05 MJ/kgCO2. Hence, a packed height of 6m was selected for the stripper.  

 

Fig. 4. NQ-Curve for the stripping column 
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The columns’ diameters were calculated taking into consideration the fractional 

approach to maximum capacity. The maximum capacity corresponds to a gas load of 

5÷10% below the flooding point so the column could still operate under these conditions. 

Sulzer recommends a fractional approach to maximal capacity between 0.5 and 0.8 – a 

value of 0.75 was taken. The columns operate under pressure (10 bar for the absorber and 

2.2 bar for the stripper); therefore, pressure drop is not as critical as for flue gas CO2 

capture. The resulting diameters for the absorber and stripper were 4.3 m and 5.8 m 

respectively. The pressure drop calculated by the built-in vendors’ correlation were 

2.4 mbar/m and 0.4 mbar/m, which are within the recommended values. 

The ideal operating point of the absorption/desorption system was investigated through 

a sensitivity analysis for the lean loading of the amine solution (LEAN), which was set by 

varying the reboiler duty in the stripping column. The rich loading at the bottom of the 

absorber is limited by the amine solution absorption capacity. Feeding a leaner amine to the 

absorber implies a reduced L/G ratio and recirculation rate; however, amine regeneration 

occurs at the expense of reboiler duty. The sensitivity analysis was carried out by varying 

the set point for the lean loading and computing the utility costs, comprising cooling water, 

electricity, and medium pressure steam, for the entire system.  The energy efficiency of the 

newly considered solvent can be seen in Fig. 5, where the optimal lean loading is rapidly 

achieved at around 0.04 molCO2/molAMINE. This value typically ranges from 0.1÷0.25 

molCO2/molAMINE for the benchmark 30wt% MEA, indicating that the regeneration of the 

second one demands more energy. 

 

Fig. 5. Sensitivity analysis for the lean loading 

4.2.  Membrane Section 

The membrane section was designed through sequential optimisation with an SQP 

solver in Aspen Plus. The objective function to be minimised was a cost function 

containing the cost to treat the remaining CO2 in the retentate stream through absorption, 

and a penalty cost applied to the C2H4 loss in the permeate stream. The optimisation 

variables were the membrane area per module and the permeate pressure.  
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The penalty cost for the ethylene loss was based on its current market price, which can 

vary drastically according to oil price fluctuations. Applying a price of 1200 USD per ton 

of C2H4 led the solver to bring the membrane area to its lower bound of 0.1 m² in order to 

keep ethylene loss as low as possible, but capturing only 2.3% of the inlet CO2. For a price 

of 600 USD per ton of C2H4, an area of 2.1 m² was found to be optimal, resulting in 36.7% 

CO2 capture and 2.8% ethylene losses. The optimisation was thus used to provide a 

reasonable range of values for the membrane areas. The optimal permeate pressure was 

found to be at its lower bound of 1.1bar for all the cases, given that a higher pressure 

differential across the membrane increases the CO2 selectivity towards C2H4.  

Ultimately, a value of 1.5 m² was selected for the membrane area, allowing as much as 

28.6% of the CO2 to permeate through the membrane, while losing only 2.0% of the inlet 

C2H4. Hence, the addition of the membrane section to remove the bulk of the CO2 allows 

for a major reduction in the required amine recirculation rate and reboiler and cooling 

duties in the absorption section. The design of the absorption section to remove the 

remaining CO2 was carried out through the same previously described methodology. 

For the given gas flow rate, as much as 3,030 parallel membrane modules were 

required. This generates additional capital investment costs. On the other hand, the 

equipment in the absorption section was reduced. While carbon steel can be applied in the 

membrane section, the equipment in the absorption section needs to be constructed of 

stainless steel given the corrosive behaviour of the solvent. Therefore, a trade-off in the 

total equipment cost was observed. 

5.  Results and Discussion 

The main results from the economic analysis are presented in T a b l e  1 . These are the 

utility cost, installed equipment cost, and total cost calculated by annualising the equipment 

cost according to the following formula, where i is the interest rate of 15%, and n is the 

operating life of the plant, which was assumed to be 20 years:  
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The three scenarios correspond to standalone absorption with MEA (benchmark), 

standalone absorption with MDEA+PZ, and hybrid process employing PI membrane and 

absorption with MDEA+PZ. 

The application of the energy-efficient solution containing MDEA and PZ in the 

absorption section allowed for utility cost savings in comparison with the benchmark MEA. 

This is mainly attributed to the reduced reboiler duty in the stripping column. Despite 

requiring a higher solvent recirculation rate, which causes the absorber and other equipment 

to be larger, the stripper column was significantly shortened. The NQ-Curve for the stripper 

column using MEA showed that around 15m of packing are necessary to bring the energy 

requirement down to 3.59 MJ/kgCO2. For MDEA+PZ a value of 3.03 MJ/kgCO2 could be 

reached with only 6m of packing. Hence, both the capital and operating cost could be 

reduced by switching the solvent from MEA to MDEA+PZ. This process configuration 
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should be applied when N2 dilution is used in the OCM reactor and the use of membranes is 

uneconomical due to the high ethylene losses in the permeate stream. 

T a b l e  1  

Results of the economic analysis forthe different process configurations 

Process 

Configuration 

Utility Cost Equipment Cost Total Cost 

kUSD/y kUSD kUSD/y 

MEA 6,653 15,653 9,154 

MDEA + PZ 6,309 15,146 8,729 

PI+MDEA+PZ 4,781 15,625 7,277 

 

When adding the membrane unit on the upstream of the absorption section, the energy 

required for the CO2 separation was reduced to 2.30 MJ/kgCO2, which led to the low 

operating cost for this configuration. It is also shown that the reduction in the equipment 

size on the absorption section nearly covered the costs of the membrane modules. The 

absorption section for this process configuration was estimated at 11,807 kUSD, while the 

membrane section was estimated at 3,818 kUSD. The downside of this process 

configuration is that the ethylene loss was 2.7%, while for standalone absorption, this value 

was typically between 1.0÷1.5%. However, this lost is most likely still acceptable for 

industrial purposes, indicating that gas separation membranes can be applied if CO2 dilution 

is used in the OCM reactor. It is also clear that the benefit brought by the addition of the 

membrane section is much higher than the benefit from switching the solvent. 

6.  Conclusion 

A systematic methodology for the design of energy efficient carbon dioxide absorption 

processes based on rigorous rate-based simulations and the execution of sensitivity analyses 

through the use of commercial flowsheeting software was presented. The methodology was 

applied to the CO2 removal section of the oxidative coupling of methane process. The use 

of a new solvent, an aqueous solution of 37wt% MDEA and 3wt% PZ, was considered as 

an opportunity for process improvement on an industrial scale. Different process 

configurations were considered and the configuration employing a PI gas separation 

membrane and absorption with MDEA and PZ in a hybrid concept provided the most cost-

efficient solution for this application. 

It is evident how emerging technologies, such as absorption fluids and membranes, can 

play a major role in reducing the cost of carbon dioxide sequestration, thus enabling its 

application across different industrial segments. It is also clear how the application of 

hybrid processes, which exploit the pros and cons of different separation mechanisms, can 

provide significant energy and cost savings for chemical processes. 
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