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CORRELATION BETWEEN CRYSTAL AND MAGNETIC
STRUCTURE OF THE POLYCRYSTALLINE
AND NANOPARTICLE TBMNO, MANGANITE

ZWIAZEK MIEDZY STRUKTURA KRYSTALICZNA
I MAGNETYCZNA POLIKRYSTALICZNEJ
I NANOROZMIAROWYCH PROBEK
MANGANITU TBMNO,

Abstract

On the basis of neutron diffraction data the Mn—O bond lengths and Mn—O—Mn bond angles for the poly- and nanocrystalline TbMnO, samples are
determined. All the samples crystallize in the orthorhombically distorted perovskite structure (space group Pnma) and exhibit antiferromagnetic
ordering below 41 K. The Tb atoms and O, atoms are in (4)c site, Mn atoms — in 4(b) site and O, atoms — in 8(d) site. The Mn—O,~Mn bond
angles for the polycrystalline and nanosize samples are similar, whereas the Mn—O,~Mn bond angles for the nanoparticle samples are larger.
The temperature dependencies of the Mn—O bond lengths and the Mn—O—Mn bond angles, the Jahn-Teller distortion parameter (JT) and MnO

— octahedron distortion parameter (delta) for polycrystalline sample exhibit anomalies at 7, temperature for Mn sublattice.

Keywords: crystal structure, exchange interactions, nanoparticle, grain size, Mn—0 bond lengths, Mn—O—Mn bond angles, the Jahn-Teller

distortion parameter

Streszczenie

Na podstawie wynikow neutronowej dyfrakcji wyznaczono dlugosci wiazan Mn—-O oraz katy wigzania Mn—O—Mn dla polikrystalicznej
oraz nanorozmiarowych probek manganitu TboMnO,. Wszystkie probki krystalizujg w rombowo zdystorsowanej strukturze perowskitu (grupa
przestrzenna Pnma) i wykazuja antyferromagnetyczne uporzadkowanie ponizej 41 K. Atomy Tb i tlenu O, zajmuja pozycjg 4(c), atomy Mn po-
zycjg 4(b), a atomy tlenu O, pozycje 4(d). Wartosci katow wiazania Mn—-O,-Mn sg zblizone dla polikrystalicznej i nanorozmiarowych probek
zwigzku TbMnO,, podczas gdy wartosci katow wigzania Mn—-O ~Mn sa wyzsze dla probek nanorozmiarowych. Temperaturowe zaleznosci:
dhugosci wigzan Mn—0, katéw wigzania Mn-O-Mn, parametru dystorsji Jahna-Tellera (JT) oraz parametru dystorsji oktaedru MnO, (delta)

wykazuja dla probki polikrystalicznej anomalie w temperaturze Néela dla podsieci Mn.

Stowa kluczowe: struktura krystaliczna, oddzialywania wymiany, nanoczqstki, rozmiar ziarna, dlugosci wigzar Mn—0, kqty wigzania Mn—

O—Mn, parametr dystorsji Jahna-Tellera
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1. Introduction

The explanation of the complex magnetic interactions and correlation of the magnetic,
structural and electron properties of the REMnO, (RE are the rare — earth ions) manganites
is of fundamental interest [1].

TbMnO, has been attracting a lot of attention in recent years because of its strong coupling
between ferroelectricity and magnetism [2].

The main motivation for performed studies was to obtain the data concerning the crystal
structure and magnetic properties of the TbMnO, manganite as a function of the grain size.
The model for interpretation of magnetic properties of the nanoparticle compounds is based
on the ratio of ideal inner core and nonmagnetic surface, i.e., on the surface/volume ratio [3].

In this paper, we have discussed the influence of the internal structural parameters (Mn—O
bond lengths and Mn—O—-Mn bond angles) on the magnetic behaviour of the polycrystalline
and two nanopowder TbMnO, samples. The structural distortion parameters, i.e. Jahn-Teller
distortion (JT) and MnO, — octahedron distortion (delta) were found for all the samples.

2. Experiment and results

The polycrystalline TbMnO, manganite was prepared by the solid-state reaction. The
final sintering treatment was performed at 1150°C for 15 h. For preparation of the nanosize
TbMnO, manganite the sol-gel method has been used. The two samples of the nanopowders
were obtained after annealing at 800 and 850°C [4]. The crystal structure of the samples
was obtained by X-ray powder diffraction at room temperature using the Philips PW-3710
X°PERT diffractometer with CuK  radiation. The obtained data were analysed with the
Rietveld-type refinement soft-ware Fullprof program [5].

The X-ray diffraction data indicate that all the samples studied have orthorhombic
crystal structure (space group Prnma ). In this structure the Tb and O, atoms occupy 4(c) site:
(x,y, 1/4), 0, atoms are in 8(d) site: (x, y, z) and Mn atoms are in 4(b) site: (1/2, 0, 0) (Fig.1).

The obtained data indicate that the lattice constants and positional parameters x, y, z,
slightly change with changing grain size [6]. The data for the nano-samples indicate that
the a-constant is smaller and the b and ¢ are larger than ones for the polycrystalline sample.
All parameters have minimum at T = 30 K and quickly increase with increasing temperature.

@ Tb4(c)
© Mn 4(b)
© 0,4(c)
® 0, 8(d)

Fig. 1. The orthorhombic crystal unit cell



The grain sizes of nano-samples (800 and 850°C) were determined using the Scherrer
relation d = AM/BcosO,, where d is the grain size, A is the X-rays wavelength, 0 is the
corresponding angle of the Bragg diffraction and B is the difference between half-widths
of the Bragg reflex of the nanopowder and the standard sample [7]. The grains sizes were
calculated using the experimental X-ray data and the following relation: B = 3 — 3, where [3
is the half-widths of the Bragg reflex of the investigated sample and B, the similar value
for the standard sample of Si powder with the grain size of 10 um. The exact method
of determination of grain size is described in [8]. The average grain size values determined
there are: 60 nm and 45 nm for 850-nano and 800-nano samples, respectively.

In the next step, the grain sizes and strain effects were determined based on the
Williamson-Hall method [9]. In this method, the broadening of Bragg peak is a sum of grain
size broadening 3, = K\/dcos© and strain broadening B = € tgO, where the shape factor K is
close to 1, d is a value of grain size and € is a strain constant.

Thus, the resulting total broadening: B =B + B,= € tg® + K\ /dcosO.

total

Multiplication of the above equation by cos6 leads to
B, €OSO = €5inO + KO/d.

Therefore, the grain size d can be determined from the intercept of line fitted with
linear regression as applied to the B cos© versus sin© data.

The experimental _ . values have been determined from the relation:

Btotal = [(Be)zsample_ (BG)ZSi]”z’

where ([39)Sample is a half — width of selected Bragg reflection of the investigated sample, while
(By)g; is a similar value found for the standard sample of Si powder.

The values of the grain size d are equal to 57 nm and 51 nm for 8§50-nano and 800-
-nano samples, respectively. Presented data indicate that the value of grain size increases
with increasing annealing temperature.

The analysis presented in this paper based on the neutron diffraction powder data
collected using the E2 and E6 diffractometers installed at the BERII reactor (Helmholtz-
-Zentrum Berlin) within the temperature range from 1.6 to 260 K. The data were processed
using the program FullProf.

Neutron diffraction data [10] indicate that all the samples have orthorhombic crystal
structure. Determined values of the lattice constants and atomic positions parameters are
presented in Table I in [10]. Low temperature data indicate that the magnetic ordering
of Mn and Tb sublattice for polycrystalline TbMnO, is sinusoidal modulated described by
the propagation vector k = (k, 0, 0). The magnetic moments in Mn sublattice order below
41 K, while in Tb one they order below 9 K.

In the crystal unit cell (space group Pnma) the Mn** and Tb** sublattices can be described
by four modes proposed by Bertaut [11]: one ferromagnetic ordering: F = m + m,+m,+m,
and three antiferromagnetic arrangements: A =m —m, —m, + m, C=m +m,—m, —m,
andG=m —m,+m,—m,

Below 41 K, neutron diffraction patterns for the polycrystalline sample exhibit additional
magnetic peaks connected with the antiferromagnetic modulated ordering with & = 0.28
in Mn sublattice described by C_—mode (see Fig. 1a in [6]).



The Mn magnetic moments, parallel to the a-axis, form a collinear incommensurate
structure of C_— mode. At T = 16 K a noncollinear magnetic structure described by C A —
mode with the Mn moment in the a—c plane was observed (see Fig. 2).

The Tb sublattice exhibits the antiferromagnetic incommensurate ordering of the F A —
type at T = 5 K. The Tb magnetic structure is described by propagation vectork = (k , 0 0)
where k_is equal to 0.423(1) (Fig. 2). At the same temperature, the Mn moments still form
the C_ A structure described by propagation vector k = (k, 0, 0) where & _is equal to 0.282(1).

The refinement of the magnetic peaks intensities for the nano-800 and nano-850 samples
below T, shows that the Mn moments form a collinear incommensurate magnetic structure
of C_— type described by the propagation vector k= (k, 0, 0) (see Fig. 3). The corresponding
patterns for the nano-800 and nano-850 samples are presented in Figs. 1b and lc in [6].
At 1.6 K, the additional peaks connected to the Tb moments ordering are visible. The Tb
structure can be described by the A —mode with propagation vector k= (k, 0, 0) (see Fig. 3),
while for the polycrystalline sample the F A, — mode was evidenced.

The Mn magnetic moments values for nano-samples (at 1.6 K w(Mn) = 2.94(2)
W, and 3.03(4) p, for nano-800 and nano-850, respectively) are smaller than for the
polycrystalline sample (at 5 K w(Mn) = 4.06(2) p,), whereas for the nano-samples the k_
components equal to 0.321(2) and 0.328(2) for nano-800 and nano-850, respectively, are
larger than in the polycrystalline sample (0.282(1)).

Similar conclusions concern the parameters characterizing the ordering in Tb sublattice.
At 1.6 K (Tb) = 3.68(11) u, and 4.43(7) u, for nano-800 and nano-850, respectively.

For polycrystalline sample u(Tb) is equal to 6.55(4) at 5 K. The values of k. component
for Tb sublattice are larger for nano-samples (0.443(5) and 0.451(3) for nano-800 and nano-
-850, respectively.

The T, Néel temperature connected with the Tb sublattice is lower for nano-samples
(6.7 K) in comparison to polycrystalline sample (9 K).

Magnetic structures of the polycrystalline and nanoparticle TbMnO, compounds are
presented in Figs. 2 and 3, respectively. These magnetic structures are incommensurate

Fig. 2. Sinusoidal magnetic ordering in Mn sublattice — violet (C A — mode, k = 0.282(1))
and in Tb sublattice — black (F A, —mode, k = 0.423(1)) for polycrystallme TbMnO,
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Fig. 3. Sinusoidal magnetic ordering in Mn sublattice — violet (C_— mode, k = 0.326(4)) and
in Tb sublattice — black (A, —mode, k = 0.443(5) ) for 800-nano TbMnO,

in comparison with the crystal one. The periods of modulation of the magnetic structure
are equal to 3.54a (Mn sublattice) and 2.36a (Tb sublattice) for polycrystalline sample
and 3.06a (Mn) and 2.25a (Tb) for nano-samples, respectively.

In this paper we have focused on the behaviour of the internal structural parameters
in the polycrystalline and two nanoparticle samples (Mn—O bond lengths and Mn—-O—Mn
bond angles) as a function of temperature. In the orthorhombic unit cell there are the three
crystallographically independent (Mn-O (4c) = r,, Mn-O,(8d), = r,, Mn—0,(8d), = r,) bond
lengths and the two (Mn—-O —Mn = 0, Mn—O,-Mn = ) bond angles (Fig. 4). The temperature
dependencies of the Mn—O bond lengths and Mn—O—Mn bond angles for the polycrystalline
and two nanoparticle TbMnO, samples are presented in Fig. 5.

Fig. 4. The orthorhombic crystal unit cell with the marked Mn—O bond lengths (7, r,, ,) and
Mn-O-Mn bond angles (o, B) and the exchange integrals J , J,
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The temperature dependencies of the », and r, bond lengths show that r, and r, are smaller
for the nanosize samples as compared to the polycrystalline sample (see Fig. 5). This suggests
that in these samples there are a greater overlap of p and d orbitals.

We have observed an increase of the 7 and », bond lengths for the nanosize samples with
approaching to the Néel temperature. For the polycrystalline sample above T = 50 K the
stabilization of all three », 7, and »,bond lengths is visible. The dependence of 7 (T) exhibits
an inverse behaviour as compared to »,(T) (see Fig. 5).

Fig. 6 presents a gradual increase of the o bond angle vs temperature for the polycrystalline
sample, whereas for the nanosize samples a decrease of « till to the Néel temperature and an
increase beyond T, is observed. The o bond angles are larger for the nanoparticle samples as
compared to o for the polycrystalline sample.
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Fig. 6. Mn-O-Mn bond angles (o, B) as a function of temperature for the polycrystalline
and 800-nano and 850-nano TbMnO, samples
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This suggests an increase of superexchange interactions along the b-axis. Values of 3
bond angle are similar for the nano- and poly-TbMnO, samples. For both types of samples
an increase of 3 is observed till the Néel temperature. Beyond this temperature the § bond
angle value substantially drops. Using the r|, r, and r, bond lengths the Jahn-Teller parameter
[12] for the polycrystalline and nanosize samples has been determined according to the
formula [13]:

JT = \/%Zjl[(r})_ <r>pP

where r, are the experimentally determined values of (Mn-O) interatomic lengths (see Fig. 4)
and < r > is the average value of these lengths.
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Fig. 7. Temperature dependences of the Jahn-Teller parameter (JT) and the parameter delta
for the polycrystalline and nanosize samples of TbMnO,
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The parameter delta, which describes the distortion of MnO, octahedron is calculated
using the formula:

r—<r>
delta——zll{ P }

Temperature dependences of the Jahn-Teller parameter (JT) and the parameter delta for
the polycrystalline and nanosize samples of TbMnO, are presented in Fig. 7.

The values of both the Jahn-Teller parameter and the delta parameter indicate the MnO,
octahedron distortion. Distortion is much smaller for the nanocrystalline samples than for
polycrystalline one. For polycrystalline sample the Jahn-Teller parameter has anomaly at
Neéel temperature.

3. Discussion

The data presented in this paper indicate that the magnetic properties of the nanoparticle
samples strongly depend on the grain size. This manifests itself in decrease of the value
of both magnetic moments in the ordered state and magnetic ordering temperature with
decreasing grain size.

The TbMnO, manganite exhibits a para- antiferromagnetic phase transition at 41 K,
where the Mn** ions develop a sinusoidal incommensurate ordering propagating along the
a — direction of the unit cell, described by C A, — mode. Magnetic order in the Mn sublattice
is collinear of C_— type in the temperature range of 21-41 K. For the investigated nano-
-samples a magnetic ordering in the Mn sublattice is described by collinear C_— mode only.

Observed antiferromagnetic order in the Mn sublattice is result of the superexchange
mechanism (cation-anion-cation) which exists in manganites. The superexchange interaction
depends on the Mn—O-Mn bond angles (o, B) and is joined with partial overlap of the p (O)
and d (Mn) orbitals. The interactions between Mn moments are based on the exchange
integrals discussed by Bertaut [14].

At temperature 1.6 K, the values of oo and [ bond angles are equal to 142° and 146° for the
polycrystalline sample while they are equal to 145° and 145.5° for the nanoparticle samples,
respectively.

The obtained values of the Mn—O—Mn bond angles (¢, B) are smaller than 180°. This fact
indicates the moderate ferro- or antiferromagnetic interaction between magnetic moments
of Mn according to the Goodenough-Kanamori rules [15, 16].

Analysis of interactions in the orthorhombic manganites with magnetic structure
described by the propagation vector k = (k, 0, 0) gives the following dependence between
k_and exchange integrals: cos(ntk ) = (2], —J)) [17], where J, is the exchange integral in the
basal a—c plane [z, (Mn) 2p (0) -1, (Mn)] and J, is the exchange integral along the b-axis
[e,(Mn) —2p,_ ()~ e, (Mn)].

The inelastic neutron scattering for the bulk TbMnO, yields the positive value of
J, = 0.15(1) meV and negative one of J, = —0.31(2) meV [18]. This result confirms, that
for the TbMnO, manganite the superexchange interaction between Mn-O,-Mn spins
in the a—c plane (J) is ferromagnetic, while the interaction Mn—-O,~Mn along the b-axis
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is antiferromagnetic (J,) (see Fig. 4). An increase of the k component observed in the
nanoparticle TbMnO, sample indicates the decrease of the exchange integrals in nano-
-samples.

The presented results suggest that the nanoparticle size plays an important role in the
formation of magnetic properties. The influence of deformation of the MnO,-octahedron
on the magnetic structure of TbMnO, manganite is observed. The values of Mn—-O,~Mn
bond angles in the polycrystalline and nanosize samples are similar and the temperature
dependences exhibit anomalies at 7, temperature. The values of the Mn—O,~Mn bond angles
are larger for the nanoparticle samples.

For nano-samples the Jahn-Teller distortion parameter (JT) and MnO -octahedron
distortion parameter (delta) are lowered in comparison to the polycrystalline sample.
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NAMEDELEMENT REVISITED
IN AN ASPECT-ORIENTED APPROACH

NOWE SPOJRZENIE NA NAMEDELEMENT
W PODEJSCIU ZORIENTOWANYM NA ASPEKTY

Abstract

In this paper a novel concept of adding structural responsibilities to meta-model classes for decreasing the
meta-model complexity is introduced. This mechanism is supported by a combination of new Context-Driven
Meta-Modeling Paradigm (CDMM-P) and its implementation in the form of the Context-Driven Meta-Modeling
Framework (CDMM-F) with aspect-oriented paradigm and its Aspect] implementation supporting functionality
and structure enrichment. The concept presented in the paper confirms the openness of CDMM-P and CDMM-F
on the applicability of the aspect-oriented approach. It is also crucial for the process of generalization of notions
introduced into the meta-model when a new modeling language is designed. It also helps to restructure the meta-
model from the perspective of reusability. The NamedElement, known from many Object Management Group’s
(OMG) standards, was chosen.
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Streszczenie
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1. Introduction

The paper is addressed to the NamedElement meta-model or meta-meta-model element,
which is common to many well-known (meta-)meta-models. For convenience, the following
notions are applied further in the paper:

— (meta-)meta-model or (m)mm denotes meta-meta-model or meta-model respectively

— mm denotes meta-model

— (m)mm denotes meta-meta-model

— (meta-)model or (m)m denotes meta-model or model respectively

— m denotes model

— (m)m is an instance of (m)mm, that is m is an instance of mm and mm is an instance
of (m)mm

— s suffix denotes plural number of each notion above

The NamedElement can be met for example in (m)mms, like Meta-Object Facility (MOF)
and its different realizations as well as in (m)ms, like Unified Modeling Language (UML)
and Business Process Model and Notation (BPMN2). This (m)mm element is specific,
because the responsibility it introduces into (m)mm affects many (m)mm elements. So, the
nature of such common responsibility can be named cross-cutting structural responsibility
or cross-cutting structural concern. Its responsibility is to enrich many (m)mm elements by
the name represented in the form of a string. This way for example instances of classes
or meta-classes or relationships may store their names in (m)ms.

Traditionally, the NamedElement class is introduced to (m)mms via a generalization
relationship. However, this relationship is not supported directly by Context-Driven Meta-
-Modeling Framework (CDMM-F) [10-12] based on Context-Driven Meta-Modeling
Paradigm (CDMM-P) introduced in [9] as the framework is located in data-layer. That is
why the paper was introduced, just to explain how this kind of (m)mm elements may be
introduced in the context of CDMM-F with the help of an aspect-oriented approach. The way
of the element is introduced impacts on the features of the (m)mm as the whole.

The analogy between functional responsibilities and structural responsibilities which is
referenced in the paper results from the observation that both responsibilities have a dual
nature. Moreover, the problem of functional responsibilities is widely discussed in [1, 2,
7, 8] while the problem of structural responsibilities is almost completely ignored. However,
it is crucial for meta-modeling domain as well as to data layer design. This paper is focused
on the meta-modeling domain only.

2. Traditional Approach to NamedElement

As mentioned in section 1, the NamedElement is represented in the form of the
class that contains one field of type string to store the name of the instance of this
class. The NamedElement class is related to other mmm elements via a generalization
relationship. If the NamedElement class is not abstract, then, in the case of the mm, the
NamedElement instance is the model element which contains the name of model class.
In the case of the mmm the NamedElement instance is the mm element which contains the
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name of the mm class. Otherwise, if the NamedElement class is abstract, then, in the case
of the mm, the NamedElement instance is the instance of the nearest concrete subclass of
NamedElement class. This instance constitutes the model element which contains the name
of the model class. In the case of the mmm the NamedElement instance is the instance of
the nearest concrete subclass of NamedElement class. This instance constitutes the mm
element, which contains the name of the mm class. NamedElement is represented in (m)mm
by abstract classes.

The main problem with the traditional approach to creating (m)mms is the fact that
their elements are interrelated at compile-time. So, the (m)mm graph is created during
compilation process and not at run time. Thus, the relationships are static. This kind of
interrelating mm elements influences the change introduction ease significantly. Different
relationships interrelate classes differently. The weakest static relationship is UML
dependency relationship, the stronger relationships are associative relationships, association
(the weakest from this set), aggregation and composition (the strongest from this set).
Unfortunately, the generalization relationship is the strongest one. And just this relationship
is applied not only for NamedElement but for many other (m)mm classes. The popularity
of this relationship was originated by knowledge modeling, where generalization is one
of the most important relationships — it helps to build generalization hierarchies. However,
in the software engineering domain the application of this relationship should be limited.
And it is limited in target applications in many ways, like for example by application
of design patterns. Nevertheless, in the meta-modeling domain it is promoted.

The approach discussed in the paper is different than the one presented above — it helps
to interrelate (m)mm classes with their additional static responsibilities dynamically by
injecting static responsibilities to (m)mm classes. The mechanism of injecting this kind
of responsibilities is supported by aspect-oriented approach while (m)mm classes are
managed by CDMM-F. The injecting concept and its applicability to (m)mms construction is
discussed in section 3 while the role the CDMM-F plays in (m)mms definition is explained
in section 4.

3. Structural Responsibility Injection

In contrast to the static compile-time concept of interrelating (m)mm classes presented
above, this section is focused on application of the concept of interrelating (m)mm classes
dynamically. Some consequences of the dynamic injection of relationships into (m)mms are
also briefly discussed below.

The static responsibilities help to construct top hierarchies for (m)mms. They can be
injected to (m)mms in order to address two modeling language designer needs — to introduce
cross-cutting structural responsibilities for many existing (m)mm classes or to perform an
mmm restructurization/refactorization process. The first need is typically planned from
the very beginning of (m)mm defining process while the second need is usually involved
by the observations made during the process of (meta-)modeling language definition. The
characteristics of each need and its possible solution is presented in succeeding subsections
below.
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3.1. Cross-Cutting Structural Responsibility

The notion of cross-cutting concern is well known in Aspect-Oriented Design (AOD)
and Aspect-Oriented Programming (AOP) [1-8], but it is related there to the functional
concerns and is handled there by pointcuts and advices. However, at the same time AOD
and AOP introduce the concept of enriching existing class hierarchies by classes interrelated
statically to these hierarchies. Thus, for symmetry, the concept of enriching hierarchies
statically can be seen from the perspective of static/structural concerns. Per analogy we
have core structural concern, that is (m)mm to be enriched statically and other concerns.
As the aspect-oriented approach fits to the concept of inversion of control (IoC) architectural
pattern, all concerns both functional and static may be injected to the core concerns both
functional and static respectively in the form that does not impact core concern’s source code
in any form. Moreover, the concerns are orthogonal, which means that one concern does
not influence other any concern. In consequence, the static responsibilities can be added to
(m)mm independently of each other.

It is worth noticing that there is also a notion of cross-cutting concerns in AOP. The cross-
-cutting concern is such a concern that crosses core-concern in a significant number of places.
The more such places can be encountered, the more useful the IoC architectural pattern is.
However, this pattern was applied so far for adding functional concerns, like error handling,
system activity logging, auditing and many others. In this paper the same approach is applied
to adding cross-cutting structural concerns. The NamedElement is a good example for such
the cross-cutting concern as having the name is very common feature of (m)mm elements.
Cross-cutting concerns are usually identified well before the meta-modeling process starts.
However, they can be also added during this process in the case when they are recognized
late. In section 3.2 the last cross-cutting structural responsibility addition is presented.

3.2. Meta-Model Refactorization

This section is focused on the (m)mm refactorization problem. A special case of the
refactorization is involved by late recognition of a cross-cutting concern — this problem
was characterized in section 3.1. But, usually the scope of the (m)mm refactorization for
the purpose of structural responsibility addition is limited. As the consequence, both
kinds of refactorization can be handled in the similar way although they have different
purposes in the (meta-)modeling language design process. So, the same mechanism of
adding structural responsibilities as the one described in section 3.1 can be applied for both
forms of refactorization.

A simple example of such refactorization is presented in Figures 1 and 2. The UML class
diagram for the mm structure before refactorization is presented in Figure 1 while the model
after refactorization is depicted in Figure 2. The refactorization is limited to generalization
of the fact, that both classes B1 and B2 have the same data field. The data field is thus
moved to the new class T, which is aggregated both in B1 and B2.

Figure 2 presents a conceptual UML diagram, as it is informal for AOP. Nevertheless
it reflects the fact of sharing common data field from class T well.
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B1 B2
-name : string -name : string

Fig. 1. Sample meta-model before structural refactorization

T
-name : string

B1 B2

Fig. 2. Sample meta-model after structural refactorization in AOP approach — conceptual
UML class diagram

The example from Figures 1-2 can be implemented in Java/Aspect] technologies in the
form presented in Listings 1-2 respectively.

package pl.edu.pk.pz.aop.mm;

public class Bl {
String name;

}
public class B2 {
String name;

}

Listing 1. Java implementation of sample meta-model before refactorization

The classes that constitute structural responsibilities are located in the aspects layer
(aspects) while the hierarchies to be enriched are placed in the class-object layer (classes).
All these constructs are already available in Aspect] in the form of inter-type declarations (for
modifying class hierarchies) and aspects (containers for all elements introduced by Aspect]
to Java language).

In Listing 2 just the Aspect] AOP implementation was used to inject the T class as the
default implementation of its IT interface. And this is a typical approach for this technology
— classes are injected in the form of the relationships constructed from @DeclareParents
annotation arguments.

One step more may be done in AOP — the aspects layer may be moved to the Spring
framework and combined with Aspect]. However, the most important limit in the application
of AOP to meta-modeling this way is connected to the fact that aspects are not instantiable
(their lifecycle is synchronized with the lifecycle of the appropriate class instance in the
best case, so they cannot exist without the class instance). As the result, the relationships
represented by aspects do not have their instances. In consequence the relationships cannot
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be differentiated, used or re-used between different (m)mms as separate entities. The CDMM
approach is different as the relationships may have their instances as they are represented
by classes. The core concept of CDMM-F is also based on the same mechanism as the one
shown in Listings 1-2. However, the aspects in CDMM-F are used to interrelate (m)mm
graph nodes represented by (m)mm entity classes by (m)mm edges represented by (m)mm
relationship classes.

// meta-model classes
package pl.edu.pk.pz.aop.mm;

public class Bl {}
public class B2 {}

// top hierarchy package
package pl.edu.pk.pz.aop.th;

public interface IT {
public String getName();
public void setName(String name);

}

public class T implements IT {
private String name;
public String getName(){return name;}
public void setName(String name){this.name = name;}

}

// aspects layer
package pl.edu.pk.pz.aop.aspect;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.DeclareParents;

import pl.edu.pk.pz.aop.th.IT;
import pl.edu.pk.pz.aop.th.T;

@Aspect

public class Bl {
@beclareParents(value="pl.edu.pk.pz.aop.mm.B1”,defaultImpl=T.class)
public IT t;

}

@Aspect

public class B2 {
@beclareParents(value="pl.edu.pk.pz.aop.mm.B2”,defaultImpl=T.class)

public IT t;

Listing 2. Java/Aspect] implementation of sample meta-model after refactorization

The NamedElement class can be injected in place of class T to the class layer or to
the classes defined in CDMM-F. However, the classes from the example in this section
have different names than the ones presented in the context of CDMM in order to underline
significant differences between AOP approach and CDMM approach. The specifics of the
CDMM approach from the refactorization perspective is explained in section 4.
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4. Structural Responsibility Injection in CDMM

It was shown in section 3 that direct application of AOP to the meta-model classes
introduces an important limit — relationships are not represented in the form of classes but
in the form of aspects. In consequence, (m)mms can be built in this approach from classes
located in (m)mm graph nodes interrelated by relationships located in (m)mm edges, which
are represented in the form of an aspect. So, this approach just supports the concept of
modeling relationships between classes in the form of references. Moreover, this feature
introduces asymmetry to this approach. As the result of this asymmetry, (m)mm graph nodes
are reusable (classes and their instances) while (m)mm graph edges are not reusable (aspects
without instances).

In contrast to the typical AOP approach presented above, relationships in CDMM are
represented in the form of classes which are reusable. CDMM approach allows for injecting
relationships as classes that represent relationships in place of injecting relationships into
classes in the form of aspects. In consequence, the relationships play the role of structural
responsibilities of the interrelated classes. This approach is symmetrical and more general
than the one based on naive application of AOP paradigm. In the CDMM approach both
classes and relationships exist independently of each other and they are interrelated at run-
-time by Spring application context XML file [12]. So, (m)mm graph node classes as well as
(m)mm graph edge classes are subject of reuse between different (m)mms. Thus, the (m)mms
constructed according to CDMM approach may be easily customized, changed, designed
from scratch and each part of them can be easily reused.

The paper is focused on handling the problem of NamedElement handling in CDMM.
It is worth noticing that the structural responsibilities can be injected with the help of
aspect oriented approach to the CDMM based (m)mm. The same technique can be used
for injecting NamedElement into (m)mm graph. The NamedElement may be seen as just
another structural responsibility of the (m)mm graph node or edge classes — the responsibility
of (m)mm element name storage.

The concept of introducing NamedElement into CDMM (m)mm graph with the help of
aspect orientation is presented below in the form of the example similar to the one presented
above. However, this example refers to Spring notions like beans and application context
and it is related to CDMM-F (m)mm.

The same (m)mm as the one presented in Figure 1 was chosen to represent the
(m)mm before refactorization. The result of the refactorization of this (m)mm is presented
in Figure 3.

Both Figure 2 and Figure 3 contain conceptual diagrams — they are not formal as since
2001 the AOP is out of scope of the UML standard. The CDMM approach makes it possible
to define any (meta-)modeling language and to generate the self-organizing MDA-like
modeling tool for this language. This way the concept of automatic model-driven aspect-
oriented software generating can be achieved without standardization of the (meta-)modeling
language. This CDMM characteristic feature applies for any technology which is in scope or
out of scope of MDA standards.

The most important elements of the source codes for the example from Figure 1 that
implement (m)mm in CDMM are presented in Listing 3 and Listing 4. Java source code
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NamedElement

-name : String

+getName() : String
+setName(name : String) : void

<<Interface>>
INamedElement

+getName() : String
+setName(name : String) : void

Al [

<<Dependencylnjection>> ,* *. <<Dependencylnjection>>
. .

.

B1 B2

Fig. 3. Sample meta-model after structural refactorization in CDMM approach — conceptual
UML class diagram

for two (m)mm classes is shown on Listing 3. The most important part of the CDMM-F’s
application context file for the (m)mm from Figure 1 is presented on Listing 4.

package com.componentcreator.metamodel.coremetamodel.domainsimpl;

public class DB1 extends BaseMetamodelCore implements IDB1 {
String name;

public class DB2 extends BaseMetamodelCore implements IDB2 {
String name;

}

Listing 3. Meta-model elements before refactorization

Now, a new (m)mm element is introduced. As a consequence of its introduction the
name field migrates from B1 and B2 CDMM (m)mm classes to the new (m)mm element.
This new element is just NamedElement and its definition is presented on Listing 5.

The structural responsibility represented in the paper by NamedElement can be added
to some (m)mm elements via inclusion of the application context file presented in Listing 6
in the application context file from Listing 4. It was already stated that each such cross-
-cutting structural responsibility like NamedElement is orthogonal to the core concern —
(m)mm and to other cross-cutting concerns. This orthogonality is represented by independence
between responsibilities injected this way and by inclusion of extra application context.

The example presented above shows how to apply aspect oriented approach to enrich
(m)mm defined in CDMM-F structurally. This approach to adding new concerns to (m)
mm does not impact classes from (m)mm as long as this addition does not result from (m)
mm refactorization. However, even in this case, the (m)mm change does not result from
addition of new structural responsibility by aspects, but from the nature of the refactorization
process itself. In the case of designing (m)mm and defining cross-cutting responsibilities
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for it in advance, the addition of these responsibilities may be done in separation from the
(m)mm’s definition.

<beans>
<!-- Root -->
<bean class="com.componentcreator.metamodel.coremetamodel.root.RootMetamodelCore”
id="root” scope="singleton”></bean>
<!-- Root direct neighbours (collections) -->
<bean class="com.componentcreator.metamodel.coremetamodel .domainsimpl.DB1”
id="generalization” scope="prototype”></bean>
<bean class="com.componentcreator.metamodel.coremetamodel .domainsimpl.DB2”
id="class” scope="prototype”></bean>
<!-- Responsibility implementations -->
<!-- Root direct neighbours (collections of CPoliOMulti type) -->
<bean class=
»com. componentcreator.metamodel . coremetamodel .responsibilitiesimpl.RCollectionCPOM”’
id="collectionImplForRoot”>
<constructor-arg>
<list>
<value>com.componentcreator.metamodel.coremetamodel.domainsimpl.DB1</value>
<value>com.componentcreator.metamodel.coremetamodel.domainsimpl.DB2</value>

</list>
</constructor-arg>
</bean>
<!-- Responsibility injections -->

<aop:config>
<aop:aspect id="holderA” ref="holderAAspect”>
<aop:declare-parents
types-matching=
»com. componentcreator.metamodel . coremetamodel . root.RootMetamodelCore”
implement-interface=
»com. componentcreator.metamodel . coremetamodel .responsibilities.IRCollectionCPOM”’
delegate-ref="collectionImplForRoot”/>
</aop:aspect>
</aop:config>
</beans>

Listing 4. Meta-model graph before refactorization

package com.componentcreator.metamodel.coremetamodel.metaontologies.namedelement;

public interface INamedElement {
public void setName(String name);
public String getName();

public class NamedElement implements INamedElement {
private String name;
@override
public void setName(String name) {
this.name = name;
}
@override
public String getName() {
return name;
}
}

Listing 5. New meta-model element to be injected into meta-model graph (NamedElement)
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<beans>
<!-- NamedElement responsibility injections -->
<aop:config>
<aop:aspect>
<aop:declare-parents
default-impl=
»com.componentcreator.metamodel . coremetamodel .metaontologies.namedelement.NamedElement”
implement-interface=
»com. componentcreator.metamodel . coremetamodel .metaontologies.namedelement.INamedELement”
types-matching="com. componentcreator.metamodel . coremetamodel .domainsimpl.DB1” />
</aop:aspect>
<aop:aspect>
<aop:declare-parents
default-impl=
»com.componentcreator.metamodel . coremetamodel .metaontologies.namedelement.NamedELlement”
implement-interface=
»com. componentcreator.metamodel . coremetamodel .metaontologies.namedelement.INamedELement”
types-matching="com. componentcreator.metamodel .coremetamodel .domainsimpl .DB2” />
</aop:aspect>
</aop:config>
</beans>

Listing 6. Meta-model graph after refactorization

5. Conclusions

This paper shows that the CDMM concept may be joined with other concepts applicable
in software engineering domain. More specifically, it illustrates how the (meta-)meta-
-model graph implemented in CDMM-F can be enriched structurally by the application
of AOP approach. The examples have shown that the most important advantages of
AOP are preserved when the CDMM approach is used for (meta-)meta-model creation.
Moreover, the combination of CDMM and AOP can be applied both for (meta-)meta-model
refactorization as well as for the initial (meta-)meta-model design decisions.

The fact that AOP-oriented structural responsibilities can be injected into (meta-)
meta-model results in very important feature of the presented combination of technologies
— it introduces independence of life-cycles. The CDMM based (meta-)meta-model can be
changed in large extent independently from changes introduced into AOP based structural
responsibilities and vice versa. This feature helps to simplify and manage the process
of designing modeling languages (meta-models) or designing languages used to define
modeling languages (meta-meta-models).
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Abstract

The paper focuses on the problem of managing the scope understood as managing the multiplicity
of elements that constitute the application context for Java Enterprise Edition (Java EE) frameworks.
The subject of constructing graph modeling languages is the basis for scope management considerations.
The problem can be demonstrated while the frameworks are superposed, which is necessary for meta-
-modeling compliant to the Context-Driven Meta-Modeling (CDMM) approach. The realization of
the approach is based on Spring and Aspect] frameworks, which offer incompatible concepts of scope
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1. Introduction

Scope management in a broad sense comprises managing the number of instances
during the process of constructing them, that is, at run-time. The conventional approach
of programmers associates the responsibility of multiplicity determining mentioned above
with a class. This is apparent, among other things, in singleton (anti)pattern. However,
in Java EE frameworks this responsibility is moved to the framework. A bean multiplicity
in the framework can be specified by the application context. The bean, on the other hand,
reflects the way the framework (and in the consequence the software system implemented
in the framework) perceives classes. The bean contains more information than the class,
among other things just information about multiplicity of the bean. This additional information
stored in the bean is specified in the application context file based on which the framework
creates bean instances (and thus class instances). A particular class may occur once as the
instance of one bean the scope of which is specified as singleton and, at the same time in
the same application, the same class may occur multiple times as instances of other bean
(associated to the same class) the scope of which is defined as prototype. In contrast to meta-
-models (modeling languages) constructing this solution turns out not to be sufficient due to
the high complexity of graph meta-models. Also relating the scope to the bean only turns out
not to be sufficient while applying it to graph modeling languages. That is why the need to
enrich the current mechanism occurred.

In scientific papers [12] as well as in the IT industry literature [5] and in industry standards
[6, 13, 19] meta-models are created statically — modeling languages are defined at compile
time. However, as research results achieved by the author show [20], it is possible to define
modeling languages at run-time. The application context mentioned above can be used to
specify graph-like interrelations between language elements.

Further in the paper it is shown that when the scope notion is addressed to modeling
languages constructed at run-time, this notion should be addressed both to Java EE beans
and to classes. Moreover, bean sets as well as sets of classes involved with relationships
interrelating particular bean sets play an important role in meta-modeling.

A characteristic feature of the CDMM approach [21] is constructing meta-model graph
from elements consisting of meta-model entity classes and meta-model relation classes.
The graph is constructed from Java EE beans defined for these classes, thus from entity
beans and relation beans. Entity beans are placed in graph nodes while relation beans are
placed in graph edges. In such an approach the application context XML file constitutes the
definition of the meta-model graph. However, in such approach the correct management of
relation instances quantity during relation beans injections into entity beans is an important
problem. It is especially evident with reference to N-ary relationships [4, 8, 9, 14, 15, 17],
relations that join more than two graph nodes at the same time. In the case of such relations
the mechanism of injecting the same relation object (relationship bean instance or relation
class instance) to all nodes involved with this relation must be provisioned. It appears,
however that the possibilities offered by Java EE frameworks are not sufficient in the area
of multiplicity management, as they are focused on management of multiplicities of singular
beans only. It is worth noticing that the implementation of N-ary relations and the so called
“arity problem” is difficult while constructing graph modeling languages. It is shown by
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documented problems visible in Object Management Group (OMG) standards, like Meta-
-Object Facility (MOF) — the definition of N-ary association was omitted here because of
too much difficulty [1, 13], then the implementation of this relationship as a separate notion
in Unified Modeling Language (UML) standard was retired [19] (it is represented on the
diagramming and not on the modeling level, so the code cannot be generated from UML
modeling tools) [7]. The root cause for these problems and limits is the lack of representation
for relationships in all sources known from scientific literature, IT industry publications
and software modeling tools documentation [3, 10, 11, 18] However, these problems can be
solved in CDMM technology as the relations have their representation in it.

It should be pointed out that the scope management problem with reference to the CDMM
technology concerns such meta-model elements only which are involved in representing
relations, so they play the role of edges of the graph being the representation of a modeling
language. Edge (meta-model relation) classes play the role of static responsibilities for node
(meta-model entity) classes. These responsibilities are injected to entity classes as default
implementations of interfaces of these relation classes with the help of dependency injections
(Spring) and with the help of aspect-oriented inter-type declarations (Aspect]).

2. Scope Management in Spring Framework

The Spring framework offers scope management limited to the Spring beans. The bean
is the way Spring as well as the Spring-based application (more generally — a software
system), sees Java POJO classes. The object model in Spring is enriched in comparison
to Java object model by many attributes that can be associated to beans. One of them is
the “scope” attribute of a bean. According to the documentation of Spring framework [16]
the scope attribute can have one of the following values: “singleton”, “prototype”. The
“singleton” attribute informs Spring that the bean with this attribute value can have exactly
one instance — the bean and not the POJO class behind the bean. The “prototype” attribute
informs that the bean with this attribute can be multiplied as needed.

Static information about beans is defined in Spring application context XML file.
As long as bean instances are created from the application through the Spring Application
Programming Interface (API) the solution offered by the framework is sufficient.

When the instance of a particular bean is created from the Spring-based application
through the API of Spring the constructor of the class which is behind the bean is called by
default. However, Spring offers also another mechanism, which is applied in the approach
presented in the paper. The bean instances may be created through factories. This approach
is much more flexible and was originally added to Spring to simplify application of
creational design patterns.

3. Scope Management Problems in AspectJ with Spring

The situation described in section 2, when Spring is used as the only framework and
when bean instances are created from the Spring-based application is simple and does not
trigger any problems. However, when the Spring is superposed with other framework and
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this additional framework influences or even takes control over bean instances creation
process, some problems appear. They result from the fact that the additional framework
may take responsibility for bean instance creation from the Spring-based application to the
additional framework. Moreover, the additional framework may delegate this responsibility
back to Spring and to application context. And this is the case when Spring is superposed
with Aspect] [2].

The Spring framework is integrated to Aspect Oriented Programming (AOP) via two
Spring sub-projects: SpringAOP [16] and Spring+Aspect] [16]. The first one constitutes
a limited implementation of AOP concepts and is not sufficient for the CDMM-F
implementation. However, the second project offers full Aspect] functionality and is
sufficient for the application of the CDMM concept. The rest of the paper is limited to the
full integration of Spring with Aspect].

The implementation of CDMM-F is based on extensive usage of AOP concept
applicable to influencing class hierarchies, thus inter-type declarations, and more specifically,
declare-parents construct. This way the relationship classes of a meta-model can be injected
as default interface implementations to particular meta-model entity classes as their structural
responsibilities (in contrast to dynamic responsibilities, which are more typical). The method
for such injections is specified in Spring+Aspect] application context file according to
the sample code presented in Listing 1.

<!— Meta-Model Entity Beans (Spring) -->

<bean
class="com.componentcreator.metamodel.coremetamodel .domains.DEntity”
id="entity”
scope="prototype”>

</bean>

<!— Meta-Model Relation Beans (Spring) -->

<bean
class="com.componentcreator.metamodel.coremetamodel.relations.RRelation”
id="relImplForDEntity”>

</bean>

<!— Meta-Model Graph Creation (Spring+AspectdJ) -->
<!— Meta-Model Relation Injections to Meta-Model Entities -->
<aop:declare-parents
types-matching
="com.componentcreator.metamodel.coremetamodel.domainsimpl.DEntity”
implement-interface
="com.componentcreator.metamodel.coremetamodel.relations.IRRelation”
delegate-ref=" relImplForDEntity”/>

Listing 1. Meta-model elements defined in Spring and their injections defined in Spring+Aspect]
application context file (extract only)

It is clear from the Listing 1 that meta-model entity beans have their scope defined
as “prototype” while the attribute is ignored for relationship beans. It is not specified in
application context file to underline the fact that Aspect] ignores this attribute for beans it
injects.

When the Spring integrated to Aspect] loads an application context file that contains
such injections, the default implementations of interfaces are created as Spring beans. This
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behavior influences and destroys the original Spring concept of scope management. It is even
impossible to change the Spring+Aspect] behavior from the bean “scope” parameter — from
its predefined as well as from its user-defined version. The Spring interpretation of the “scope”
bean parameter is completely overlapped by Aspect]. But, fortunately, Spring+Aspect]
create injected beans of default implementation classes for each such injection. Moreover,
the Aspect] mechanism does not overwrite the option of calling factories in place of
constructors when a bean is instantiated. It is shown further in the paper that combining
both mentioned features helps to take full control over the instantiating process when meta-
-model is created.

4. Scope Management Problem

This section is focused on two goals — showing how the control over scope management
(introduced intuitively before) can be regained in case of overlapping incompatible
solutions offered by different Java EE frameworks and presenting the skeleton of the concept
of advanced scope management for meta-modeling purposes.

In order to address the two goals mentioned above, the scope management problem
should be clearly stated and then its solution can be presented. At the end the correctness
of the solution should be verified. All these stages are presented below.

4.1. Problem statement

The scope management problem is the problem of controlling the multiplicity of
application elements while their construction process driven by Java EE application context
under the assumption that the application context file is interpreted by more than one
Java EE framework.

As the consequence we have the following situation — the superposition of frameworks:

F=F1°F2°...°FN
where:

F — the framework created as the result of superposition of other frameworks,

FI—-FN — superposed frameworks.

The problem is at least two-dimensional as it concerns both classes and their beans.
The problem of the actual dimension is discussed in section 4.2. The size of the problem
does not depend of the number of frameworks F/ — FN.

The problem is limited to meta-model relation beans and classes.

The problem can be solved if the following conditions are fulfilled:

— FN framework tries to construct application elements whenever needed
— FN framework does not eliminate the ability to access factories for application elements
construction purpose

Topological aspects only are taken into account in the paper. This means that such problems
like cardinalities of meta-model relationships (meta-cardinalities) as well as the problem
resulting from the above — the problem of existence of some nodes at the meta-model relation
ends are ignored in the paper. The problem of meta-model relationship cardinalities which
is new and separate from the scope management problem is intended for future publications.
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4.2. Problem solution

It was mentioned before that scope may be addressed to beans and/or classes specified
in the application context. Another observation related to Spring scope management is that
the concept of scope management is related to the whole application. This means that the
particular scope associated to a particular bean defines the multiplicity of the bean instances
in the whole application. However, in the meta-modeling problem the range of the scope
should be differentiated to such areas like meta-model, context file, constructor.

As the result, in the meta-modeling problem, the following dimensions of the scope
management problem should be assumed:

Subject (relationship class, relationship bean)

Scope (meta-model, context file, constructor)

Thus, the name of scope fits better to the true meaning of this notion.

For each combination of the above elements, for each pair (Subject, Scope) the element
of the framework F which is responsible for scope management should be identified. So,
the divagations should be enriched by the following mapping:

(Subject x Scope) — ScopeManager
where:
ScopeManager = {class, bean, context, framework} c F

The communication between framework F and the right ScopeManager is controlled by
factories that are called while constructing application elements. The special case is when the
factory does not delegate the scope management responsibility to dedicated ScopeManager
but takes this responsibility. This assumption was assumed in the rest of the paper for
simplification. As the result, the naming convention for factories, which in consequence
of this assumption can be predefined in F, can be introduced. The naming convention may
be as follows:

Responsibility<Subject><Scope><Manager>ScopeFactory,
where, under the above assumption <Manager>=Factory c F

In consequence, the names of such factories are as the ones contained in Table 1.

Table 1
The names of factory classes which are responsible for managing meta-model relationclasses
Subject

Scope ubjee Class Bean

Metamodel ResponsibilityClassMetamodel ResponsibilityBeanMetamodel
ScopeFactory ScopeFactory

Context file ResponsibilityClassFile ResponsibilityBeanFile
ScopeFactory ScopeFactory
ResponsibilityClassConstructor ResponsibilityBeanConstructor

Constructor
ScopeFactory ScopeFactory
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The ResponsibilityBeanConstructorScopeFactory class is sufficient to solve the arity
problem. That is why the nature, implementation and verification of just this class is discussed
further in this section as the illustration of the factories implementation concept.

Two variants are taken into account below to characterize the nature of
ResponsibilityBeanConstructorScopeFactory class. The simple case is presented first (one
relation for a particular set of entities). Then the complex case (many relations for a particular
set of entities) is shown. The problem of number of relations in meta-model has not been
identified and has not been investigated before. The name suggested by the author for this
problem is meta-cardinality and it is related to the CDMM system of notions. However, this
problem is discussed in a separate paper. The two cases mentioned above are defined for:

— a particular relation (for a particular bean of a relation class) joining a set of entity
classes — one bean instance is created by the factory

— many relations of the same kind (represented by the same bean of a relation class) joining
a set of entity classes — the number of bean instances created is equal to the number
of relations.

More generally speaking, for a particular set of constructors of any number of a relation
beans (for the same relation class) the number of instances of this bean is equal to the number
of beans and not to the number of the bean class injections to the set of entity classes.

The characteristics of ResponsibilityBeanConstructorScopeFactory class can be
referenced to Figure 1 and Listing 3 in section 4.2.

In the next research stage all possible combinations of relation construction cases were
identified for the meta-modeling application domain. These observations have theoretical
nature (all cases were identified for consideration completness).

The following notational system was designed to specify scope in the application context
file:

— CDMMFsubject (applied in each bean to determine if the scope is related to the bean or
to its class)

— CDMMFscope (applied in each bean to define the scope for CDMMFsubject)

— CDMMFmanager (applied in each bean to define the element responsible for the scope
management for this bean)

— The following comments are related to the system of tags introduced above:

— CDMMFmanager may be optional (if we assume that the scope management is default)

— CDMMFmanager may not be required if the right class will be determined by the pair
(CDMMFsubject, CDMMFscope)

— as long as any Java EE framework F has its notation related to scope management
the CDMM prefix is required

The implementation of the ResponsibilityBeanConstructorScopeFactory scope manager
is presented in Listing 1.
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public class ResponsibilityBeanConstructorScopeFactory implements
IResponsibilityBeanScopesFactory {

private static Map<String, IResponsibility> relationshipMinimal
= new HashMap<String, IResponsibility>();

public IResponsibility getInstanceMinimal (String beanId, String cls,
List<String> str) throws NoSuchMethodException, SecurityException,
ClassNotFoundException, InstantiationException, IllegalAccessException,
IllegalArgumentException, InvocationTargetException {
// the instance of the beanId was already created
if (relationshipMinimal.containsKey (beanId)) return
relationshipMinimal.get (beanId) ;
// the beanld has not been created yet
else {
// create the instance of cls object passing it str parameters
// - Java reflection needed here
relationshipMinimal.put (beanId, (IResponsibility)
ResponsibilityBeansRegister.get (cls) .getConstructor (new Class|[]
{List.class}) .newInstance (new Object[] { str }));
return relationshipMinimal.get (beanId) ;

}

Listing 2. Scope management factory class dedicated to N-ary relationship instance
multiplicity handling

The factory implemented in the form presented on the Listing 1 works as follows.
The meta-model relation bean (represented by beanld in the source code) is defined in the
application context file for Spring Java EE. Then the relation bean is injected by Aspect]
framework when the default interface implementation of a relation class is associated to
a meta-model entity class. In place of constructor the method getInstanceMinimal() is called
with the following parameters: beanld equal to the Id of relation bean, cls equal to the
pathname of the relation class, str equal to the list of pathnames of entity classes the relation
bean is injected to. The method determines if the object was already constructed for the set
of parameters (beanld, cls, str) and creates it or returns the reference to already existing bean
instance.

4.3. Verification

The concept of scope management was tested for the superposition of Spring and AspectJ
frameworks. This combination of frameworks is sufficient for obtaining the superposition
with required features as defined in section 4.1. This superposition of just these frameworks
is also good enough for defining sufficiently complex meta-models.

The correctness of the approach presented in the paper was verified in three following
stages:

— all factory classes presented in Table 1 were implemented,

— appropriate meta-models were defined to generate all test cases (at least one test case was
needed to test each factory class),

— appropriate unit tests were implemented to test each test case resulting from meta-models
defined above.
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All test case executions confirmed the correctness of both the approach and the
implementation of all factories dedicated to support meta-modeling. It is worth noticing
that the elaboration of all meta-model concepts required to implement test cases for each
factory class was especially demanding and time consuming. This complexity resulted from
the fact that in this case the special meta-modeling problems should be invented to check
the correctness of the solutions which were foreseen before during theoretical research. This
approach was abnormal as usually the problem appears first and the solution comes later.

As the illustration of the use of the factory for a sample meta-model is presented in
Figure 1 and then the extract from the application context file is shown.

DC2

R DC1 DC3

.
|
|
|

IRN-ary

RN-ary

Fig. 1. Sample meta-model for the N-ary relationship

The way the factory is specified in the application context file and how it is associated to
the RN-ary bean is clarified in Listing 3.
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<bean
class="com.componentcreator.metamodel.coremetamodel.scopefactories
.ResponsibilityBeanConstructorScopeFactory”
id=" responsibilityBeanConstructorScopeFactory ” scope="singleton”></bean>

<bean class="com.componentcreator.metamodel.coremetamodel.relations.RNary”
id="naryImpl”
factory-bean="responsibilityBeanConstructorScopeFactory”
factory-method="getInstanceMinimal”>
<constructor-arg>
<value>"naryImpl”</value>
</constructor-arg>
<constructor-arg>
<value>
”com.componentcreator.metamodel.coremetamodel.relations.RNary”
</value>
</constructor-arg>
<constructor-arg>
<list>
<value>
com.componentcreator.metamodel.coremetamodel.domainsimpl.DC1
</value>
<value>
com.componentcreator.metamodel.coremetamodel .domainsimpl.DC2
</value>
<value>
com.componentcreator.metamodel.coremetamodel .domainsimpl.DC3
</value>
</list>
</constructor-arg>
</bean>

Listing 3. Meta-model scope factory and relation beans specification in the application context file

5. Conclusions

The scope management problem was identified for meta-modeling purposes. The meta-
modeling application domain as defined by CDMM approach is complex enough to study
the problem. The concept of the scope management solution was also implemented in
CDMM-F with the help of appropriate factories. Then the solution correctness was verified
by appropriate test cases.

The paper initiates further research efforts in the field of scope management by creating
solid fundamentals and presenting the skeleton of the solution for the next problems related
to scope management. The mentioned problems are named and characterized briefly below.

Several interesting subjects for research are connected to meta-cardinality (the problem of
defining the number of relation instances). This problem is very complex and is not supported
by currently available technologies.

Another interesting problem which is new for meta-modeling and modeling disciplines
is the problem of navigability of meta-model relationships named by the author meta-
navigability. This problem is connected to traversing the directed graph of modeling language
and impacts CDMM-F API significantly.

Also acomplex problem of combining scopes may appear when several application context
files that are based on different scope management concepts are used (reused) to constitute
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the whole meta-model application context. In the paper a simple case is implemented (see
relationshipMinimal), but the concept of relationshipRedundant was also designed (but not
verified yet) to support future solution of the scope combining problem.

Other challenging problems are connected to the so-called arity problem. The N-ary
relationships can be handled in CDMM-F but in order to gain the full solution of the
problem the meta-cardinality and meta-navigability problems must be completely solved
and published.
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1. Introduction

In paper [6] we investigated operators of the Szasz-Mirakjan type defined as follows

qmw=z mav(qjxw; 0
£(0) x=0

where the coefficients

x2k+v

I, (nx) 22XV KID(k+ v +1)

I" is the gamma function and /, the modified Bessel function of the first kind defined by
the formula ([15], p. 77)

P:,k (x)= ()

2k+v

I,(2)=
Z22’”Vkvr(k+v+1)

This means that we replaced the coefficients of well-known Szasz-Mirakjan operators by
some terms involving the modified Bessel function /..

We studied the approximation properties of these operators in exponential weight
spaces

E,={f eC(Ry):w,f isuniformly continuous and bounded on R},

where C(R ) denotes the space of all real-valued function continuous on R = [0;00) and w,
is the exponential weight function defined as follows

w,()=e®, geR, 2)
forxe R
In the spaces we introduced the weighted norm
||fqu:sup{wq(x)|f(x)|:xGRO} 3)

and we established ([6], Theorem 2.1) that operators L} are linear, positive, bounded and

transform the space E, into E,.
In this paper we introduce an integral modification of (1)

Li(f;x) =

Zk:opz»k (x) J.gr\:,k ®)dt, x>0 W
0

1(0), x=0
where the coefficients p, , are defined above and

n+q

—(n+q)t 2k+v
—_—e n+ t
TQ2k+v+1) ((n+9)1)

gn,k (t) =
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The idea of integral modifications of this kind of operators comes from J.L.. Durrmeyer
([2]) who introduced the integral modification of the genuine Bernstein operators. Later on
new modifications of other classical operators appeared, for example, M.M. Derriennic ([3]),
S.M. Mazhar and V. Totik ([11]), A. Sahai and G. Prasad ([13]), M. Heilmann ([5]). Now the
operators are still under consideration [1, 4, 7-10, 12, 14].

The note was inspired by the above results which investigate approximation problems
for integral operators and it is a natural continuation of the author’s results from paper [7].

Among other things, in the paper we shall prove the theorems giving the degree

of approximation of functions from E by operators Z; We will estimate the error of

approximation using the weighted modulus of continuity of the first and the second order
defined as follows

ml(f,Eq;t):sup{"Ahf"q :he[O,t]}, 1>0 (5)

and
0, (f,E,;1) =sup{“Aif“q h e[O,t]}, t>0

respectively, where

A f()=fx+h) = f(x), ALf()=f(x+2)=2f(x+h)+ f(x)
forx,h e R,

It is worth mentioning that Bessel functions are the most important special functions
which play a pivotal role in mathematical physics, for example: signal processing, heat
conduction, diffusion problems. We hope that the operators examined will have applications
to these areas of study.

Remark 1.1
In the paper we shall denote by M(p, f) suitable positive constants depending on the
parameters indicated p, ¢.

2. Auxiliary results

Let us denote
e.(=1", f,(=e.)e!. ¢, (O=0-x)", vy O)=9,, (D"
for re Ny ={0} UN, ¢,x e R,.

In this section we shall recall preliminary results which are immediately obtained from
papers [6, 7] and definition (4).

Remark 2.1
Forall veR, and n,r €N it holds

L (e;0) =1, L.(fy;0)=1
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L (e,;0) =L (dg,30) = L}, (yy,:0) = L), (f,;0) = 0

Lemma 2.1 ([6], Lemma 2.1)
For each v € R there exists a positive constant M(v) such that for alln e Nandx € R
we have

1, (nx)
1, ()

1
X v+l (nx) 1

M), I, (nx)

<M(v)

By elementary calculations and Lemma 2.2. ([6]) we get
Lemma 2.2
Foreach neN, v,ge R, and xR,

L (eg;x) = L(eg;x) =1, L'(e;;x) =L (e);x)+

v+l n (xlv+1(nx)+v+1]

n+q_n+q [v(nx) n
Beyin) = B(eyin) + 2222 1t g+ L DVED)
nrq (n+q)
[ n 2 x2lv+2(nx)+(2v+5)x[v+1(nx)+(v+1)(v+2)
n+q I\,(nx) n [V(nx) n2 >
Z;(¢x1;x)=LZ(¢x1;x)+v+1=x n_ IO +v+1’
7 , n+q n+q I, (nx) n+q
7 2v+3 x (v+D(v+2
Ly (9,25%) = L (9, 25%) + Lo(§, %)+ (v+1)( 2 )
n+q n+q (n+q)

2
:x2 n [v+2(nx)_ 2n ]v+1(nx)+1
n+q) I,(nx) n+q I, (nx)
+2(v+1)x n I\,+1(nx)_1 . 3nx 1, (nx)
n+q \n+q I,(nx) (n+q)* I,(nx)
(v+D(v+2)
.
(n+q)
By Lemmas 2.2 and 2.5 [7] we get

Lemma 2.3 ([7], Lemma 2.6)
For all v,q € R there exists a positive constant M(v, q) such that for each n € N
we have

L], < M)

An obvious consequence of the above lemma and definition (4) is
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Theorem 2.1 ([7], Theorem 2.1)
For all v,q € R there exists a positive constant M(v,q) such that for each n € N and
/€ E wehave

EZ f; ,)Hq <M(v,q) "f”q :

Note that in the case of the integral modification of our operators we also have the
endomorphism Eq into Eq. This is a better result than the one in [8], Theorem 3.1.

Applying Lemma 2.1 and Lemma 2.2 we immediately obtain

Lemma 2.5 ([7], Lemma 3.1)

For all v,q € R there exists a positive constant M(v, q) such that for each n € N and
x € R we have

x(x+1)

c239)| < M(v,q)

Lemma 2.6 ([7], Lemma 3.3)
For all v,q € R there exists a positive constant M(v, q) such that for each n € N and
x € R we have

x(x + 1)

W, ()| I (v, 30| < M(v,9) ==

3. Degree of approximation

The following theorems estimate a weighted error of approximation for functions
belonging to the space E(;‘ ={f€E, R e E,} for k=1,2.

The proofs of the theorems are analogous to the proofs which are known from the
literature but we enclose them for the completeness of the paper.

Remark 3.1
Note that for x = 0 in the following lemmas and theorems we get the assertion using
Remark 2.1.

Theorem 3.1
For all v,q € R there exists a positive constant M(v, q) such that for all n € N,

x € R and fEE; we have

w, ()| B (/00— 1) < Mva) | 7], ("(“l)j
Proof. Letx > 0. For f € E; we have

FO-1= [ 1@
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for ¢ > 0. By Lemma 2.2 we have L) (¢,;x) = 1, hence we can write
L(fi0-f(0 =1, ( [ f'(u)du;x],
X

using the linearity of L.

Note that
‘ j:f "(w)du| <|| f'||q ‘ J:eq"du <| f’||q (e” +e™)|t—x].
Therefore, we have
g |[E 0= 1| < 17, B (sl ) #1771, B ([ 50) ™

If we apply the Cauchy-Schwarz inequality and Lemma 2.2 we get
- - 12
L\;l(d)x,l ;x)S(L‘;:(d)x,Z ’x)) ’

B wab) < (B o) o™

Now we can use Lemma 2.3, 2.5 and 2.6 to estimate (7)

WxZ

w |- f | < Mvg)| 7], (x("”)j

forx >0andn e N.

Theorem 3.2
For all v,q € R there exists a positive constant M(v, q) such that for all n € N,
xeR andf e E we have

12
x(x+1
W, (| (1)~ /(0] < Mv. o (f, q,( ‘n )j J
Proof. Let x > 0. As always we denote by f, the Steklov function of f; this means
K
fi@y= [ 7o
0

for 4 > 0. Note that

- f 0= [ s s,

71 =%(f(x+h)—f(x))
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for h > 0. Therefore, we immediately conclude that f,, f; € E, because f € E, and we

have the following estimations
”fh f” < O)I(fa qah)
’ l .
"fh"q < Z%(f,Eq,h)
for & > 0. By the linearity of the operators I:f, we get the inequality
w, (|5 (/30 - £ ()

<wy (| Ly (f = Sy

+w, (0] £, () = ()]

L (fr) = f(x)

+w, (x)

Taking into account the boundedness of the operators L~‘,’1 and (8) we obtain

W, (0| Ly (f = fi3x ‘<M(V DI =11, <M. Qo (f.E 1 h)

for x,” > 0. From Theorem 3.1 and (9) we have

x(x+ 1)

w, ()

L (S0 - | < M, 9|l5, (

1 x(x+1D))?
<M(V7Q)_®1(nyq,h)[ j
h n
for x,h > 0.
By the definition of the norm || . || and (8) we get
w, |/ )= F | <[ Sy = f, S (S, E:h)
forx,h > 0.

Using above inequalities we estimate the expression

w, (x)

n

x(x+1) 12

Now substituting s = ( j we get the assertion of our theorem.

n
Theorem 3.2 implies the following corollary.

Corollary 3.3
Ifv,ge R andf e E then for all x € R,

m,,_, {1:\;1 (f) x) - f(x)} =0.

L (fx)— f(x)‘<m1(f, q’h)[M(vq)_’_M(Vq)(X(x—i-l)) +1J.

®)

)
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Moreover, the above convergence is uniform on every compact subset of the interval
[0; c0).

Remark 3.4

We can obtain the above convergence in a different way, see Theorem 3.1 ([7]).

To estimate the error of approximation by the second order modulus of smoothness (5)
we define the following linear operators

Hy (f10)= L, (f10 = f(L(e30) + f (x) (10)
forv,g e R, fe E, andx € R,
Note that the operators preserve linear functions, namely

HY (,,5x)=0. (11)

Lemma 3.5
For all v,q € R, there exists a positive constant M(v, q) such that for all n € N,

2
x € Ryand g € E; we have

1 1
w1 (520~ 20] < MO '], 52

Proof. Let x > 0 be fixed. By the Taylor formula we can write
g —g(x)=(t—x)g'(x)+ J:(f —u)g"(u)du
for £ > 0. Now applying linearity of H v and (11) we derive

|1 (3)~ g (0| =| 1) (2(0) - g(x);0)] = N (E)

HY ( vr(l‘ —u)g”(u)du;xj

Further, the definition of A implies
HY ( .r (t—u)g"(u)du; xj =I ( f (t—u)g"(u)du; x)

L~f1(t;x) -
-[7 @ -wg

Estimating (12) we can write
)

<), (-2 o)

A (g:)-g(0| < L, ( [ @ 0-0g"wa

GO

Note that

‘ [[-wgan
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and

Z‘r’l(el;x) ~ "
[ @esn-we e

X

< %"g""q (Z\; (el ;X)) — x)2 (eqx 4 qu:‘ (a ;x))

1 - ) .
S Eng”"q (L\;, ((I)x,l;x))z eq (1 + ean (¢M1 ))

qLY, (¢x,l 3X)

Now we can observe that the expression e is bounded. We immediately obtain

it from Lemma 2.2 and 2.1 as follows

L () ) v Lm0 4| v
2 g 1,0m) Tora R ATS) g
et (Oxi®) _ v e "l <e Y e T < M(w).

Therefore, we have
w, ()| A1) (g5) — g()
1 [ 2 1 " 7
< 5||g ||q Ly(9, ;%) + E"g ||q w, (X)L, (W, 5 %)

1 TV
+ 5 M(V) "g”"q (Ln ((')x,l 5 X))2 .

Applying the Cauchy-Schwarz inequality to the term I:; (¢,,5x) and Lemmas 2.5, 2.6
we get the desired estimation.

Theorem 3.6
For all v,q € R, there exists a positive constant M(v, q) such that for all n € N,
x e R andfe E we have

1/2
g |E2 (0= 70| < MOvagyan | 1B [ XY o (7,82 B0
n

Proof. Let x > 0 and f, be the second order Steklov mean of f ¢ E,ie.

_ /12 ohi2

Jr(x) :I;iz f E 2f(x+s+t)— f(x+2(s+1))}dsdt, h,x>0
Note that

_ 4 (h2 2,
=Ty =—5 [ [ a2, s
By definition (6) we get the following estimation
|7 =7, < o7 Epi)

and since

7(x) = hiz (82, f(x)— AL f(x)



52

we have
|72, < s Eyim.

The above inequalities imply that the Steklov mean j_‘h and fh" belong to E,.

Moreover, by the linearity of L, HY and the connection (10) we can write
L/~ 1)
<[y (f = 0| +|(F )= 1|+ | Y ()= 7 (0
[ f e - 1)

By the above, the boundedness of the operators H and Lemma 3.5 we conclude that
w, (|3 (/32 - £ ()
<, (| (f = Fyi0)|+w, 0| F ()= F,)
30, ()Y (Fy30) = F, )|+ w, ()| £ (L (50) = ()
<Me.|f =7, +|7 -5, + Moo,
30, (O£ (L (0,050 + ) = f ()

x(x +1)

I x(x+1 ~
< M0, (1B 12D o (128,000
= n I, (nx) v+1 x(x+1) 12
where L) (¢, ;%) =x w1+ . Substituting h = (—j we get
’ n+q I, (nx) n+gq n

the estimation in the theses of Theorem 3.6.

The above theorem shows that one can estimate the weighted error of approximation
for positive linear operators reproducing constant functions by the sum of two moduli
of continuity.

The author is thankful to the referees for making valuable suggestions leading to the overall improvement
of the paper.
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1. Introduction

In this paper we consider a numerical solution of the fourth order ordinary differential
equation (ODE):

U +g(r,U@r), UV (), UP),UP () =0,~co<a<r<b<oo (1.1)

subject to the boundary conditions U(a) = m;,U(b) =m,,U @ (a)= my, U @ (b) = m,, where
m,, m,, m,, m, are finite real constants. We assume that g € C®(a, b), with the possibility that
2(.) can be singular inside and on the boundaries of the domain [a, b].

Boundary value problems of this kind play an important role in various areas of science
and technology. The mathematical formulation of noise removal and edge preservation (Yu-
-Li and Kaveh [1]), Kirchhoff plates (Zhong [2]), theory of plates and shell (Timoshenko
and Krieger [3]), waves on a suspension bridge (Chen and McKenna [4]), geological folding
of crock layers (Budd [5]) and hydrodynamics equation (Wasow [6]) are some examples
of such problems.

The solvability, existence and uniqueness of the solutions of fourth order boundary
value problems have been discussed by O’Regan [7], Agarwal [8] and Atabizadeh [9]. For
solving Eq. (1.1) a number of approaches have been proposed, such as differential transform
(Momani et. al. [10] ), Adomian decomposition (Wazwaz [11]), homotopy perturbation (Din
et. al. [12]), variational iteration (Noor et. al. [13]), exponential spline (Zahra [14]) and finite
difference approximations (Usmani [15], Schroder [16] and Shanthi [17]).

Possible approaches to solving Eq. (1.1) can be roughly divided into two categories.
The first category includes methods which solve Eq. (1.1) as is, either analytically as
in [10-13] or numerically as in [14—17]. The second category includes methods in which
Eq. (1.1) is first converted to a system of second order ODEs:

~UP (1) +V(r)=0, (1.2)
V) +gr, U@ UY ),V ),V V() =0,—~co <a<r<b<oc (1.3)

Subsequently, one solves system (1.2) and (1.3) by a technique appropriate to second
order ODEs (see, for example Twizell and Boutayeb [18]).

In the present paper we describe a new method that belongs to the second category.
The method uses a fifth order accurate, compact three point finite difference scheme that
approximates system (1.2) and (1.3) on a specific nonuniform mesh called a geometric
mesh (Jain et. al. [19], Kadalbajoo [20] and Mohanty [21]); in some application areas,
like electrochemistry the name “exponentially expanding grid” is also used (Britz [22]).

The geometric mesh is defined by the formulae: a=r <...<r_,, =b, b =1, —1n_,,

k=1Dn~+1, ., =th,, where 1 > 0 is a constant mesh ratio parameter and n + 2 is the

total number of nodes. Such a mesh is particularly suitable when ODEs such as Eq. (1.1) or
(1.2) and (1.3) are singularly perturbed, so that their solutions possess boundary or interior
layers (Roos [23], Farrell et. al. [24]). The compact, three point character of the scheme
makes it particularly convenient. This is because in the process of the numerical solution
of the resulting nonlinear algebraic equation systems (for example, by the Newton method)
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one obtains linear algebraic systems with block tridiagonal matrices. Such systems are easy
to solve, using standard algorithms, for example the generalized Thomas algorithm (Thomas
[25], Bieniasz [26]). In contrast, higher order discretizations associated with non-compact
stencils lead to the increase of the bandwidth of the resultant coefficient matrix, which
implies a larger number of arithmetic operations.

There exists an ample literature devoted to the development of compact schemes for
solving two point boundary value problems for single second order ODEs. In particular, we
mention here the various improvements of the classical Numerov scheme (Numerov [27],
Agarwal [28]) and the arithmetic average schemes, obtained by (Chawla [29, 30], Wang [31],
Bieniasz [32], Mohanty [33], Zhang [34] and Jha [35, 36]). The new scheme proposed in the
present work, can be regarded as an extension, and adaptation to the nonuniform mesh, of the
sixth order compact scheme of Chawla [30]. Minor modifications of the scheme are required
for the singular problems.

The paper is organized as follows: In section 2, we develop the higher order finite
difference scheme on the geometric mesh. The convergence analysis is contained in section 3.
In section 4, some computational experiments are described that show the reliability
of the algorithm. In the last section, the findings are summarized.

2. Formulation of the O(h,f ) finite difference scheme on the geometric mesh

Let U,, V, be the exact solution values and u,, v, be the approximate values of U(r)
and V(r) at the mesh node r, respectively. With the help of finite Taylor’s expansions,
we first obtain the following relation that approximates the second order derivative at r,
using geometric meshes:

hieUP = -U,,; +(1+ DU, —tU,_,
— QUG + U + UG, + U ) + O, CRY)
where:
o = —(1+1)(37° +71+3)/60,

¢ = -0+ —t+1)/[60(1+21)], ¢3 = -2(1+1)(27* +2t—1)/[152 +1)],

1 3
¢, =—1( =12 +1+2)/[602+1)], ¢z =21(1+1)(t> —=21—2)/[15(1+27)]

2 4

As Eq. (1.3) involves first solution derivatives, we need certain approximations to these
derivatives. Consider the following geometric mesh approximations to U":

U =Wy = (1= 7)W= U ) D1+ ), (22)
O} =[0+20U 1 = A+ 0 U + 70,1/ e+ ), @3)
U2, = [Vt + (14 07Uy =22+ DU )/ D1+ 0], @4
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In a similar manner, we can obtain approximations I7k(l) and 17,{(;)1 to V. We denote

Grro = 8(10-Upago Uty Vi Vih),0 = 0,£1. (2.5)
With the help of Egs. (2.2)—(2.5), we obtain
Gy =g + (A UD + DY 6+ (e - )(A4UY + DY) /124
P B U +2CUERYE + E (V)1 72
(2.6)

+ (P =T+ )4 UD + DY) 1120+ O(R),
Grat = &t ~ i1+ OAUL + DV + (4P UP + DV 6
~ B+ DQRt-DI4UY + DV +1(APUY + DOV Y] 24
— B+ D3 — 21+ )(4UL + DY) +1072 (APUD + DPY /120
+ P (DB UP) + 2, UV + E, VN1 72+ O(), (2.7)
Gy =gy~ WA+ [ 4UL + DV —h (A U + DIV 6
(7 =t=-2[4UNP + DV —h (APUN + DOV /24
— (- D[(P? =21+ 3)( AU + D) +10(42UL + DY )]/120

+ i (DB (U +2C, ULV + E, (V) 1172+ O(), (2.8)

where:
4, =@g/0UM), , B, =@*g1U"), , C, =@ g/oaUuVor D),

D, =(8g/ov "), and E, =(@*g/ov ™), .

By using Gk and Gkil , one can look for the approximations to the solution values and

derivatives;
= = S M 7 ) 4T
[Uk+1/23Uk71/29UI§+)13U1£—)1’U1£31/2’U1£—)1/2] =
ay ay a3 ||Upy ay a5 a4 || Vi (2.9
| VA Y - B A N A
a5 gy gy || Upa Aoy Ags  dgs || Vi
- - S0 M 0 ) 4T
Ve Vi Vi Vi V0 Vi a1 =
by by b3 || Via by bs b || Gy (2.10)
N Ay S G
by bsy bes || Vi bes  bes  bes || Gra

where a;,,b,,l,m=1(1)6 are free parameters to be determined in such a way that we can

achieve the following high order approximations



U= Ups1p = O(hlf ) Viwia— Vit = O(hlf ),

ub-ubo=om), vO-vh =om), e=+1,+1/2.
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@.11)
(2.12)

With the help of algebraic calculations using MAPLE (see Ref. [37]), explicit expressions
for the free parameters were obtained and they are shown in Table 1, where we have denoted

o=1>+31+1 and p=1° +1+1. Consequently,
U =00 +nt? 1+ 0 @+ 0)U 1 (3606)+O(h),

U®, =W +ht1+1)° 1+ 40U / (3600)+ O,

U, =UD |~k (4+1)(77 +97% = 51— U /(57600) + O(h)),
U, =UY, , + ki (1+40)41 +51 —91, ~ U 1 (57600) + O(h),
v =y O — i 1+ 0227 +21-1D{1040U P +10D0Y, S
+5(4,UY + DV 125+ (57 + 514 D]/ (360p) + O(y),
v =v O+ it 1+ 02 [(x* - 21-2){1040UD + 10DV
+5(4,UP + DYDY 2} — (47 =5t -5 D1/ (360p) + O(i),
v, =v® L+ mt et 437 + 207 =201 80(4PUS + DY)
+20(4,UP + D)y —(23¢* +637° +31¢?
—64t-32)V 01/ (5760p) + O(h}),

v, =v® — ki + 27 - 207 =3t-1)80(4VU P + DIV D)
+20(4, U + D)y - (32" +647° — 3147
~63t-23)1/(5760p) + O(h).

Further, we define

5 S =1
Gpsy =g(’”k:r1>Uk¢17U/£¢)1aVkika(i)l ),

ékﬂ/z =&(s125 0ki1/2 ) &191)1/2 ’ l;kil/z > f/k(i)m )-
With the help of the above approximations (2.13)—(2.20), we obtain
Gpt = Gt — B (14 02[(27% +21-1)(720D" (4PUS + DOV
+180D, (4,U™Y + DV )+ 72((<* + 51+ 4)pA UL / o
+(57° + 514D, VN1 (259200) + O(1}),

(2.13)

(2.14)

(2.15)
(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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Gyt = gy +h 1+ 02[(x% = 21-2)(720D, (APUS + DOy
+180D, (4,U™M + DV +72((47* + 51+ DpA4, U /o
—(41* =5t=5)D, VN1 / (25920p) + O(K}), (2.24)

Groin = &rorn +HET[20( +37° +272 =21 -1)D, (44UP +4DOV )
+ AU + D) = (1 +4)(77° +97° =51 -4 UL I o
—(23t* +637° +311% —641-32)D, V) 1/ (5760p) + O(R), (2.25)
Gyin = &ryn — BI(x* +27° =272 —31-1)20D, (440U +4pOy®
+ 4UD + D)~ 41+ )47 +50 ~91-T)p4, U / o
—(32t* +647° —31t% —631-23)D, 1/ (5760p) + O(1}). (2.26)
We define additional approximations to the first derivatives:
l}}gl) = U + 4V, + 4V + 5V )+ BKG (2.27)
VO =V 4 b (21Gey + 2G4 +23 G+ 24 Gy + 256 n + 276G ). (2.28)

where ¢,’s and z’s are unknown coefficients to be determined so as to achieve the following
final approximations:

Upn =+ U, +1U;
+I oV + Vi + Vit + 63 Vit ¢4 Vieyn) = O, (2.29)

Vg —A+0)V, +1V
+ 1 (oG +¢ Gyt 3 Gy 1+ 3Gyt ey Goyn) =0, (2.30)

where k= 1(1)n and ék is an extra approximation to G,, to be determined.

The explicit expressions for the unknown coefficients are given in Table 2, where we have
denoted & =31> +7t+3. From Egs. (2.7), (2.8) and (2.23)—(2.26), we obtain

UP =UP +hy (ty + 4, +6,)US + BI(1+12)7 +12t, + 241, -1JULY /24
+R2[(6t, + D)1= 6610 6+ 1+ 208)7
~ 201, —120¢; — > +JU /120 + O(1), (2.31)
17,}1) = Vk(l) +h (2 +zy + 2y + 24 + 25 + 24 )U,E4) + h,f [t(1+ 6z + 625 +3z5)
—3(22y +2z, +2) UL 1 6+ B 1+ 1)zt + 2, (4 U =D V) 16
+ I[P (14325 41225 +122)) + 324 +122, +122, —1JUY /24
~ 1+ (02t -1z + (1= 22 (AU + DY) /124
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1+ 1)z 7~ 2) (AU + DOV 16+ B [2(7P 1 + 1)

+40(T (2, +23) — 25 —2) / 240+ 5(z57° — 2 )V + O(). (2.32)
Finally, by using Egs. (2.27) and (2.28), we define
Gy = g0, Uy, UL 1, V0. (233)

Hence, we have obtained the final geometric mesh finite difference scheme (2.29) and
(2.30), which is compact and applicable to the numerical solution of the boundary value
problem (1.1) or (1.2) and (1.3). A more detailed analysis reveals that the local truncation

error of the scheme is (t— I)O(h,Z) + O(h,?) and hence in the case of a uniform mesh (t = 1),

the proposed method is sixth order accurate.
The scheme needs an amendment in the vicinity of a singularity, which arises when,

for example, our domain of integration is [0, 1] and we need to evaluate the terms like r,:l
at k = 1. This leads to the division by zero and hence in order to avoid such situations,

we need to incorporate the Taylor’s approximations 7} = 21—0(1)4 hi’”;; D L o), into

Egs. (2.29) and (2.30). The resulting scheme is applicable to singular ODEs such as ODEs
involving the Laplacian operator in cylindrical and spherical coordinates. For practical
implementations, one replaces the exact values U, and V, present in Egs. (2.29) and (2.30) by

approximate values u, and v,, and one omits the residual terms O(h,Z ). The resulting system
of algebraic equations for u, and v, must be extended with boundary conditions.

3. Convergence analysis

In this section, we discuss the convergence property of the proposed finite difference
scheme (2.29) and (2.30) for the numerical solution of the two point boundary value problem
(I.1). Atr=r, k=1(1)n, Eq. (1.1) can be written as

U@ =v,v® =g,U,, UV, V") = Gk = 1(Dn. (3.1)
Then, the geometric mesh finite difference method (2.29)—(2.30) is given by

{d)k(Uk—l’Uk’UkH’Vk—l’Vk’Vk+l)+Lk(hk):0’

(3.2)
Ok Ui, Ui Uy Vit Vi Vi) + My () = 0,k = 1(Dn,

where
b =Up + 1+ U, =10,
— eV + Vi + Vi 6 I;k+l/2+c4 I;k—l/z),
O =V +A+DV, =,

.- - - R R
=l (oG + ¢ G+ ¢ Gy + 63 Gryyn+ ¢4 Gy o),
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L(h)=0(h}) and M, (h)=0(h]).

The scheme (3.2) in the matrix/vector notation is written as

oU,V)+L=0 (33)
oU,V)+M =0,
where
U, 4 L M,
U=| : |, V=|:|, L=|:| M=| :
U}’l Vn L}’l Ml’l

We wish to find the approximations # and v for U and V, respectively, which are
determined by solving 2n x 2n systems

{‘M”’V) =0 (3.4)
o(u,v)=0.
From (3.3) and (3.4), we obtain
d)(ll,V)—d)(U,V):L (3 5)
o(u,v)—o(U,V)=M. '

Lete, =u, — U, m, =v,—V, k= 1(1)n be the discretization errors and ¢ = u — U,
1 =v— V be the vectors of these errors. Let us denote

Zro0 = 80U k00150 Veso-Ving) = Grrgr 0=0,%1,
Gist = (a1 U sy ’ﬁl(clizl’vkil"jlgizl) = ékil’
i1z = g(”kﬂ/z’akilm’:‘194_21/29{’&1/2 9{)191)-1/2) = éktl/z
8k = g(’”k’”k’ﬁl(cl)’vkj;?)) = Gk,

Epig = 8rso —Grags 0=0,%1,

Eygsg = €gs0— Grag» 0=11/2,

Ek =g~ ék >
5529 = 1’71((126 _01939’ ﬁgle = ‘71926 - Vk(l)e’ 0=0,%1,
g1@1/2 = ﬁki1/2 - l}kil/z’ ﬁki1/2 = ‘A)kil/z - I;kil/2!
gg{lie = ;‘lgli)e_ﬁlgli)w An}clie = ‘A’l(cli)e_ I71&)9’ 0=11/2,
él(cl) — ’71?) _(jlgl)’ ﬁg) — \7]51) _17]{(1)’

& =& — (1= ~ T8 1/ [r(+ D), E e fem),
E =10+ 20080, —(1+ 178, + T8, 1/ T+ D],



e, =[Ep +(1+1)7E 12+ D8, 1/ [ r(1+ D).

By applying the mean value theorem, one obtains:
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= ~( ~(1
Epg= ak+98§cle +Brro8hs0 t Yk+en§cle +08;oNk+0> 0=0,%1, (3.6)
where
og og og og
a; = O N Bl:_ . 'YIZT . ;= . l=k,ki1,kil/2
Ou" ly=y oul,—, vV ey vy
Let us define:
~ ~() =) ~() 1T
[&ks1/25 84 1/2»51(21:85{)1sggcluz’g;c)uz =
ap G Ag3 | € Ay G5 i || Nkl 3.7
. . 2 .
& |+hi Nt |»
dg1 e Ge3 || Ek+1 Aea A5 e || Nk+1
~ - )~ 1
[T|k+1/2ank—1/2,nkll ’ngc )1’n§cll/2=n§c )1/2]
by by by || M by b5 b || B (3.8)
: : : e |+ h,? : : : E, |,
b1 bsy  bey || Nes bey  bes  bes | Era
where are coefficients given in Table 1 and 2, and
o ~ ~
Epy =0y Sgcil +Brs1€rsr + Venr niil + 8 M1 » (3.9)
- ~(1 ~(1
Epi1/2 = Ogsrn 85«31/2 +Brs128ks1/2 F Va2 ngﬁ)-l/Z + 84112 Mk21/25 (3.10)
g = 8(1) + By (b + 0Ny + 1M )+ IBE ), (3.11)
—(1 1
ni) ()+hk(zlEk+1 +22Ek 11723 Ek+1+z4 Ek 1+ Zs Ek+1/2+z6 Ek 12)  (3.12)
Ep = o8 +Brey + 7,08 +8,m,. (3.13)
In view of the Eq. (3.5), we obtain
Ry = 0p (gt s gy s Vi1 Vies Vies) = 0k (Ui, U U1 Vi Vi Vi)
2 ~ —~
=g T+ 1), =18, — A (CoMy + Mgy + Mgy + 3 Mpsy2+ €4 Ny 2)5
Sp = 0 gyt gy Vie_15 Vi Vier) = O U, U U 0 Vi Vi Vi)
- ~ - - -
=My A+ =ty I (B + 6 B+ B+ Byt ey Eyypn).
Equivalently, in the matrix notation
¢(u,v)— (U, V) €
{ =Pl | (3.14)
(P(M,V)—(p(U, V) n
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where

P:

tridiag |:C(Rk’8k1) C(Rkarlkl):i |:C(Rk78k) C(Rk’nk):| |:C(Rk78k+1) C(Rkank+1):|
C(Spoer) CSm) | [ CSpag)  C(Spame) || C(Sko8r01) C(SpuMia)

is a block tridiagonal matrix and C(R,, ) = Coefficient of 1, in R, etc.
From (3.5) and (3.14), one obtains

PE=T, T=[L M), &=[¢ nl. (3.15)

In the limiting case of small /,, matrix P takes the form

. . -1 0 I+t 0 -1 0
lim P = tridiag , , .
Iy —0 0 -1 0 1+7 0 -1

Thus, the lower, upper and main diagonal blocks are non-zero, since T > 0. Hence
the graph G(P) of the matrix P is strongly connected and consequently, the matrix P is
irreducible (Varga [38]).

Let

0L = miny {0, Oyrps Ogayn §o Br=ming By, BrsisBrarsn}s
Y= ming {Y g, Y gars Yeeya fs O = MmN {8,841, 8541/2 -

Further, let Z[ be the sum of the /” row elements of the matrix P, then

For [ =1: Y, >+ O ), X, >+ Oh).

by 4 hi 3
For 1=3(2)2n-2: %, 271(1+r)+0(h, ) 2l = 7t(l+r)(B+8)+0(h, ).
For [ =2n-1: Y, > 1+0(h), 3, >1+0(h).

This implies that for sufficiently small value of 4, i.e. in the limiting case of 4, — 0,
>, >1>0,1=12, ¥,>0,1=3)2n-2;, ¥, >1>0,/=2n-1,2n.
Hence, P is monotone (Henrici [39], Young [40]). Consequently P! exists and is non-

-negative. Let Pfll be the (i,/)" element of P!, and define

“Pil“m = max; <y, X7 Piﬂs |7 = max, <o, XL () + My ()| = OCR).
From the obvious identity, P! = (PJ) = J, where J=[1,1, ..., 1]7, we obtain
TP Y, =1 i=1(1)2n. (3.16)

Thus, the following bounds can be estimated by using Taylor series expansions
For/=1:

_ _ 1
P <3t ==+0}),
T
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For [=3(2)2n - 2:

P,-}l < min, Z;l < ;2+ Oh), v>0,
’ 1+ 1)k

2

Pl <min Y <————
ah P T 1 (B4 8)R]

1

+O(h), v>0.

For/=2n-1:
Rl <X =1+007),
Py <Xl <1+0(h).
As aresult, from Egs. (3.15) and (3.16), we obtain the following error estimates:

el <|[P7'] . Il < O0wh), provided that B +5 = 0. (3.17)
o]

This proves the fifth order convergence of the proposed method. Another result is that
the coefficients ¢, k = 0(1)4 in Eq. (2.1) are negative if (\/5 —1)/2 <t and hence we obtain

a lower bound on T, whereas the upper bound on 7 is less than 1.5, otherwise the grid will
be too non-uniform to be practical. Thus, we summarise the above result in the following
theorem:

Theorem 3.1. The geometric mesh finite difference method (2.29) and (2.30) for the
numerical solution of differential equation (1.1) or (1.2) and (1.3) with sufficiently small
h, and (\/5 -1)/2<t<1.5, t=1, gives a fifth order of convergent solution provided that

a—g+a—g¢0.
ou ov

4. Computational experiment

To verify the theoretical predictions, we have solved several linear and nonlinear
problems. We defined the geometric mesh as follows

{(b—a)(l—r)/(l—r"“), <1
Ty =a,h =
(b-a)t-1)/ (""" -1), 1>1

Hence, h,., = th, k = 1(1)n. If a boundary value problem exhibits a boundary
layer at the left boundary, choosing t > 1 is appropriate. If the layer occurs at the right
boundary, we choose © < 1. If the layer occurs in the interior region, then the mesh can

be arranged by choosing t© > 1 in the first half of the interval and © < 1 in the second half.
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The numerical accuracy of the results is expressed using maximum absolute errors (s(‘(’fg)
u

and computational orders of convergence (© ) for m" order derivatives of u(r).

2)
€ m

2)
€ m

(c0) _ ngrids
o = MaXy<p<p

u

: uf o

> ®m = lOgZ

2ngrids

Numerical computations were performed using long double arithmetic extended precision
variables having 80 bits and 18 digits precision. The code was written in C and run under
Linux operating system. For solving linear or nonlinear algebric equations resulting from
the discretisation, the Newton method and the Thomas algorithm were used, with the error
tolerance being < 10°%5.

Example 4.1 (Conte [41]) The fourth order two point boundary value problem

U -A+MUP () +A0U(r) = %;ﬂ +L0<r<1,

U@)=1, U(l) = %+ sinh(1), U (0) =1, U (1) = 1+sinh(1),

2
possesses analytical solution U (r)=1+%+sinh(r). We know that 1 and £\ are the

eigenvalues of this equation and hence the problem is stiff for large values of A. We have
solved the problem for small as well as for large values of A. The solution is found accurate
for A < 10® both in the case of uniform and geometric meshes. Table 3 presents errors of
the approximate solutions and computational orders of convergence obtained for A = 108,
in the case of uniform meshes (t = 1) and geometric meshes (t # 1). It is evident that the
geometric mesh technique is superior to the uniform mesh.

Example 4.2 (Mohanty [33]) The fourth order singular linear problem in polar coordinates

) 2
v4U(r)z{j—2+ﬁij U(r):(1+@+x(x2—2)_x(x3—2)
/a r r

dr r r

)er, 0<r<l,

U@ =U20)=1, Ul)=UP 1) =e,

possesses analytical solution U(r) = ¢". The choice of A =0,1 and 2, corresponds to Cartesian,
cylindrical and spherical coordinates respectively.The errors for the various values of n
and A are reported in Table 4.

Example 4.3 (Elcrat [42]) The nonlinear boundary value problem arising from a model
of the axisymmetric flow of an incompressible fluid contained between infinite disks is:

U () = UU? (1) =M =1)(A+4r+r7)e? —(11+8r+77)e", 0<r <1,
U@y=1, U1)=0, U?0)=-1, U» (1) =—6e.

The analytical solution is U(r) = (1 — r?)e". The errors obtained are given in Table 5, for
various values of #n, and for A = 10°.
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Example 4.4 (Takaoka [43]) The boundary value problem arising from the steady state
form of the Korteweg-de Vries equation of fifth order is:

U =2U0P () + %U(r)z ~U(r)
+ %sin(l 07r)[2 + 2007 (A + 1007 ) — A sin(107)],

U =Ul)=U?0)=U?1)=0, 0<r<1.

The analytical solution is U(r) = Asin(10mr). The maximum absolute errors obtained
for A = 4 are given in Table 6 for various values of 7.

5. Conclusion and remarks

A compact, three point finite difference scheme using geometric mesh has been designed
to obtain accurate numerical solutions of fourth order two point regular and singular
boundary value problems for nonlinear ordinary differential equations. The theoretical order
of accuracy is 5 (or 6 in the limit of uniform meshes).The scheme is shown theoretically to

be convergent when the grid ratio t is (\/g -/2<t<15.

Computational tests confirm that the scheme converges and is applicable both to singular
and non singular differential equations. Numerical solutions obtained using geometric
meshes prove more accurate than those corresponding to uniform meshes, when local layers
are present. The scheme can be effectively combined with the Newton-method and Thomas
algorithm for solving block-tridiagonal linear algebraic systems arising in the calculations.

The authors would like to thank Indian National Science Academy and Polish Academy of Sciences
for the support of this research work which was funded by the grant: Intl/PAS/2014/2608 received by
the first author.
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Expressions for the coefficients a

b

Table 1

I, m = 1(1)6 in Egs. (2.9) and (2.10)

m®

ay = -1 (51+12) /[160(1+1)]

by =3t /[16p(1+1)]

apy = (1+2)(5t* +10t +4) / (160)

by = (1+2)(37> +21+4)/ (16p)

a3 = (1+2)(31% + 141+ 4) /[165(1 + 1)]

byy = (t+2)(5t% + 61 +4) /[16p(1 + 1)]

ayy = (1+2)(41+3)7° /[960(1+ 1)]

by =7 (t+2)? /[96p(1+1)]

a5=0

bs = -2 (1+2)(t> +21+3)/ (96p)

arg ==t (1+2)(t* + 61+ 6) /[965(1+ )]

bg = —t*(t+2)(21* +41+3) /[96p(t +1)]

ay = 2T+ (4% +14t+3)/[160(t+ )]

by = (2t +1)(4t% + 61+ 5) /[16p(t+1)]

ayy = (2T +1)(41% +10T+5)/ (1607)

byy = (2T +1)(41% +21+3)/ (16p1)

ayy =—(121+5) /[165(1+ 1)1

by3 =3 /[16p(t +1)1]

ayq =—(2T+1)(61° +61+1) /[960(1 + 1)]

byy =—(21+1)(31% + 41+ 2)/[96p(t+1)]

025:0

bys = 2T+ )31 +21+1)/ (96p1)

ayg = (31 +4)(2t +1)/[966(1 + 1)]

bys = (21 +1)* /[96p(t +1)1]

a3; = (1+2)7° / [o(1+1)]

by =12 (1+2)/[p(r+1)]

a3y =—(t+1)* / (yo1)

byy = (t=1)(x+1)*/ (hypr)

ay3 = (20 +61° +4t+1)/[lo(1+1)1]

by3 =2+ 1) /[ Iyp(t+1)1]

a3y = —(t+ 1) / (6hy0)

byy =2 (1-1%)/ (6h;p)

ass =0

bys =12+ 1)(1+1)% / (6lp)

ayg =t(t+3)(t+1)/ (6h,0)

by = 1(1+ 1)1+ 21) / (6lyp)

ay = (0 +47° +61+2) / [o(1+1)]

by = -t (t+2)/ yp(+1)]

ag = (t+ 1)/ (ho1)

byy = (x=D(x+1)*/ (lyp1)

ayy =—2t+1)/[o(l+1)7]

byy =2t+1)/[Ip(t+1D)1]

ag =—(t+D)B3t+1)/ (6h)

byy = —~(1+ 2t +1)/ (6hp)

ags5 =0

bys =—(Q2t+1)(t+1)% / (6h;p7)

ay = (t+1)/ (6l,0)

byg = (1=7)/ (6/yp)
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as; =%/ [2ho(1+1)] bsy =12 (t+2)/ [2hp(1+1)]

asy = —(31> + 61 +2) / (2hyo1) bsy =—(t° + 41 + 21+ 2) / (2hyp1)

asy = (t° + 41+ 2)(2t+1) / [2l5(1+ 1)1] bsy = (37 +61% +41+2) / [2hp(t +1)1]

asy = (1 —t=11* /[24h0(1+1)] bsy =12 (P2 —1—1)(t+2)/ [24hp(1+1)]

ass =0 bss = —1(T> +41% + 61+1) / (24h;p)

asg = (T2 + 51, +5)18 /2405, (1+1;)] bsg = —1(27° + 5t% +31—1)/ [24h,p(1 + 7)]

ag) =—(27 + 4t +1)(1+2) /2 o(1+1)] by = —(27° + 417 +61+3) / [2hyp(1+ 1))

agy = (21 +61+3) / (2h,0) bgy = (27> +20% + 41 +1) / (2hp1)

agy =—1/[2ho(1+1)] bgs =—(1+21) /2 p(1+ 1)1

agy = (57° +5t+1)/[24h0(1+1)] by =—(t° =31% =51 —2)/[24h,p(1+1)]

ags =0 bgs = (T° + 61> + 4t +1)/ (2h;p)

ag = (12 +1—1)/[24h6(1+ 1)) bs = (T +T—1)(1+27) / [24hp(1 + D]
Table 2

Expressions for the coefficients z, i = 0(1)3, z; Jj=1(1)6 in Egs. (2.27) and (2.28)

to = —(1+ 1)(277° +133t* +155¢° — 107> — 621~ 18) / [6050(2 + 7)]

1y =—(37° + 607> +3021* +555¢° + 4221% +1401+18) / [605(2 + T)(1 + 7)3]

1y =1(271° +1907° + 508t + 735¢% + 62812 + 2707+ 42) / [6056(2 + T)(1 + 7)]

ty = —1(121°% + 65¢° +103t* + 907> + 1031 + 651 +12) / [12056(2 + 1)]

7 = (61° +157° —1* = 2873 — 1% + 151+ 6) /[65p(1 +1)°]

25 = —1(61° +157° —1* = 2870 =12 +151+ 6) / [65p(1 + 1) ]

23 =—(271 +70t° + 207> — 52¢* + 837% + 1007 + 251 - 3) / [305p(1 + 27)(1 + 1)°]

2, =—1(31" —251° —1007° —831* + 527 —207% — 70t 27) /[308p(2 + T)(1 + 1)*]

zg = —(481° +1577° +1331% — 217 +837% + 1071+ 33) /[158p(2 + 1)(1 + 1)]

2 = 1(33t° +1077° +83t* — 211> +13372 + 1571+ 48) /[156p(1 + 21)(1 + 1)]
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Table 3
Solution errors obtained for example 1*
n A £ 823) 0, o, T £ Sic(f))
8 | 1e08 2.40e-11 2.40e-11 -—- --- 0.9980 | 4.52e-12 4.52e-12
16 | 1e08 5.32e-13 5.32e-13 5.5 5.5 0.9991 | 6.00e-14 5.98e-14
32 | 1e08 1.58e-14 1.58e-14 5.1 5.1 0.9997 | 9.70e-16 9.71e-16
Table 4
Solution errors obtained for example 2*
n Iy gl S(u(??)) 9, 0, T e 81(?2}))
8 0 1.97e-07 8.09e-08 -—- --- 0.985 1.90e-08 3.12¢-08
16 0 4.34e-09 1.78e-09 5.5 5.5 0.991 8.82e-10 9.61e-10
32 0 8.12e-11 3.34e-11 5.7 5.7 0.996 | 8.52e-12 1.17e-11
8 1 7.56e-05 1.45e-03 - --- 1.160 1.67e-05 2.75e-04
16 1 7.80e-06 3.81e-04 33 2.0 1.110 | 3.46e-07 5.25e-05
32 1 7.50e-07 8.86e-05 34 2.1 1.040 | 6.70e-08 1.84e-05
8 2 5.64e-05 5.23e-04 - --- 0910 1.22e-05 8.53e-04
16 2 3.94e-06 3.75e-05 3.8 39 0.960 1.21e-06 1.68e-05
32 2 2.65e-07 2.49¢-06 3.9 3.8 0.790 | 8.67e-08 1.98e-06
Table 5
Solution errors obtained for example 3"
n Iy sgoo) Si?g) 0, 0, T sgoo) ai?ff
8 | 1e03 1.53e-09 8.31e-08 - --- 0.96 1.05e-10 2.72e-08
16 | 1e03 2.77e-11 1.51e-09 5.8 5.9 0.98 2.29¢e-12 3.79¢-10
32 | 1e03 4.69¢-13 2.53e-11 5.9 5.9 0.99 4.42e-14 5.84e-12
Table 6
Solution errors obtained for example 4"
n A SEIOO) 51(;2)) @0 @2 T 8200) 81(;;)))
8 4 2.40e-10 3.90e-09 - -—- 0.995 | 2.99e-11 4.66¢e-09
16 4 5.32e-12 8.57e-11 5.5 5.5 0.997 | 6.49e-13 1.05e-10
32 4 1.06e-13 1.60e-12 5.7 5.8 0998 2.55e-14 2.07e-12

* Column 3-6 refer to uniform meshes, column 7-9 refer to geometric meshes.
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1. Introduction

In [1] Brocker proved that for any family of semialgebraic sets 4 and any convergent
sequence y, of parameters the Hausdorff limit of A, exists and is semialgebraic. In [3]

a short geometric proof of the generalization of Brocker’s result to the case of sets definable
in an o-minimal structure was given.

The aim of this paper is to present an elementary proof of the following one-parameter
case of this result

Theorem 1. Let AcRxR" be a definable subset in an o-minimal structure on

(R,+,7) such that for any y € (0,c), ¢ >0, thefibre 4, :={xe R" :(y,x) € 4} is a bounded

Lipschitz cell with constant L independent of y. Then the Hausdorff limit lim Zy exists and is
y—0

definable.
For the convenience of the reader we present in Section 2 results on Hausdorff distance
and o-minimal structure that we use in the proof of the main result.

2. Preliminaries

2.1. Hausdorff distance.

Let (X, d) be a complete metric space, denote by C(X) the space of all non-empty compact
subsets in X.

Definition 1. For any two sets Y,Y, € C(X) we define Hausdorff distance as

dy (Y,,Y,) = max{max mind(x, y),max mind(x, y)}
xel, yely vl xek;

Remark 1. Hausdorff distance of two sets is the infimum of positive numbers € > 0 such
that each of them is contained in the g-envelope of the other, i.e.

dy(7.Y,) = inf{e > 0; Y, € B(Y,,e) and ¥, € B(Y.¢)}
where
B(Z,e)=U.., B(z,¢)
forany Z e C(X) and € > 0.

Remark 2. Observe that the function d:C(X)xC(X)—> R, defined by the following

formula
d(%,Yy)=max{d(x,Y,):xe ¥}, for Y., eC(X)
where

d(x,Y):=min{d(x,y):yeY}, for xeX,YeC(X)
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cannot be used to define a metric on C(X) as in general the function d is not symmetric,

we have only the following
dy (1. %,) = mac{d(%. By), d(Y. 1)} for EY, € CLX).
Example 2. Let Y, = (0,15) and Y,:=[8,112] x {0}, then
d(%.Y,)=17=113=d(Y,.Y)).

By definition, in this example we have d, (Y, Y,)=113.

We end this section with the following characterization of convergence in Hausdorff
metric.

Theorem 3. Let X be a compact metric space, A,A4, €C(X), v=1,2,3,.... Then the

sequence A converges to A in Hausdorff metric (A, ——> A) iff the following two conditions

hold
1) (ka eAVk’ka —)XO,VI <V2 <V3 <...):>x0 EA,

2) xp€e A=3x, € A, such that x,—>x,.

Proof. First we shall prove that conditions 1) and 2) are necessary for the convergence
in Hausdorff metric.

Assume that 4, —— 4, since X is a compact set we can find a sequence x, €4,
(with v; <v, <v; <...) suchthat x, —— x, for some poin x, € X. We want to show that

x, € 4. Since the set 4 is compact and x, € 4, there exists y, €A such that
d(x,,py) = d(x, A < dy (4, ,4)—>0
Therefore d(x,,,y, )—>0. We shall show that c?(xo, A) =0. Observe that
d(xo, ) < d(x0.3,,)
As y, €4 and consequently
d(xy.3,,) < d(xg.x, ) +d(x, ).

Therefore d(x,,4)=0 and x, € 4 = A.

Assume that 4, ——> 4 and x, € 4. To prove that condition 2) is necessary fix a point
x, €A, forv=1,2,... such that d(x,,x,) = d(x,,4,). Then

0<d(xg,x,) =d(xp, 4,) < d(xy, 4,) < djy (4, 4,)—0

implies d(x,x) — 0.
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Now, we shall prove the opposite implication. Assume to the contrary that conditions
1) and 2) hold while the sequence (4, ) does not converge to 4. Then there exists € > 0 such
that d,(A4 ,A4) > ¢ for infinitely many v. Consequently at least one of the inequalities
d(A,,A)>¢ or d(4,4,)>¢
holds for infinitely many v.

In the first case there exist v) <v, <... and x, €4 such that (;(ka ,A) > €, since Xis
compact replacing Xy, by a subsequence we can also assume that x,, converges to a point
x, € X. From condition 1) we get x, € 4 which contradicts c?(ka ,A)> €.

In the second case for infinitely many v there exists y, € 4 such that d( y,,4,)>¢€,

by compactness of A there exists a sequence v, <V, <... such that 67(ka A, )>¢€ and

Yy, —> X, for some x, € 4. By condition 2) there exists x, € 4, such that x, —>x,.

In this situation we have
e <d(y, . A,) <d(y, %) < d(yy, 30) +d(xp.x, ) —0

which is a contradiction.
O

Remark 3. The above theorem does not hold without the assumption that X is a compact
space.

Example 4. Let X be any non-compact complete space, fix x, € X, letx € X'be asequence
that does not contain any convergent subsequence. Put 4:= {x}, 4 = {x;,x,}. Then conditions
1) and 2) hold true but the sequence 4 does not converge in Hausdoff metric.

2.2. o-minimal structures.

We shall collect here the basic definitions and properties of o-minimal structures that
are crucial for our further considerations. For a detailed exposition of o-minimal structures
we refer the reader to [2].

Definition 2. A structure S on R consists of a collection S of subsets of R”, for each
n € N, such that

1. S, is a boolean algebra of subsets of R”,
2. §, contains the diagonals d(x,,x{(x;,...x,) € R":x;=x} for 1<i< j<n,
3.if4eS  ,then4 x Rand R x 4 belongto S

nt+1? nt+1?

4. if 4 € S, then n(4) € S, where m: R"" — R” is the projection on the first »

ntl1?
coordinates.
We say that a set 4 < R” is definable if and only if 4 € S . A function f: 4 — R™ with
A < R is called definable if and only if its graph is definable.
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Definition 3. A structure S on R is o-minimal if and only if
1. {(x,y):x<y}eS, and {a} € S, for each aeR,
2. each set in is a finite union of intervals (a,b), —oco < a < b < +oo, and points {a}.

A structure on (R,+,-) is a structure on R containing the graphs of both addition and

multiplication.

The main technical tool used in the studies of geometry of sets definable in o-minimal
structures is the cell decomposition. The notions of a cell and that of a cell decomposition are
defined inductively.

Definition 4. The cells in R! exactly are points and open intervals.
A definable set C < R”, where n > 1, is a cell if its image n(C) < R"! by the projection

T:R" 3 (X, X, 15X, ) —(X;,...,X, ;) € R" is a cell and C is one of the following two

types:
either
C=T(f)={(x"x,) en(C)xR:x, = f(x)}
(and then C is called a graph)
or

C=(g,g)={(x",x,)en(C)xR: g (x)<x, < g,(x")}
(and then C is called a band),

where £ ©(C) — R is a continuous definable function (resp. g;,g, : ®(C) — R are functions
such that g, < g, on 7(C) and, for each i € {1,2}, g is either a continuous definable function
g: m(C) > R or g, is identically equal to —oo, or else g, is identically equal to +o0).

Acell Cis called a C*-cell (where k € NU {oo}), if m(C) is a C*-cell and f'(resp. g, i = 1,2
if finite) is a C*-function. Notice that every C*-cell is a C*-submanifold of R".

Definition 5. A cell decomposition of R! is a finite collection of open intervals and points
of the following form:

{(—=00,a)),(a;,a,),...,(a;,+00), {a },....{a, } },
where g < a, <...<a, are real numbers.

A cell decomposition of R" (n > 1) is a finite partition C of R” into cells such that the set
of all projections {n(C): CeC} is a cell decomposition of R"!, where m: R* — R"! is the
projection on the first n — 1 coordinates as in Definition 4.

Theorem 5. Let (X,d) be a compact metric space, f,: X — R be a sequence of Lipschitz
continuous functions with a common Lipschitz constant M > 0. Then the sequence ( f)
converges uniformly to a function f, if and only if their graphs converge to the graph of f,
in Hausdorff metric.

Moreover, f, = lim f, is a Lipschitz function with the Lipschitz constant M.

n—>00



78

Proof. Let us notice that if f, = £, then f; is a Lipschitz function with constant M.

/6@ = £ = Tim |£,(0)= ()| < lim M -d(x, y) = M -d(x, ).
We will prove that
dy (graph fy. graph f,) <||f, = fo| < (M +1)-dy (graph f,, graph f,).

First we shall show the first of the inequalities:

dy (graph fy, graph £,) <|f, - £

dy (graph fy, graph f,)=max{d(graph fy, graph f,), d(graph f,, graph f,)}
As the inequality is symmetric with respect to f, and f, we may assume that

d( graph f,, graph f,) >d (graph f,, graph f,)} and then

dy (graph fy, graph f,)=d(graph f,, graph f,)=
=max{xe X : 07((x,f0(x)), graph f,)} <
<max{x e X :d((x, /o (x)), (x, /,(x))} =
=max{x e X :|fo(x) = £, =]/~ 1,
Now we shall show that
17, = fol < (M +1)-dyy (graph £y, graph f,)
Fix x € X and let y € X such that
dyy (graph fy, graph f,) >d((x, f,(x)), (v, £, (¥) =
=d () +| /() = £,(0)] = d((x, fy (), graph f,)
Consequently
|/, 0) = fo 0| <1, () = £, D] +] £, () = fo ()] <
<M -d(x,y)+dy(graph hfy, graph f,) <
<M -dy(graph f,, graph f,)+dy (graph f,, graph f,) =
=(M+1)-dy (graph fy, graph f,)

and taking the limits we conclude the proof.

3. Proof of the main result

Let us start with some technical results on extending Lipschitz functions
Lemma 6. Let F:(0,)xR" >R be a bounded definable map such that for any

v € (0,1) the restriction F, ‘R" 5 x—— F(y,x) € R satisfies the Lipschitz condition with
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a constant independent of y. Then for any a € R" the limit  lim F(y,x) exists and
(y,x)(0,a)

defines a definable extension of F to a function F :[0,1)xR" — R.
Proof. For any a € R” the function (0,1) > y——>F(y,a) is definable, so there exists

the limit F(0,q):= lin})F(y,a). Now, |F(y,x)—ﬁ(0,a)|S|F(y,x)—F(y,a)|+|F(y,a)—
Yy

F(0,a)| < L|x—a|+|F(y,a)- F(0,a)

, hence the limit in question exists. Since, the graph

of F is the closure of graph (F), the function F is definable.
O

Lemma 7 (Banach—McShane—Whitney extension theorem, [6]). Let f: S — R be
L-lipschitz function on the subset S in a metric space X. Then the formula

F(x)=sup{f(x")—L-d(x,x"):x" €S}

For x € X defines the extension of the function f'such that F: X — R is L-lipschitz.
Now, we are in a position to give the proof of our main result

Proof of Theorem 1. Induction with respect to n. For n = 0 it is obvious. Let 4, be the
projection of 4 onto R x R™', by the inductive hypothesis the limit 4, == lim (4, ), exists
y—0
and is definable. Without loss of generality we may assume that dim(4 l)y and dim(Ay) is
constant for y € (0,¢), so all cells A are of the same type (a graph or a band).

If all fibres are graphs, there exists a definable function /: 4, — R such that 4 = graph (F),
for any y € (0, ¢), the function F is Lipschitz with a constant L independent of y. Using

lemmas 6 and 7 we can extend this function to a definable function F :[0,c)xR"” — R, set
Fy(x) = F(0,x), forx e R".
Let C = graph (150|A0), we shall show lin}) 4, =C. Lety, € (0,c) be a sequence such
yeo

that y, ——0, let x, € 4,

B
v

x e C. Let x, = (x;,%,) and %y = (x5,%,). We have (y,,x,) € (4), . so xp € 4. By the

x, —>Xx, be a convergent sequence, we shall prove that

definition Fy(x})=1lim, ,  F(y,,x,)=lim, , _x’ =x", hencexe C.

Now, let x € C and y, € (0,c) be a sequence such that y, ——0. Since x; € 4,
x0 = Fy(x}) thereis x!, € (4)),, suchthat x; ——xg. Put x,, = F(y,,x,), weget x, € 4,
and x) = F(y,,x.)—— F(0,x}) = Fy(x}) = x_. Consequently we have x, —>x, which

lim4, =C.

proves lim 4,

If is a band for y € (0, c) proceeding in a similar way, we have 4 = (G,H), where
G,H : 4 —>R and define G,, H,. We shall show that
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C:{xeR":x"€ 4),Gy(x") < x, < Hy(x")}
is the Hausdorff limit of Ay as y——0, y€(0,c).
Let y, € (0,¢) be a sequence such that y, ——0, let x, € 4, ,x, —>x,. Let

x, = (x,x,) and xy = (xé,X2)~ We have (y,,x,)€(4), , so xj € 4. By the definition

»n?
Gy (xp) =lim,_,.. G(py,x,), Gy(x))=lim,_,.. G(y,,x}) so

Gy (x}) < x) < Hy(x})
and hence X, € C.

Now, fix x, € C and y, € (0,c) such that y, ——0. We have x} € 4, and Gy(x) <
xg < ﬁo (xg)- There exists x! € (4 )yv such that x;, —> x;.
~ , ~ , v 1 , , ~ ’ 7 ’
If Gy(x)=Hy(x") put x, = E(G(yv,xv),H(yv,xv)). If Gy(x)<Hy(x') put

XV = xg _Go(xé)
T (Hy(x0) = Gy (xp))
Then x, € 4, and x, ——>x,.

(H(yv’x\,/)_G(yv:xv))"'G(ywxv)-
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1. Schwarz integral

The goal of this paper is to consider some properties of one-dimensional holomorphic
functions in the unit disc. We focus our attention on such boundary properties of these
functions which imply their uniqueness. In this aspect Luzin-Privalov theorem [4—6] seems
to be crucial. This theorem refers to a meromorphic function f(z) of the complex variable z
in a simply-connected domain D with rectifiable boundary I'. If f(z) takes angular boundary
values zero on a set £ I of positive Lebesgue measure on I, then f(z) =0 in D. There is
no function meromorphic in D that has infinite angular boundary values on a set £ c T
of positive measure.

We are going to construct some examples of a holomorphic non-constant function f
for a given E set of measure zero with /=1 on E.

It will turn out that this £ set is a peak set for a proper algebra of holomorphic functions.

We say that a compact set K is a peak set for A(D) if there exists f € A(D) such that

| vi | <1on D\K and Jf =1on K. Stensones Henriksen has proved [2] that every strictly

pseudoconvex domain with C* boundary in C“ has a peak set with a Hausdorff dimension
2d - 1.

In this paper we give an alternative, even stronger construction for the unit disc. In the
context of the Luzin-Privalov theorem we give the optimal construction for algebra A(D).

Main tool in our construction is the Schwarz kernel.

Let us consider a natural measure ¢ on boundary of the unit circle 0D. For a given u
which satisfies a Holder condition we use Schwarz integral (see [7, 8]):

t+Zdt
t— zt

Su(z)=—L u(t)

We can easily observe that Su € O(D).
Then the Schwarz integral formula Su defining an analytic function, the boundary values
of whose real part coincide with u. Additionally, the real part of Su is a continuous harmonic

function on D (see [1, The Basic Lemma].

There exists a harmonic function v on D so that Su = u + iv.

However when applying the above integral formula, a very important and more difficult
problem arises concerning the existence and the expression of the boundary values of the
imaginary part v and of the complete function Su by the given boundary values of the real
part u. Still, in some cases we have complete information about v.

If a given function u satisfies a Holder condition, then the corresponding values
of imaginary part v on 6D are expressed by the Hilbert formula (see [3, 1, pp. 45-49]):

v(¢)———L u(t)cot( . ]dt

The above formula is a singular integral and exists in the Cauchy principal-value sense.

Moreover, if u satisfies a Holder condition then the values of v exist on all ¢ € D
and satisfy the same Holder condition as u. Now we can recover Su using v in the following
way:
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t+zdt

Su(z) = — L w0

But now the imaginary part of Su is continuous on D, so Su e A(D) if u satisfies
a Holder condition.

2. Peak sets

Lemma 1. Assume that K, D are distinct compact sets in 0D. Then there exists a function
u e C*(0D)sothatu=00onD,u=1onKand 0 <u <1 on dD.

Proof. There exist open arcs ]i:{ezn” ta; <t<b;} such that KCU:I,. and

I,A"D=@. In fact we can assume that I, mfj = for i= j. Now there exist functions

u; : 0D —[0,1]€ C*(0D) so thatu,=1 on I, and u,= 0 on D but with distinct supports. It is

enough to define u = Z::] uy,.
Theorem 2. Let K be a compact subset of 0D measure zero (o(K) = 0). There exists
a function f € A(D) such that |f| <1lonD\K and f=1on K.
Proof. Let us choose € > 0 and define
D, =1z eaD:viVI;£|z—w| >}

There exists u, € C>*(0D) such that 0 <u < 1,u(2)=0ifz e D andu(z)=1ifz € K.
In particular Su_e A(D) and 0 < RSu, < 1.

Let us choose zeD\K and define §(z,&) = inf,,.op,p, |z —w|. We can estimate

L t+z dt
D\D, t—2z t
Let us consider the following compact set:

T,:{zeD: in£|z—w|22’”+2’2”}

_ 0@\ D,) 42| o@D\ D,)

S
|Suy (2)| < P teU(8)|t z| 3(z,¢€)

There exists &, € (0,272") such that o(6D\ D, )< 272" Now let g, = Su, € A(D).

Obviously Rg, =1 on K and 0 <Rg, <I1.

Moreover if z € T, then

o(6D\D, ) - o=2n B
8(z,e,) 2422

—n

g, (2)| <

Now we are able to define g =1+ Z N
ne
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Since U NT” =D\ K we can observe that g € O(D)NC(D\K). As 0< Rg, <1 and
ne

Rg =1on K we have lim,_, Rg,(z) =co for we K.

Now we choose f = exp[—lj. Obviously f e OD)n C(D\K).
g

. 1 g = . =
Since m—=m—‘§=m—%>0 on Q\K we may easily observe that 0<|f| <1 on Q\K.
g el lel
Additionally due to lim,_,, ﬁ =0 forw e Kwe have f=1on K and f € A(Q).
g(z

Example 3. There exists K < 0D, a compact set with Hausdorff dimension equal one
which is also a peak set for A(D).

Let us consider a sequence of closed distinct intervals 7, = [272"71 272"]. There exists

Cantor set C, < I with Hausdorf dimension equal 1 Now we define a compact set
n+

K= {l}ufj{ezmt iteC,}

n=1

in 0D with Hausdorff dimension one and due to Theorem 2 we conclude that K is a peak set
for A(D).
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1. Introduction

In recent years, several researchers have studied various modifications of the Baskakov-
-Durrmeyer operators. The approximation properties of these operators in many different
spaces were considered, for example, in [4, 8, 10, 11, 18, 19].

A large amount of literature is available on approximation of function of one variable, but
the corresponding problem for bivariate functions has received less attention. The bivariate
Bernstein operator was first introduced by Dhingas [3] and it was also considered by Lorentz
[9] and Stancu [14]. Recently, some positive linear operators for function of two variables
and their approximation properties were investigated in a series of research articles (e.g.
[2,5,6,7,12,13,15,17, 20, 21].

In this paper, we will introduce the Baskakov-Durrmeyer type operators in the space
of continuous functions of two variables. This is an extension of the paper [10] for a bivariate
case.

Let Ry =[0,00) and R? =R} xR;. We denote by C(R?) the space of all real-valued
functions continuous on Ri and by Cjp (Ri) — the space of functions continuous and

bounded on R2. The norm on Cyz(R?) is defined by

I, @2, = L £ (x.9)-

Let
ax k k
_ax k , x
() =e Ty )yt e
! ; i KI(1+ x)"*
where a e Ry, (n)y =1, (n), =n(n+1)...(n+i-1), i >1.
We consider the class of operators M ,‘i’,ﬁ’“’b given by the formula

1 1
Ta+k+1)TPR+71+1)

MR (fix,0)=mn Y W (W0 (5)
k,I=0

X Jj f e (ns)* e (mz)P* £ (s, 2)dsdz

for (x,y) e Ri, where m,neN, a,b e Rg, a,f3 > —1. It is clear that the operator M,Z’,E’“’b
is linear and positive on Ri. In this paper we study some approximation properties of

M ,‘:ﬁ’”’b in the space of continuous functions of two variables on a compact set. We find
the order of this approximation using full and partial modulus of continuity.
Observe that if f(s,z) = f,(s)f>(z), then

MER“ (fix,9) = ME“ (fs )M (f330), (1.1)
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where

o0

M}?,a (fl;x) = nZWVZk (X)m fce*"s (ns)tukji (S)dS.

k=0

Some properties of the operator M, ¢, in particular, an estimation of the rate of
convergence, were studied in [10].
Let (x,y) € Ri and

e (s,2) =52, 0%, (s,2)=(s—x)'(z— ), i,j=0,1,2,4, (s,2)eR3.

Now, we give some lemmas which will be useful in the future proofs of the main results.
The following lemmas are simple consequences of the above definitions and the results
obtained in [10, Lemma 2.2, Lemma 2.3].

Lemma 1. Let m,neN, a,beR{, o, >—1. For (x,y)e]Ri we get

M;‘,;B’”’b %x, ) =1, (1.2)
1
Mt (@) = S x — (1.3)
’ n n(1+x)
MEB (i) =By B (1.4)
’ m m(1+y)
2 2.2
M}?’}E’a’b(elo;x’y) _ (Q,+1)(2(X,+2) n 2(a+2)x+x i 2 +%
, n n n”(1+x)
(1.5)
2ax? , 20+ 2ax

n(1+x) n2(1+x) ’

2 2.2
M,?’,E’“’b(eo’z;x,y)= (B+1)(2[3+2)+2(l3+2)y+y +y2+ 2b Y .
’ m m m~(1+y)
2by? L 2(B+2)by
m(l+y) m2(1+y) ’

(1.6)

Lemma 2. Let myneN, a,be R}, a,p> 1. For (x,y) e R? we get

1 ax
MEBab (g0 1y = o+l i
o (¢x’y Y) n n(1+x)
u +1 b
MEBer @ sx =B B
m(l+y)
MZ}E’a’b ((I)lc’,ly;x’y) _(a+DB+1) . (a+1)by N B+1ax abxy

nm nm(1+ y) nm(1+x)+nm(l+x)(l+y)’
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a, a+l)(a+2) 2x+x> a*x? 2(o+2)ax
n n (1+x) n°(1+x)
2 2.2
poges 2 - BHDBHD 2ye0t B 22ty

m  mr(1+y)? mP(+y)
Theorem 1. For each f € Cz(R?), we have
“Muﬁub(f)“c (R?) _"f"CB(R )

Jforall nym e N.

Proof. Using the definition M®*>*? we obtain

1 1
MNa+k+)TPE+1+1)

MR (f3x,9)| < mn 2 R COW ()

k=0

y f f ¢ (1) e (m2) | £ (s, )| de

1 1
S(SSZI)JEp]RJf(SZ)|mnk§:0 e COW,, J(Y)F(a+k+1)r([3+l+l)

x J:Q J:O e (ns)** ™™ (mz)P* dsdz

~ sy [ A MEB = s |72 =]
(vz)e]R (vz)e]R

which gives the result. O
Theorem 2 [22]. Let I, and I, be compact intervals of the real line. Let n,meN and

T, CU, x1,) = C(I; x1,) be linear positive operators. If

lim Tn,m (ei’j) = ei,j > (la ]) € {(05 0)7(19 0)’ (09 l)}

n,m—»00

and

. 2,0 , 02y _ 20, 02
lim Tn’m(e +e)=e" +e 7,
n,m—»00

uniformly on I, * I,, then the sequence (T,  f) converges to funiformly on I,  I,, for any
feC(, x1,).

Let 4,B > 0. Throughout the rest of this paper we will denote R> 5 =10, A4]x[0, B].
Theorem 3. Let (x,y) € R, arefixed. If f e C(R%y), then

11m M,%}B’a’b(f;an’) :f(xay)'

n,m—00
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. o 2
Moreover, this convergence is uniform on R7.

Proof. Using (1.2)—(1.6), we have
lim MNP sx,p) =€ (x,), (i, )) € {(0,0),(1,0),(0,1)}

n,m—>00
and
lim Myhel (@ +e%:x,3)= e (x,3) + " (x,y)
n,m—>00
uniformly on RzA 5- Applying Theorem 2, the proof of the theorem is completed. O

2. Local approximation results

In this section we will investigate the degree of approximation for functions of two
variables by operators M,‘z;ﬁ’”’b in terms of the modulus of continuity on a compact set.
Let feC (RZA 5) and 6> 0. The full continuity modulus of the function f is defined
as (see [1], [16])
o(f;8) = sup |/ (s,2)~ f(x,2)|

(5.2),(x,0)eR% 5
(s—x)2+(z-y)? <8?

and its partial continuity moduli are given by
oV (f18) = sup |f(s,2)~f(x,2)],
0<z<B
ls—x[<8
o?(f18)= sup |f(5,2)~ f(5.9).
0<s<4
lz-yI<d
It is known that [imgs_o®(f;0)=0, o(f;d,) <w(f;0,) for 0 <, <J, and for any
A>0, o(f;20) < (1+AM)w(f;0). The same properties are satisfied by partial continuity

moduli. The details of the modulus of continuity for the bivariate case can be found in [1].

Theorem 4. Let f € C(RZAB ). For (x,y) e RZAB, we have

‘Mqﬁab (f3x,9)— £ (x,9)| < 20( £35),

where

2

5 (a+1)(a+2)+2x+x2+ a*x? 2(0+2)ax
n n nz(l+x)2 n2(1+x)

) P 1/2
LBEDE+2) 2y’ by +2(B+2)byJ

m? m m*(1+y)?  m*(1+y)
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Proof. Let & > 0. If \[(s—x)*+(z—»)? <38, then |f(s,2)—f(x,)| <o(f3d). If
J(s=x)* +(z—y)* > 8, then

=0+ (2=’ =0 +E=))
& 5

>1.

Therefore, we obtain

£6.9= @) < o £ifis =27 +z-?)
[ 2 2
§[1+ (s—x) +(z-Y) ]m(f;s)g[n—(s_x)z+(Z_y)zjm(f;6).

3 52
The operator M&ﬁ’“’b is positive and linear, so

MR (f1x, )= 0| < MEhe (1 f = £, )

%, )

< o(f; 6)(M,‘:’,E’“”’ (€%5x, )+ 6% My (935 + 0075, y)j.
From Lemma 2 we obtain
MR (fix,p) - f (x,y)‘ <MERP (| f = fxp)]ixp)

1 (a+1)(a+2) 2x+x> a’x? 2(o+2)ax
< o(f;0) 1+—2 ( )(2 )+ +— 3 (2 )
5 n n n”(1+x) n (1+x)

+([3+1)(2[3+2)+2y+y2+ 2bzyz 2+2([23+2)byj},
m m m-(1+y) m-(1+y)

which ends the proof. O
Theorem 5. If f e C(RZAB ), then for all (x,y) e RZAB , we have

M (f33,) = £ (5,7)

(a+1)(a+2) » a@x’ Aa+ax)| g . 1 J
S(H—n +2x+x +n(1+x)2+ (e ) }0 f,\/;

B+D(B+2) 2 by 2(B+2)by @( e ]
+[1+—m +2y+y +m(1+y)2+ (5 y) Jm f,\/; )
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Proof. Let f € C(R%j). Observe that

1 1
Foa+k+)T(P+7+1)

MR (f,9) = f (6 p)| S mn Y W W0, ()
k=0

X f f e (ns)* e (mz)PH! |/ (s,2)— f(x,2)|dsdz

1 1
MNa+k+1)TPRE+/+1)

+mn Z Wik (X)Wrs,l )
=0

x f fe*"“ (n9)*"* & (mz)P*! | £ (x, 2) — £ (x, )| dsdlz
=J,+J,.
Using the properties of the modulus of continuity and (1.5), we have

1 1
Foa+k+1)T(P+7+1)

o0
Jy=mn Y W W, (3)
k,[=0

x f f e (ns)* e (mz)PY! |/ (s,2)— f(x,2)|dsdz

1
<o(f; 6,7){1 o M (¢§:‘;;x,y)}

n

(a+1)(o+2) » ax’ Aa+ax)| g . 1
(1+—n +2x+x +n(1+x)2+ e ) Jco f,\/; )

IN

| S .
where §, = —=. Similarly, we obtain

B+D(B+2) 2 by 2(B+2)by @( 1 j
J2§[1+—m +2y+y +m(1+y)2+ (1t ) ](o f,\/E .

Hence, the proof is completed. O

Now, we consider the mixed modulus of smoothness and the modulus of smoothness
(see [16]). Let 5/. >0,7=1,2.

The mixed modulus of smoothness is defined as

O (f381,82) = sup|f(s,2) = f(x,2) = f(s,0)+ f(x,9)]

[s—x|<8,, |z-yI<8,
(x,9).(5,2)eR%

&

and the modulus of smoothness of the first and the second order are given by

o (f39;,0,) = sup |/t by +k)= f(x, ),

(X )(x+h,y+h)eR%,
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@, (f39;,8,) = sup |/ G+ 2h,y+2k) =2 f (x+ by +k) + f(x,p)],

(x,),(x+2h, y+2k)eRAB
respectively.
Theorem 6. Let f e C(R%,) and

a a, (x+1 ax +1 by
HERP (fix,9) = Meb o (f3x,) - f[ X+ AL ] f(xp).

n(l+x) m m(l+y)

There exists a positive constant C such that, for all (x,y) € Ri g, we have

2 2 2
Hyhh (g;x,y)-g(x,y)‘ <C % Z—f % Z—‘zg +# ; agv
Uollewsy) Ve, C(R%)
i i 2
for any function g, such that g, a—g., 6_g og (i=1,2) belong to C(RAB)
ox' oy’ oxdy

Proof. Let (x,y) € R%;. Observe that

g(s,2)—g(x,y)=(s— x)ag(xy) (Z—y)M

oy
v A2
f(s u)ag(” y)du+J'(z v)ag(”)d “’ag(" V) dvedu

Oouov
We have

HEhel @@, ) =1, HE " (040:%,0) = Heb? (93):x,») = 0.
Let

ggf(sjz):[f(s_ ag(uy) JU( ag(xv) J Lol

and

s [ [ L) g,

Ouov

Hence

. _ 0. B.a,b 20,1, .
HEb (g3, p) - g(x,0) = Hy P (€0 x, )+ HEb P (€2 x, p) + Hi ™! (8 43x, p).



Using the definition of H [3 @b \we can write

Boa,b ;£1,0, _ B.ab 1,0,
HEpob el ,x,y)\—\M;i,B“ &% x, )

o+l ax

Xh—— 2
. + +n(1+x) Ot+1+x+ ax —u 0 g(u,y)du
x n n(1+x) ou?
‘M“ﬁab x’y)‘
Gl o+l 22 ( )
+| " n(l+x) yer gu,y
X n n(1+x) ou?
1 % o(u,
=5 sup —g(zé Y MER? (629:x,9)
(u,v)eRaB ou
2
Lo [Pewy|ferlar
(u, v)eggik ou? | n  n(l+x)
2
< c g
o ey
and similarly, we get
e
oot €0 x,y)‘gcz_a_f ’
mov C(RYp)
1 2
|HEb? i, )| < G — o'g ,
’ nm | Oudv C®)
where C|,C,, C, are positive constants. Hence
a, 82 52 a2
ngﬁ b(g,x y)—g(x, y)‘<C 2 _f ) ég
o c®y) "NV e, nmouov

for some C > 0 and the theorem is proved.

Theorem 7. If f € C(R%y), then

M,;f;ﬁ’“’b(f;x,y)—f(x,y)‘ < C{(Dz (f;\ﬁ,\ﬁ}wmix (f\ﬁ\ﬁ]
n m n m

+w1[f i(a+1+%) %[BJrHlljr_ny}’

where C > 0, (x,y) € RZAE

93
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Proof. Let /€ C(R%;) and § >0,/ =

1,2. We shall use the Steklov function of second
order defined by

2 82 8l l
Jis, (60) = 5252 ffffo(x+sl+s2,y+zl+zz)

— [ (x+2(8; +8,), y+2(z, + 2,))ds ds,dz,dz, .

Observe that

i, (6 0) = £ (2, 3)| < 0,(£38,.8,)

and

f5152 ()C, y)

5’ 62 f fj- J: f(S Y+ 2z +z,)dsdudz,dz,
2 62
4 5 [ x+8, M+,
- 5752 J: f _[C f f(s,y+2(z, + z,))dsdudz,dz,
< 6 I
8262 j .[V f ff(x +51 +5,, w)dsds,dwdv
8, m+5, & 8
_ 5;; : J-y+ .[+ E L? S (x+2s; +2s,, w)ds,ds,dwdv
8262 f J.y 2 f I 2 S +sy,v+z,y)duds,dvdz,

y+8, 5y X+,
-—= L?J- L? S (u+2s,,v+2z,)duds,dvdz, .
5,9, Y ~

Hence

3 8

628 ff[f(x+81,y+zl +2,)
2

_Zf(x+62 ,y+2z +zzj+f(x y+2z +zz)}dzldz2
62 62

e ff[f(x+261,y+2(zl+zz))

2f(x+8,,y+2(z; +z,))+ f(x, ¥y +2(z +22))]dzldz2

fssz( X, y)=

and

fssz( x,y)| <

8 ) 1 9
2 (f,?l,zzj 8 0,(f381,6,) < 820)2(f 191,8,).

1 1 1
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Similarly, we get
62
el T35, (X:3)

9
<5 0,(f381,8,),
5;

62
_ay f8152 (xa y)

9
o <0 (381,8,),  (x,5) e R

5,8,

From the above and by Theorem 6, we obtain
[MEEe (3,00 - £ (6, )

<SHZN (|1 = fog, 00 )+ [Heh? Ui, 5600 = s, )|+ [ fog, () = (3 )

+‘f((x+1+x+ ax B+1+y+ by J—f(x,y)

n n(1+x)" m m(l+y)

<c{%(f;sl,62)+mmix<f;61,82>+wl (f;“”+n(1"fx),ﬁ;l+m(fiy)j},

where C is a positive constant. This completes the proof. O

The authors would like to thank the referees for their helpful remarks which improved the exposition
of the paper.
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1. Introduction

Let Ry =[0,00), N={1,2...}, N, =NuU{0} and for every fixed m € N let
N" =n=(n,...,n,):n. €N for 1<k <mj,

R = {x=(x,...,x,):x, e Ry for 1<k <m}.

Analogously we define R”. We denote A =(A,A,...,A)e R”. For ne N” we write

n — & if and only if n, — 400 for k =1,2...m. Moreover, for a fixed x,y € R”, we will
use the notation

J;yf(s)dS= J:l'[(ym f(sp,...8,))ds, ...ds,,.

We denote by Cy(R”) the space of all real-valued functions f uniformly continuous
and bounded on R’/. The norm on Cg(R?) is defined by ||f||C (R7) = SUp |/ (x)|. Let

m
xe]R+

ax k k
" k X X
W (x)=e 1+ [,J(n),. A —
ok ; i KI(1+ x)™F

where a e Ry, (n)y =1, (n); =n(n+1)...(n+i-1), i>1.

For a real-valued function f defined on the interval [0, c0), the generalized Baskakov-
-Durrmeyer type operators is defined by (see [11])

OO

M (f5x) = z Wl (x )mf e (ns)*™ f(s)ds, a>-1. (1.1)

=0
In the present paper, inspired by operator (1.1), we introduce the following class of
operators My given by the formula

M2(f; 9= Z EHW o ( )F(a e T s )M f(s)ds (1.2)

for xeR7, where neN", aeRY, a=(a,...,0,,), o, >—1 for k=12,....m. It is

obvious that the operator M, is linear and positive on R”. Basic facts on positive linear
operators, their generalizations and applications, can be found in [3], [4].

Observe that if f(s)= f(s,)-...- f,,(s,,) for se R, then

Mua(f x) HM J? I(f’x)

Jj=1
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where

»d; n.s; k.
M) = Z N e I RN L%
Some properties of the operator defined by (1.1) in particular, an estimation of the rate

of convergence, were studied in [11].

Lemma 1 [11]. Let ¢"(r)=¢", t e R}, r € N,. For x>0, a>—1 and a >0, we have
M (90 =1,

+1 ax
M% (o' x S AL ,
w050 n(1+x)

ME (ol -y = S
n(l1+x)

M‘”(((p )x) (0L+1)(oc+2)+2x+x N a*x? +2(0L+2)ax

n’ n 112(1+)c)2 n2(1+x) ’

lim n* M (@' —x)*;x) =12x +12x° +3x" —3ax’
n—0

. Bx=5)ax’ [12(a+2)+4]a’x’
l+x (1+x)*

Using the definition of M,*?, it is easy to prove the next theorem.

Theorem 1. Let f e Cx(R"). Then

|ps= o]

Cp(RT) S"f"CBUR’I)
forall neN".

This paper is devoted to a study aimed at obtaining approximation results by using
the modulus of continuity and the Voronovskaya asymptotic formula for the Baskakov-
-Durrmeyer type operators defined by (1.2) in the space of uniformly continuous and
bounded functions of several variables. Approximation properties of various positive linear
operators for functions of one, two and several variables have been investigated in many
papers (for example [2], [5], [7], [8], [9], [10], [12], [13]).

2. Rate of convergence

In this section we shall prove two theorems on the degree of approximation of functions
belonging to the class Cz(R) by M, *. We shall apply the method used in [6].
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We denote

Cp(R™):= {f e Cy(R™): ge Cyz(R™), 1sk3m}.
k

In order to prove the approximation theorem we need the following result. Let

(pl(sj)=sj, s eRy, j=12,..m, reN.
Theorem 2. If g € C5(R™), then
M2 (g3) - g ()

J=1

%
Ox n]2 n; njz»(1+xj)2 n5(1+xj)

5 5 5 12
{(ocj+1)(aj+2)+2xj+xj+ a’x’ +z(mj+2)ajxj]
Hleyrr)
Jorall xe R, where neN", aeR”, a=(a,...,a,), o, >—1 for k=1,2,...,m
Proof. Fix x € R”/. Forevery s € R’} we have

g6 -g@ =Y [ gy,
T oU;

X

Where y] :(xl9"'7xj_1sujssj+19---asm)- ObSCrVe that
s; 0 og
Lajg(y,-)duj = 2 . |57 -]
‘ Cp(RY)
and
1
(x/,aj 8 . ag OLj’a/ 1 .
Mn/- [J:ag(yj)duj ,ijg p Mn/ (‘(p —xj‘,xj).
J T licy (R

Applying the Cauchy-Schwarz inequality we obtain

\ 1
&j-d; 0 . g a;j»d; 1 2. 2
' Cp(RY)

From the above, using the linearity of M, “ and Lemma 1, we obtain

M2 (g:x) - g )

Jj=1

g
ox

1/2
[(aj+1)(aj+2)+2xj+x§ a’x’ 2(aj+2)ajij
Cp(R)

2 2 2 2
i nj n; nj(1+xj) nj(1+xj)

whence the result. O
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In the next theorem we will use the modulus of continuity of f € Cx(R"') given by

/8= 300 80 lc, e SRRTVDL
1

0<hm gﬁm

where
AL f(¥) = f(x+h)- f(x), xR,
Forafixed B=(By,....B,). 0<B; <1 for j=12,....,m, wedenoteby Lip(Cy(R);B)

the class of all functions feCyz(RY) for which w(f;8)= O( +. +8B ) as

+ .
8; >0" for j=12,...,m

Theorem 3. Suppose that [ € Czx(RY). Then for all x € R, it holds

M (f3%) = f(0)| < 2(m+Do( f35),

where
1/2
(a0 +2) 2% +x7 ajx; 2(0c +2)ax o
J 2 + + , j=L2,....m
nj n; nj(1+xj) " (1+x )

Proof. Let f; be the Steklov mean of f e C5(RY)

]} J;f(x+u)du

for x e R", 8; >0 for j=1,...,m. Wehave

Jo@) = [H&s

1
JRENICE (Hsj] [~ e
Jj=1

and

-1
%fs(x)=[l_[6]} EE f f’”(f(x+u*)—f(x+u*))dul...duj,ldujﬂ...dum
J Jj=1

. *
for j=1,...,m, where u" = (uy,...,u; 1,0, jyyseensthy,)y U = (Upseestly g, 0,05 ,00000,,).
From this we obtain

||f5 _f"CB(RT) < O)(f,s), (21)
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s

axj

<257 (f;9), 22
Cy(RY)

which implies f5 € Cy(R”). Hence, for every 8 R”\ {0}, xeR” and neN", we can
write

M2 (f330) = 0| <|ME(f = fy0)] + | Mg s = fs0)] +| f0) = £ ().
Using Theorem 1 and (2.1), we get
a2 (f - fy)| <15 - 1] < 0(£:8).
By Theorem 2 and (2.2), it follows

[M32 (f5:0) = f3(0)|

1/2
i & {(ocj+1)(otj+2) 2,422 dixd 2(aj+2)ajij
+ =+ +
2 2 2
j (™) nj n; nj(l+xj) nj(l+xj)
(o; +1)(a; +2) 2x; +x 2x2 2(a; +2)a;x "
a . a X
<20(f; 6)28 - Ly T
nj n; nj(l-i-xj) ni(1+x;)
Consequently

My (f33)- /(0)| < 20(/:8)

1/2
z 0(, +1 OL +2 2x +x a2x2 2(a; +2)a;x;

] n; nj(1+xj)2 n5(1+xj)

forall 8 € R”\{0}. Choosing & with

n; ng o oni(l+x;)” ni(l+x;)

) 5y 5 12
6j={(aj+l)(aj+2)+2xj+xj+ asx; +2(0Lj+2)ajxj]
J

j=1,...,m, we obtain the assertion. O

From Theorem 3, using the properties of modulus of continuity for uniformly continous
function (see [1], [4]), we can derive the following corollaries.

Corollary 1. If f € Cz(R"), then
lim Mz (f3x) = f (%)
n—oo

for every x € R". Moreover, this convergence is uniform on every compact set 7 — R’
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Corollary 2. Let f e Lip(Cz(R");B) with some fixed meN and B=(B,,...,3,,),
0<B; <l for j=12,..m. Then for all axeRY, a=(a...,a,), o, >-1 for k =
=1,2,....mand ne N", it holds

(oc (e, +2) 2 +X; ax; 2o, +2)a;x; g
+ +

M (f5%) - f(%)
‘ = nj2 n; nj(l-i-xj)2 n5(1+xj)

3. The Voronovskaya type theorem

Let 7 =(n,...,n)e N". In this part, we will consider the operator Mz**. In order
to state the Voronovskaya type theorem we need the following result, which is a simple
consequence of Lemma 1.

Lemma 2. Let x=(x,,...,x,,) € R be a fixed point. Then

. o4 1 . _ a;x;
li)m nM,”" (¢ _xj’xj)_aj +1+r,
n—00 xj
Tim M7 (9! =5 x )M (0! = x3) = 0, =

lim n MY (@' —x ) ;x,)=2x, +x2,
Tim 2 M7 (' =) x) = 1207 +12x) 4 3x] = 3a,)

. (3x; —5)a;x; 12 +2) +4]ax; (3.1)

l+x; (1+x;)?

forj=1,2,...,m.

Theorem 4. Let f e Cy(RY) and x e RY. If fis of the class CB (R in a certain
neighbourhood of a point x and f"(x) exists (in the Fréchet sense), then for every

x e R, we have

R TR ORI B SR T

J=1
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Proof. Let x be a fixed point in R”’. By Taylor’s formula we get

L 2
f(s):f(x)+2(sj—x_- f(x)+_{2( Zai(x)
Jj=1

J

1/2
2 Z (s; = x,)(s; —x) (x)} (s)(Z(s —x)] :

i#j,i,j=1

where the function y_is uniformly continuous and bounded in R’ and limy,(s)=0.
s§—>X

From linearity of M,"?, we obtain

HUME (20~ £ = M (0! =) L)

j=1 J

+= n{ZM 2 (9! —x;) ;x,)aaf;(x)

! ; (3.2)
—~ a o’ f(x)
+2 MO (@ = x i x YM% % (@ — x5 x;
2L M i DM 0 —xi)
i#j,i,j=1 [y
+nMy e (Y, 0,5 %),
. 1/2
where ¢, (s) = (Zj:](s i xj)4) . Using the Cauchy-Schwarz inequality we obtain
1/2 1/2
0| M2 (0| <[ ME“ (k)| P ME (93 %)
Moreover, the function \Vi satisfies the assumption of Corollary 1. Hence
lim Mg (y3:%) = y3(x) = 0.
n—o0
Observe that
M4 (03:%) = My [Z(cpl —x_,)“;x} =D M@ = x)) ;).
I I
Using (3.1) we obtain
lim "M% (y,0,;x) = 0. (3.3)
n—00
From (3.2), (3.3) and Lemma 2 we get the assertion. O

Corollary 3. Let x e R". If f satisfies the assumption of Theorem 4, then

M,?’a(f;x)—f(x)‘=0(%j as n— oo.
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1. Preliminaries and introduction

Throughout the article, R is an associative ring and 8 : R — R is a derivation. We do not
assume that R has an identity.

Definition 1.1. A map 6 : R — R is said to be a derivation, if it is additive and satisfies the
Leibniz rule
Ya,b €R: &(ab) = 8(a)b+ad(b).

Notice that the zero map is a derivation of the ring R. We define

idR, lfl’l:(),
0"=4q 80...08, ifne N\ {0}.

The center of the ring R will be denoted by Z(R), i.e.,
Z(R)={a€R: ab=baforall b€ R}.

Let us remark that Z(R) is a subring of R. For any elements a,b € R we define [a,b] = ab— ba.
By “ideal of the ring R” we always mean a left, right, or two-sided ideal.

Prime rings and, more generally, semiprime rings are fundamental objects of study in
noncommutative algebra. For a long time the research has also been focused on various ex-
tensions of these classes of rings. Taking into account the analogues of prime and semiprime
rings defined by means of ideals that are invariant with respect to either a single derivation
or a family of derivations, yields important examples of such extensions. The analogues are
referred to as -(semi)prime rings and A-(semi)prime rings, respectively. They still attract
interest of algebraists.

The article does not bring new results. Our first purpose is to collect and systematize
basic facts about d-prime rings and §-semiprime rings. Some of these facts seem a bit less
known. The second purpose is to provide complete and self-contained proofs for all the pre-
sented theorems (the proofs are very often omitted in reference sources). The proofs we pro-
vide are mostly modifications of corresponding “nondifferential” proofs given in the classical
monographs [4, 6, 7]. Two features of the article seem worth emphasizing: all the proofs are
valid for rings without identity and a brief introduction to §-nilpotent elements is included.

The article is organized as follows. In Section 2 we collect some useful facts and ex-
amples concerning J-ideals. In Section 3 we discuss various characterizations of §-prime
rings and 8-prime ideals. Section 4 is devoted to strongly nilpotent elements and &-nilpotent
elements. Finally, in Section 5 we deal with characterizations of §-semiprime rings.

2. O-ideals

We begin with a few standard definitions.

Definition 2.1. A ser S C R is called 8-stable, if 6(S) C S. An ideal I of the ring R is said to
be a &-ideal, if it is O-stable.
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Definition 2.2. The two-sided ideal of R generated by the set {[a,b] : a,b € R} is called the
commutator ideal. This ideal is denoted by C(R).

Definition 2.3. For a set S C R we define
o the left annihilator anny(S) = {a € R: ab =0 for all b € S},
e the right annihilator ann,(S) = {a € R: ba =0 for all b € S}.

Notice that if & is the zero derivation, then every ideal of the ring R is a §-ideal. More-
over, anny(S) is a left ideal of R, ann,(S) is a right ideal of R, and R is commutative if and
only if C(R) = {0}.

Before we turn to more interesting observations, let us state an obvious but useful for-
mula.

Lemma 2.4. Ifa,b € R, then §([a,b]) = [0(a),b]+ [a,5(D)].
Take now a closer look at C(R), Z(R) and annihilators.

Proposition 2.5. The commutator ideal C(R) is a d-ideal and the center Z(R) is a §-stable
set. Moreover, if S C R is a 8-stable set, then anny(S) and ann,(S) are §-ideals.

Proof. Let us first define A = {[a,b] : a,b € R}, B = {x[a,b] : a,b,x € R}, C = {[a,b]y

a,b,y € R}, and D = {x[a,by : a,b,x,y € R}. Then C(R) coincides with the totality of finite
sums of elements belonging to the set AUBUC UD. Pick arbitrary a,b,x,y € R. By Lemma

2.4, we have
6([a,b]) = [8(a),b] +[a,8(b)] € C(R),
6 (x[a,b]) = 8(x)[a, b] +x[8(a),b] +x[a,5(b)] € C(
6([a,bly) = [6(a),bly +[a,8(b)]y+a,b]6(y) € C(R
6 (x[a,bly) = 8(x)[a,bly +x[6(a),bly +x[a, 8(b)]y+x[a,b]6(y) € C(R).
The -stability of C(R) follows.
Now, pick an arbitrary a € Z(R) and an arbitrary b € R. Then [a,b] = 0 = [a,5(b)], and
hence

0= 5([a,b]) = [6(a),b] +[a,6(b)] = [6(a),b].

Consequently, 8(a) € Z(R). The §-stability of Z(R) follows.
Suppose, finally, that S C R is a §-stable set. Pick an arbitrary a € ann,(S) and an arbi-
trary b € S. Then ab = 0 and §(b) € S. Consequently,

0=08(ab) = 8(a)b+ad(b) = 6(a)b.
This yields 6 (a) € anng(S). The §-stability of ann,(S) can be proved analogously. O

The intersection of any family of two-sided J-ideals of the ring R is also a two-sided
J-ideal. Obviously, the statement remains true, if we replace the word “two-sided” by “left”
or “right”. We are thus enabled to consider §-ideals generated by subsets of R.

Let us define (S)°, (S >? and (S)? to be the two-sided, the left and the right -ideal of the
ring R generated by a set S C R (respectively). We will write as usual (a)® instead of ({a})?,
and analogously for the left and the right §-ideal generated by the singleton {a}.



110

Proposition 2.6. Let a € R. Define A= {k&"(a): k € Z,n e NU{0}}, B= {x8"(a): x €
R,neNU{0}}, C={8"(a)y: ye R,n € NU{0}}, and D = {x6"(a)y: x,y € R,n € NU
{0}}. Then
(i) <a>5 coincides with the totality of finite sums of elements belonging
to the set AUBUCUD,
(ii) (a)? coincides with the totality of finite sums of elements belonging
to the set AUB,
(iii) (a)f coincides with the totality of finite sums of elements belonging
to the set AUC.

Proof. Denote by T the totality of finite sums of elements belonging to AUBUCU D. No-
tice that 7 is an additive subgroup of the ring R. Moreover, T is a two-sided ideal and
a = 8%a) € T. A reasoning similar to the proof of the §-stability of C(R) shows that T
is 8-stable. We therefore get (a)® C T. On the other hand, if I C R is a two-sided 8-ideal
and a € I, then clearly T C I. The converse inclusion follows. Properties (ii) and (iii) can be
proved analogously. OJ

It seems worth noting that in the above proposition
B=|JRé&"(a), C=|]J8"(@)R, D=|JR&"(a)R.
n=0 n=0 n=0

We conclude the section with some remarks on products and sums of §-ideals. Let k €
N\ {0} and Sj,...,S; C R. If either all the sets are two-sided ideals or all the sets are left

ideals or all the sets are right ideals, then we define S - ... - Sk to be the additive subgroup
of the ring R generated by the “elementwise product” {a; -...-ay : a; € Sy,...,a; € S} (the
usual product of ideals). Otherwise, we define S - ... - Sy to be just the elementwise product.

If all the sets Sy, ..., Sy are two-sided O-ideals, then S - .. .- Sy is also a two-sided J-ideal.
Obviously, we can replace the word “two-sided” by “left” or “right”. Hence any power of a
J-ideal is also a O-ideal.

Notice, finally, that if 7,J C R are two-sided 8-ideals, thenI+J ={a+b:acl, be J}
is also a two-sided &-ideal. (We can replace “two-sided” by “left” or “right”).

3. O-prime rings and d-prime ideals

We start with the following quite standard definition.

Definition 3.1. The ring R is said to be 8-prime if it is nonzero and for any two-sided 8-ideals
1,J C R such that IJ = {0}, we have either = {0} or J ={0}.

Notice that if § is the zero derivation, then the J-primeness is the same thing as the
usual primeness of R (see, for instance, [6, Ch. 3]). Moreover, the ring R is prime if and only
if it is d-prime for each derivation d : R — R. Let us now state and prove a fundamental
characterization of &-prime rings (cf. [1, Lemma 2]).
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Theorem 3.2. Suppose that R is a nonzero ring. The following conditions are equivalent:
(i)  Ris 6-prime,
(ii)  for any elements a,b € R, if Vn € NU{0} : aR0"(b) = {0}, then
eithera=0o0rb =0,
(iii)  for any elements a,b € R, if Vn € NU{0} : 6"(a)Rb = {0}, then
eithera=0o0rb =0,
(iv)  forany elements a,b € R, if (a)® (b)® = {0}, then either a =0

orb=0,

(v)  forany right 6-ideals I,J C R, if IJ = {0}, then either I = {0}
orJ =40},

(vi)  for any left 6-ideals 1,J C R, if IJ = {0}, then either = {0}
orJ ={0},

(vii)  for an arbitrary nonzero right 6-ideal I C R we have
ann,(I) = {0},
(viii)  for an arbitrary nonzero left §-ideal I C R we have anny(I) = {0}.

Proof. Assume that R is §-prime. Let a,b € R be such that
Vne NU{0}: aRd"(b) = {0}. (1

Define I to be the totality of finite sums of elements of the set {clﬁm(a)cz icl,c0 €ER,me

NU {0}} Furthermore, define J to be the totality of finite sums of elements of the set

{n 8" (b)hy : hy,ha € R,n € NU{0}}. Then I and J are two-sided §-ideals of the ring R.
Next, we will prove by induction on m that

Vm,n € NU{0}: 6™(a)R6"(b) = {0}.

If m = 0, then the assertion coincides with (1). Pick therefore some k € NU {0} and suppose
that

Vne NU{0} : §%(a)R8"(b) = {0}.
If ¢ € R and n € NU{0}, then the induction hypothesis yields

0= 8(8(a)cd" (b)) = 8% (a)c8" (b) + 8% (a)8(c)8" (b) + 8% (a)c8™ (b) =

= 8" (a)cs" (b).

In this way, we have proved that §**!(a)R8" (b) = {0} for all n € NU {0}. The induction
step is complete.
Pick arbitrary m,n € NU{0}. Since 6" (a)RS" (b) = {0}, we get

(RS"(a)R)(RS" (b)R) C R(8" (a)RS" (b))R = {0}

(the products above are elementwise products of sets). Consequently, IJ = {0}. The §-
primeness therefore implies that either I = {0} or J = {0}. It is easy to verify that ((a)°)? C I
and ((b)%)? C J (see Proposition 2.6). Thus we have either ((a)®)> = {0} or ((b)®)* = {0}.
Since the square of a two-sided J-ideal is also a two-sided J-ideal, the J-primeness yields
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that either (a)® = {0} or (b)® = {0}. This means, finally, that either a = 0 or b = 0. Condition
(ii) follows. The implication (i) = (iii) can be proved analogously.

Assume that condition (ii) is satisfied. Let a,b € R be such that (a)® (b)® = {0}. Ob-
serve that for an arbitrary n € NU {0}, we have aR8" (b) C (a)? (b)?. Hence (ii) implies that
either a = 0 or b = 0. Condition (iv) follows. The implication (iii) = (iv) can be proved
analogously.

Assume now that condition (iv) is satisfied. Let 7,J C R be right d-ideals such that
1J = {0}. Suppose that  # {0} and pick some a € I\ {0}. Let b € J. It is quite easy to verify
that

(@)% (b)® C 17+ RIJ = {0}.

Condition (iv) therefore yields b = 0. In this way, we have proved that J = {0}. Condition (v)
follows. The implication (iv) = (vi) can be proved analogously.

It is clear that any of conditions (v) and (vi) implies the §-primeness of the ring R. We
have thus proved that conditions (i)—(vi) are pairwise equivalent.

Assume that condition (vi) is satisfied. Let I C R be a nonzero left d-ideal. Since ann,(7)
is a left 6-ideal and anny(7)I = {0}, condition (vi) yields that ann,(7) = {0}. Condition (viii)
follows. The implication (v) == (vii) can be proved analogously.

Assume, finally, that condition (viii) is satisfied. Let I,J C R be two-sided J-ideals such
that 1J = {0}. Suppose that J # {0}. Since I C anny(J), condition (viii) implies that / C
anny(J) = {0}. The §-primeness of the ring R follows. The implication (vii) = (i) can be
proved analogously. The proof of the theorem is complete. O

Let us remark that if R is a ring with identity, then the totality / of finite sums of elements
of the set {cl6m(a)cz ic1,c0€ R, meNU {0}}, considered in the above proof, is the same

thing as (a)®. But in the case where R is a ring without identity, it may happen that a ¢ I.
Recall that if 7 is a two-sided J-ideal of the ring R, then

O :R/I>a+1— 8(a)+1€R/I
is a well-defined derivation.
Definition 3.3. A rwo-sided 6-ideal P C R is said to be 8-prime, if R/P is a Sp-prime ring.

Obviously, each §-prime ideal is a proper ideal. It is worth noting that the ring R is 0-
prime if and only if {0} is a d-prime ideal of R. The corollary below follows quite directly
from Theorem 3.2.

Corollary 3.4. Let P be a proper two-sided O-ideal of the ring R. The following conditions
are equivalent:
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(i)  Pis &-prime,

(ii)  for arbitrary two-sided &-ideals I,J C R, if IJ C P, then
either | C P orJ C P,

(iii)  for any elements a,b € R, if Vn € NU{0} : aRd"(b) C P, then
eitherac Porb € P,

(iv)  for any elements a,b € R, if Vn € NU{0} : 6"(a)Rb C P, then
eithera € Porb € P,

(v)  forany elements a,b € R, if (a)® (b)® C P, then either a € P

orbeP,

(vi)  for arbitrary right 8-ideals I,J C R, if IJ C P, then either I C P
orJ CP,

(vii)  for arbitrary left 6-ideals I,J C R, if IJ C P, then either I C P
orJ CP.

Again, if § is the zero derivation, then the notion of a d-prime ideal coincides with the
well-known general (“noncommutative’) notion of a prime ideal. We are ready to discuss an
example of a §-prime ring which is not prime (the example is taken from [5]).

Example 3.5. Let F be a field of characteristic p # 0. Consider the principal ideal P of the
polynomial ring Flx] generated by x”. Since R =F|x]/P is a commutative ring and x+ P is a
nonzero nilpotent element of R, the ring R is not prime. (Let us recall here that a commutative
ring with identity is prime if and only if it is an integral domain). Using condition (iii) of
Corollary 3.4, we can prove quite easily that P is a 8-prime ideal for the natural derivation
8 :Fx] > f > f € F[x]. Thus R is 8p-prime.

In the sequel we will deal with the following generalization of the prime radical. This
generalization has been introduced by Burkov (see [2]).

Definition 3.6. The intersection Ng(R) of the family of all 8-prime ideals of the ring R is
called the &-prime radical of R.

Notice that Ng(R) = R whenever R has no d-prime ideals.

4. O-nilpotent elements
Consider the family
n
9 = {chSj: n € NU{0}, co,...,cn ER}
j=0
of “differential operators on the ring R”.
Remark 4.1. If D € 9 and I is a left 6-ideal of R, then D(I) C I.

The definition below is taken from [2].
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Definition 4.2. An element a € R is said to be d-nilpotent, if for any sequence {Dy }y_( of
elements of 9 almost all members of the sequence {ay} o defined by

ap—=a,
a1 = arDy(ax)
are equal to 0.
Let us also recall the well-known concept of a strongly nilpotent element.

Definition 4.3. An element a € R is said to be strongly nilpotent, if almost all members of
any sequence {ay }i_ in the ring R such that agp = a and

VkeNU {0} D Qg+l € agRay
are equal to 0.

Observe that an element a € R is strongly nilpotent if and only if for an arbitrary se-
quence {x¢}5_q of elements of R, almost all members of the sequence {a; }{_, defined by

ap =a,
Ajt1 = ApXpdg

are equal to 0.

It is clear that in the definitions of a §-nilpotent element and a strongly nilpotent element
(as well as in the equivalent definition of a d-nilpotent element given in the sequel of this
section), the words “almost all members of the sequence {ay};_, are equal to 0" can be
replaced by “the sequence {ay };-_ contains a member equal to 0”. Let us now take a look at
some simple but important properties.

Proposition 4.4. For an element a € R the following hold true:

(i)  ifais 8-nilpotent, then it is strongly nilpotent,

(ii)  if a is strongly nilpotent, then it is nilpotent in the usual sense,

(iii)  if a is nilpotent in the usual sense, a € Z(R) and 8(a) = 0, then
a is O0-nilpotent,

(iv)  if a is nilpotent in the usual sense and a € Z(R), then a is
strongly nilpotent,

(v) if 8 is the zero derivation and a is strongly nilpotent, then a is
d-nilpotent.

Proof. Assume that a is 6-nilpotent. Pick an arbitrary sequence {x; } ;- in the ring R. Since

bxkb = bxk30 (b),

Vke NU{0}VbER: {xk6°e@,

the -nilpotency implies that almost all members of the sequence {ay };._, defined by

ap—=da,
Ak+1 = A Xgdg
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are equal to 0. Therefore, a is strongly nilpotent.
If a is a strongly nilpotent element, then almost all members of the sequence {ay };_, of

powers of a defined by
ap—=da,
Aj+1 = arady

are equal to 0 and hence a is nilpotent in the usual sense.
Let us turn to property (iii). It is easy to see that if 6(z) = 0 for some z € R, then

o(z') =0,

Vi N\ {0}Vj e NU{0}VbeR: {a.f(sz) =78/(b). @

Assume that a is nilpotent in the usual sense, a € Z(R) and 8(a) = 0. Let {Dy };_, where

ny

Dy = Z Cjk5j
=0

for some n; € NU{0} and some ¢y, ..., ¢y € R, be a sequence of elements of the family 2.
Consider the sequence {ay } ;. defined by

0o=4da
g1 = arDy(ay).

We will show by induction that a;, € a* R for an arbitrary k € N\ {0}. First, since 6(a) =0
and a € Z(R), we have

ay =aDy(a —aZc]05f = a’cq.

Suppose therefore that a; = @b for some ( € N\ {0} and some b € R. In view of (2) and the
fact that a € Z(R), we obtain

ny
apy1 = agDy(ay) = a* bD/(a b) — &b Z c,/5’ a> b)
j=0

2f+]

bZC/g5j

The induction step is complete. Now, let s € N\ {0} be such that a* =0 (“usual nilpotency”

of @). Observe that if k € N'\ {0} satisfies the condition 2% > s, then a; € a® ‘RCa'R= {0}.
The §-nilpotency of a follows.

Let us turn to (iv). Assume that « is nilpotent in the usual sense and a € Z(R). Suppose
additionally that O is the zero derivation. Then property (iii) yields that a is §-nilpotent. It
therefore follows from (i) that the element a is strongly nilpotent.

Property (v) is an immediate consequence of the fact that if J is the zero derivation,
then 2 = {c-idg : ¢ € R} (and hence the definition of a d-nilpotent element reduces to the
definition of a strongly nilpotent element). U

;U ;.
DY cjd® §(b) =
j=0
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Notice that in the case where R is a commutative ring and 6 is the zero derivation, the
usual nilpotency, the strong nilpotency and the §-nilpotency of an element are the same thing.
Let us see an example of a strongly nilpotent element which is not §-nilpotent.

Example 4.5. With the assumptions and notations of Example 3.5, we have (x4 P)dp(x +
P) =x+ P. Hence all members of the sequence {ay }y_ defined by

ap=x+P,
a+1 = axdp(ar)

are nonzero. This yields that x + P is not a dp-nilpotent element of the ring R. On the other
hand, x+ P is a strongly nilpotent element, because it is nilpotent in the usual sense and R is
a commutative ring.

The main theorem of the section is a modification of a result which has been first stated
in [2].

Theorem 4.6. Let a € R. The following conditions are equivalent:
(i) ais d-nilpotent,
(ii)  for arbitrary sequences {cy }i—q of elements of R and {ny}r_,
of non-negative integers, almost all members of the sequence
[y defined by

ap—=a,
Ay = apcp 8™ (ak)
are equal to 0,
(iii) a € Ng(R).

Proof. The implication (i) = (ii) is obvious (see the definition of the family 2).

Suppose that a € R\Ng(R). Then a ¢ P for some J-prime ideal P of the ring R. Hence by
condition (iii) of Corollary 3.4, there exist sequences {cy } o of elements of R and {ny }
of non-negative integers such that no member of the sequence {ay };._, defined by

ap = da,
Ajer1 = agcrd™ (ay)

belongs to P. It follows that a; # 0 for all k € NU{0}. Therefore, condition (ii) is not satisfied.
This completes the proof of the implication (ii) = (iii).

Now suppose that the element a is not d-nilpotent. Then there exists a sequence {Dy }_
of elements of & such that all members of the sequence {a; };_ defined by

ap—=da,
ap+1 = arDy(ay)

are different from 0. Consider the family § of all two-sided J-ideals I C R with the property
that 1N {ay : k € NU{0}} = 0. Notice that {0} € . The family § (partially) ordered by set
inclusion satisfies the assumption of Zorn’s lemma. Pick a maximal element Py € §. Let us
emphasize that Py is a proper two-sided J-ideal of the ring R.
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Let J,K C R be two-sided d-ideals such that JK C Py. Assume that neither J nor K is
contained in Py. Since Py C (Py+J) N (Py+K), Py # Py +J and Py # Py + K, the maximality
of Py implies that Py +J ¢ § and Py + K ¢ §. But Py +J and Py + K are two-sided J-ideals
of the ring R. Hence there are s,# € NU{0} such that a; € Py+J and a, € Py+ K. Let us
define u = max{s,7}.If T C Ris arightideal, x € T and D € 2, then obviously xD(x) € T. It
follows therefore from the definition of {ay };_ that a, € (Po+J) N (P + K). Next, observe
thatif x e PBy+J,y € Pp+ K and D € &, then by Remark 4.1 we have

xD(y) € (Py+J)(Po+K) CPh+JK = F.

Since a, € (Py+J)N(Py+K), the observation yields a,.+| = a,D,(a,) € Py. This contradicts
the fact that Py € §.

We have therefore proved that for any two-sided d-ideals J,K C R, if JK C Py, then
either J C By or K C Py. In other words, Py is a 0-prime ideal of the ring R. Since a = ag ¢ Py,
we get a ¢ Ng(R). The proof of the implication (iii) = (i) is complete. O

It follows immediately from the above theorem that Ng(R) coincides with the totality of
d-nilpotent elements of the ring R. The theorem also allows us to give an equivalent definition
of a d-nilpotent element (namely, an element a € R is §-nilpotent if and only if for arbitrary
sequences {c }r_ of elements of R and {n; };-_, of non-negative integers, almost all members
of the sequence {ay };_, defined by

ap—=da,
a1 = agcp o™ (ak)

are equal to 0).
Recall that a set S C R is said to be nil, if every element of S is nilpotent in the usual
sense. Combining Theorem 4.6 with Proposition 4.4 yields a noteworthy corollary.

Corollary 4.7. The -prime radical Ng(R) is a nil two-sided 8-ideal of the ring R.

Let us finally notice that if § is the zero derivation, then Ng(R) and the standard prime
radical rad(R) are the same thing. In view of Theorem 4.6 and Proposition 4.4, we thus obtain
the following classical fact.

Corollary 4.8. The prime radical rad(R) coincides with the totality of strongly nilpotent
elements of R.

5. §-semiprime rings
We will use the following definition of a §-semiprime ring.

Definition 5.1. The ring R is called 5-semiprime, if there exists no two-sided d-ideal I C R
such that I # {0} and I* = {0}.

Obviously, each §-prime ring is d-semiprime. Recall that an ideal I of the ring R is said
to be nilpotent, if I* = {0} for some k € N\ {0}. We are in a position to state and prove a
fundamental characterization of §-semiprime rings (cf. [1, Lemma 1]).
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Theorem 5.2. The following conditions are equivalent:
(i)  Risa O-semiprime ring,
(ii)  for any element a € R, if Vn € NU{0} : aR6"(a) = {0},

thena =0,
(iii)  for any element a € R, if Vn € NU{0} : 8" (a)Ra = {0},
then a =0,

(iv)  for any element a € R, if ((a)®)* = {0}, then a =0,

(v)  for an arbitrary right 8-ideal I C R, if I* = {0}, then I = {0},
(vi)  for an arbitrary left 8-ideal I C R, if I* = {0}, then I = {0},
(vii) {0} is the only nilpotent two-sided 6-ideal of the ring R,
(viii) {0} is the only nilpotent right §-ideal of the ring R,

(ix) {0} is the only nilpotent left 5-ideal of the ring R,

(x)  for any two-sided d-ideals I,J C R, if IJ = {0}, then INJ = {0},
(xi)  for any right 8-ideals I,J C R, if IJ = {0}, then INJ = {0},
(xii)  for any left 8-ideals 1,J C R, if IJ = {0}, then INJ = {0},
(xiii) R has no nonzero 8-nilpotent elements,
(xiv)  N5(R) = {0},

Proof. The equivalence of conditions (i)—(vi) can be proved analogously as in Theorem 3.2.

Assume that R is a d-semiprime ring. Let / C R be a nilpotent two-sided §-ideal. De-
fine ko = min{k € N\ {0} : I¥ = {0}} (in other words, ko is the nilpotency index of I).
Let s € {0,1} be such that ko + s is even. Then (I")? = {0}, where t = (ko +s)/2. The §-
semiprimeness now implies that I = {0}. Thus ko < t. The inequality is equivalent to ko < s.
Therefore, ko = 1 and hence I = {0}. Condition (vii) follows. The implications (v) = (viii)
and (vi) = (ix) can be proved analogously.

The implications (vii) = (i), (viii) == (v) and (ix) = (vi) are obvious.

Assume again that R is a §-semiprime ring. Let I,J C R be two-sided J-ideals such that
1J = {0}. Since INJ is also a two-sided 8-ideal and (INJ)* C 1J, the §-semiprimeness yields
that 7NJ = {0}. Condition (x) follows. The implications (v) = (xi) and (vi) = (xii) can
be proved analogously.

Assume that condition (x) is satisfied. Let / C R be a two-sided 8-ideal such that 1> =
{0}. Then I =INI={0}. The d-semiprimeness of the ring R follows. The implications (xi)
—> (v) and (xii) = (vi) can be proved analogously. Hence, we have proved that conditions
(1)—(xii) are pairwise equivalent.

Now assume that condition (ii) is satisfied. Let a € R\ {0}. Then there exist sequences
{ck } i of elements of the ring R and {n; };_,, of non-negative integers such that every mem-
ber of the sequence {ay }7_ defined by

ap—=da,
Ajer1 = agcrd™ (ay)

is different from 0. Consequently, the element « is not d-nilpotent (cf. the proof of Theorem
4.6). Condition (xiii) follows.

The equivalence (xiii) <= (xiv) follows immediately from Theorem 4.6.

Assume, finally, that Ng(R) = {0}. Let I,J C R be two-sided d-ideals such that IJ = {0}.
Moreover, let P be a §-prime ideal of the ring R. Since IJ C P, we get either  C Por J C P.
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Hence INJ C P. We have therefore proved that INJ is contained in any §-prime ideal of R.
This means exactly that / NJ C Ng(R). Condition (x) follows. The proof is complete. O

As an obvious consequence of the above theorem, we obtain a quite important fact.

Corollary 5.3. Suppose that the ring R is 6-semiprime. Let [ C R be a 8-ideal. Then
(i) INann,(I) = {0} whenever I is a right ideal,
(ii) INanny(I) = {0} whenever I is a left ideal.

In the case where & is the zero derivation, the definition of a §-semiprime ring is just
the well-known definition of a semiprime ring. Clearly, the ring R is semiprime if and only if
it is d-semiprime for all derivations d : R — R. Notice that in fact, the ring R considered in
Examples 3.5 and 4.5 is not semiprime (a commutative ring with identity is semiprime if and
only if it has no nilpotent elements different from 0).

Though a §-semiprime ring has no §-nilpotent elements different from 0 and no nonzero
nilpotent §-ideals, it can have a nonzero nil §-ideal. For an example we refer to [3, p. 332].

Finally, let us see how another important fact about semiprime rings generalizes to -
semiprime rings (cf. [1, Lemma 5]).

Proposition 5.4. Suppose that R is a 6-semiprime ring. Let I C R be a two-sided O-ideal.
Then anng(I) = ann,(I).

Proof. Define K = ann,(I)I (product of right d-ideals). We have
K? = (ann,(1)I)(ann,(I)I) C ann,(I)(Zann,(I))I = {0}

and hence, by the §-semiprimeness, ann,(I)] = K = {0}. Therefore, ann,(7) C anny(7). The
converse inclusion can be proved analogously. OJ
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1. Introduction

The subject of this paper is a derivative, considered in [4] as a risk-reducing derivative.
The payment of the derivative depends on a parameter. Using Monte Carlo simulations,
for each of the typical value of the volatility of stocks a variant of the derivative (a proper
parameter in a payoff function) reducing the risk of a large loss by more than 10% on
a confidence level of 95% was indicated.

In this paper we examine volatility of rate of return from stocks, when portfolio apart
from stocks additionally includes a derivative. We obtain an analytical closed form formula
for the volatility expressed as standard deviation of related, discounted percentage of profit
from a portfolio. We show that the derivative reduces volatility of rate of return on stocks.

In this paper we use the Black-Scholes model with one risk-free asset and one risky
instrument — a stock — regarded as the underlying. We consider the simplest case of the
model which is based on the following assumptions: security trading is continuous, there are
no riskless arbitrage opportunities, there are no transaction costs and no dividends during
the life of a derivative, the risk-free rate of interest and the volatility of an underlying asset
are constant. The annualized volatility of the stock, from now on called briefly volatility,
is typically between 15% and 60% [6].

2. Model description

Let o > 0 be a stock price volatility and » be the risk-free interest rate. We assume the
price of the stock follows a geometric Brownian motion

S, :Sexp([r—%czjt+o'WtJ, 1€[0,T] (1)

where § is the stock price at time 0, W= {W,t € [0,T]} is a standard Brownian motion under
the risk-neutral probability P and T is the expiry date. Let E” denote the expectation operator
under the P measure and let {¥ } be a filtration for Brownian motion . Let us consider
a financial derivative instrument dependent on parameter a > 0, with the following payoff
function

j <
/(8= {ST A @
0 if S;>aS.

The instrument provides some protection against a decline in the stock price i.e. against
the event S, < a§ and can be considered as an obligation transferring the risk from the holder
of the derivative to the issuer [4]. We will analyse a portfolio composed of one stock and
one derivative with payoff function (2). We will calculate the variance of the discounted
profit from the portfolio. According to the volatility of the stock we will indicate value of a
in the interval [0, 2] which minimizes the variance.
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3. Volatilities of portfolios

In Black-Scholes model, today’s arbitrage price of the derivative instrument expresses as
the expected value of its discounted payoff function, taken with respect to the risk-neutral
measure P [2]:

c=E"(exp(-rT) £(S7)) 3)

In [4] the following closed form formula for pricing the derivative was derived

lna—[r+;c52jT
c=SN “)
oNT

where N denotes the cumulative probability distribution function for a standardized normal
distribution. The formula can also be found in [2] and [5]. The today’s price of considered
stock equals S so the discounted gain from a portfolio is

(Sp +f(Sp)exp(=rT) (S +c)

and the related, discounted percentage of profit from the portfolio equals

_ S+ f(Sp)exp(=rT) = (S+¢)
S+c

R -100%. (5)

To calculate standard deviation of R let us first denote:
® - cumulative probability distribution function of oI,
¢ — probability density function of IV,
F — cumulative probability distribution function of S,
f — probability density function of S,

k:Sepor—%cij}. (6)

By it follows that S, = kexp (cW¥,) and consequently

f(x) = 1@(1115) for x>0
X k

and
f(x)=0 for x<0 (7

where

o(x) = ! exp| — x
oN2nT 26°T ’



124

Hence

2
DX(R) = (%) D[(Sy + £(Sp)) exp(—rT) — (S +)] =

100 Y’ )
= —— | exp(-2rT)D*(S; + f(Sy)).
S+c
Since
f(S7) =57 1{ST§aS}
it follows that
(Sp+/(5p))* = 57 4357 L5, <asy-
By (3) we have E? (fSp) = e'Te. The process exp(—rT)S,, t >0 is a martingale
which implies
ET(S;) =exp(rT)S. ®)
Hence
E"(Sr+ fr) = exp(rT)(S +0) ©)

and variance of R expresses as follows:

2
D*(R) = (%) [ (B (5743815, c0s) - (S +6P) (10)

Using (7) we calculate E”(S?) as ijq{ln (%ndx

Substituting ln(%j =t we have

1 t2
ET(S7)=| Kk exp(2t tdt:f exp| 2 — dt.
)= [ ¥ expngadi= [ ——ew| -

But

2 ¢ 2
2 —— =2Tcz—£ -G 2Tj
26T oN2T

and consequently

2 2y %, 2
EP(S%):% exp[—(%—c 2Tj ]dl.
(e} T ()
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t u
Taking into account (6) and substituting ———o+27 = — we have
£ © S oaT J2
2r+63)T ¢ 1
EP(s2) = 52 SXpCr+o)T I exp(——uszu = % exp[(2r + 62)T]. (11)
r J2n R 2

Similarly, we calculate E(S7 l¢s, <asy)- Namely, with the change of variables we have
P2 § 2
EP (S35, <us)) = f ¥ f(x)a.

2T = L and we obtain

X t
Using substitutions as above, i.e. ln(—) =t and ——-o
k o2T V2
S
E" (S35, <us)) = f x(p[ln(%j]dx
4 2
:I k* ! exp| 2t - t2 dt
o ov2nT 26°T

2 4 2
_ g2 &p(@r+07)T) exp[—( ’2T —c 2TJ Jdt
[eRY]

ov2nT
2 B
=52 exp(@r +o)T) Iexp(—%uzjdu

2n
=82 exp((2r +o*)T)N(B)
where
A:In(ﬁ) and Bzﬁ( A —G\/ﬁ].
k oV2T
Using (6) we obtain

lna—(r+202JT
E" (5715, <a5)) = S? exp((2r +6*)T)N (12)

oJT
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Finally, substituting (4), (11) and (12) into (10) we obtain
lna—(r+3(52jT
2

oNT

D*(R)=10* -1 (13)

2
lna—(r+;62)T
N

oJT

exp(c’T)| 1+3N

1+

To examine the impact of the derivative, defined by (2), on the rate of return on
investment in shares, we are going to compare the above variance with variance of analogous
rate of return from a portfolio composed of a stock only. Namely, let S be the today’s price
of considered stock. Then, the discounted gain from a portfolio is

Srexp(—rT)-S
and the related, discounted percentage of profit from the portfolio equals

B Srexp(=rT)-S
S

VA -100%. (14)

Using (8) and (11) we obtain
D?*7Z =10*(exp(c°T) - 1). (15)

4. Comparison of volatility of R and Z with MAPLE

In this section we compare two portfolios, one composed of one stock with value S=1 at
time 0 and with one derivative with payoff (2), at price c, given by (4).

The second portfolio is composed of one stock with value S = 0 at time 0 only. As
in the previous section, R and Z denote the related, discounted percentages of profit from
the portfolios, respectively. We calculate standard deviations of R and Z using MAPLE. Let
us consider standard deviation of R as a function of parameter a.

In the screenshot presented below, due to the requirements of MAPLE, standard deviation
of R is denoted as R and F denotes the cumulative probability distribution function for
a standardized normal distribution:



127

1n(a)—(r+§czj-T

(o-sqrt(T))

(ln(a) —(r + %02 ) . Tj

(o-sqrt(T))

1+3-F

OR = a —100-sqrt| exp(c°T)-

=

1+ F

.. . . 1
Let o, (R) denote the minimum of GR, considered as a function of parameter a € [E , 2}
and let ¢ be the value of the parameter for which the function takes the minimum value.
We obtain ¢ __ (R) and a” using command of MAPLE:
NLPSolve(GR(a), a = 1/10..2).

In Table 1 one can see dependence of " and G, (R) from .
For every o appearing in the table, a” and c__ (R) take the same values, independently
of re {1%,2%,3%,4%,5%,6%}.

Table 1
o [%] 10 20 30 40 50 60 70 80 90
a* 1.36 1.31 1.03 1.02 1.07 1.14 1.25 1.39 1.59

G (R) [%] 10 17.99 20.9 24.43 | 31.25 | 40.03 | 50.18 | 61.53 | 74.16

min

Standard deviation c(Z) of does not depend on the risk-free interest rate » but it does
on stock price volatility c.

In Table 2, we present values of 6(Z) depending on stock price volatility c. As we can see,
the stock price volatility ¢ and standard deviation o(Z) of Z are approximately equal (both
are expressed in percentage):

Table 2
G [%] 10 20 30 40 50 60 70 80 90
o(2) [%] 10.025 | 20.202 | 30.688 | 41.655 | 53.294 | 65.828 | 79.518 | 94.68 | 111.71

Example

We present a sample screenshot with the calculations for the following parameters:
> X:= Random Variable (Normal(0, 1)) :
> F(x) = CDF (X,x) :
>0:=03:
>T:=1:
> oZ :=100-sqrt(exp(c*7) — 1);

30.6878288
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still assuming that 6 = 0.3, 7= 1. As you can see in the screenshot below, standard deviation

. . . 1 . ..
of R, considered as the function cR on interval {5,2} achieves minimum equal to

20.9011... for the argument a = 1.05528...:
with(Optimization):

NLPSolve (GR(a), a= %..2];

[20.9011145934436868, a = 1.05528207323025392]

The same can be seen in a graph of function GR:

> plot (GR((J), a= %2)

\
30 1 \
\
29 1 \u
\ /
28 1 \ //
27 \\ /

/
26 /
/
25 ‘ /

2] \ /
» 1 \ /
2 \ /
R

T T T T T T T 1
02 04 06 08 10 12 14 16 18 20
a

Fig. 1. Dependence of standard deviation of R from parameter a

The following graph allows us to compare the volatilities of return of the considered

portfolios:

120 1 | —— o(2)[%]

—  om(R) [%]

100

80

60

40

20

10 20 30 40 50 60 70 80 90
o [%]

Fig. 2. Volatilities of considered portfolios
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5. Conclusions

As shown, ¢ and o(Z) are approximately equal when ¢ < 30%. If 6 <30% then 6(Z) > &

and their difference increases with increasing c.

Tables 1 and 2 allow us to compare volatilities of Z and R, expressed as standard deviations

of Z and R. We see that for every stock price volatility observed in the financial market we
can point to such version of considered derivative (with such a parameter a*) with payoff
function (2) that most reduces the volatility of return on the portfolio, thus reducing the risk
of investing in stocks.
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1. Introduction

By a (logical) matrix we mean an algebra with a designated subset. Tautologies of
the matrix are the terms that under every valuation take a designated value. By a valid rule,

or simply a rule, we mean a pair < X ,a> where X U{a} is a finite set of terms such that

for every valuation assigning designated values to all members of X, the term o also takes
a designated value. For X = & the rule (X,a) is called axiomatic and is identified with o.
The set of all tautologies of a matrix 9 is denoted by E(1); the set of all valid rules of N
is denoted by R(IT). We say that a matrix is finitely axiomatizable if there exists a finite set
of rules valid in this matrix from which all its tautologies can be derived. This differs from
the finite basis property, which is the property that there exists a finite set of rules from which
all valid rules can be derived.
Consider the 5-element matrix
M =({0,1,2,3,4},{},12,3})

with - given by the following table.

AW —|O
WIh| === O
W W[ [N
W W[N]
W W[ [N |W
W W[ N[N

Although this matrix is finitely axiomatizable (Proposition 1), we will show that the
matrix

M, =({0,1,2,3,4},{.,3},{2,3})

does not have a finite axiomatization for the set of its tautologies (Theorem 2). The constant 3
is not a definable constant of 901, so 9 and 91, are not term equivalent. Let us observe that
the deductive systems determined by these matrices are not algebraizable.

Proposition 1. The consequence operation of neither MM nor M is algebraizable.

Proof. Let 91 be either 9 or M. We will show that N is not even protoalgebraic,
a weaker condition than algebraizable. Suppose that there is a finite set of binary terms
A(x,y) such that all terms in A(x,x) are tautologies and such that y is a consequence of A(x,y)
and x. Such a set A(x,y) must exist for a protoalgebraic deductive system, [1]. As no variable
is a tautology of 91, it follows that no term in A(x,x) is a variable, so neither is any term in
A(x,y). Evaluating x as 3 and y as 4, we get that x and A(x,y) evaluate to 3, while y is 4. This
contradicts the condition that y is a consequence of A(x,y) and x. ]

In [4] Katarzyna Idziak has shown a finite equivalential algebra with a similar property:
the quasi-equational theory of this algebra is finitely based but adding a nondefinable
constant to the language of the algebra results in a nonfinitely based quasi-equational theory.
Her example and ours differ in two aspects. First, the deductive system generated by the
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matrix 9T is not algebraizable, while the deductive system equivalent to any equivalential
algebra is obviously algebraizable. The role of rules in the deductive system associated with
this algebra is played by the quasi-identities, while the role of tautologies — by identities valid
in it. Therefore the second difference lies in the difference between finite axiomatization and
finite basis: the example of [4] is an example that the finite basis property is fragile under
adding new constants, while ours shows the same for the finite axiomatization property.
Every finitely based deductive system is finitely axiomatizable, but a system that is not
finitely based may still be finitely axiomatizable. The example given in [4] has 6 elements,
so ours is smaller by one element.

2. Main result

Let V' ={x,x,,...} beacountable set of pairwise distinct variables. Let Te denote the set

of all terms written by means of these variables in the language {-,3}. When writing terms we
omit the symbol of the binary operation - and assume the association to the left. The length
of a term  is denoted by [¢|. By 6 we mean the valuation in the algebra ({0,1,2,3,4},{,3})
assigning 0 to every variable.
Observe that every term ¢ € Te is of the form
1=1loty -1, (D

where 7 is a nonnegative integer, all s are terms and ¢ is either a variable or the constant 3.
Immediately from the table we see that for a term of the form (1):
if't, is variable, then 0(t) € {0,1,2}. 2)

By our next proposition the set £(9)1) is a consequence of one single axiom, so I is
finitely axiomatizable.

Proposition 2. The tautologies of the matrix 9 all follow from the axiom x(yz).

Proof. Clearly, x(yz) is a tautology of 91 and no variable is. If a term of the form
t = rs is in E(M) then s cannot be a variable; for otherwise, by (2), 0(r) €{0,1,2} and
0(rs) = 0(r)0(s) = 0(r)0 = 1. Therefore E(9I7) contains only terms of the form r(su). ]

Theorem 3. The matrix O, is not finitely axiomatizable.

Proof. Let £ be the set of all tautologies of 91, in Te. We will call a term ¢ left associated
if ¢ is a variable or is of the form ¢ x, where ¢, is left associated and x € V. For the proof by
contradiction let R be a finite subset of R(9)) and assume that all tautologies of 91, are
derivable from R. Then there is a number 7 such that the length of the conclusion of any rule
in R is no longer than 2n. Let

Oy = 3X%, ... X,

and consider the set F’ consisting of all left associated tautologies of 91, having o, as a sub-
term. Notice that the term
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QX Xy X3X3 .+ o X1 X9 -+ X2p—1 X201
belongs to F. So
F=. (3)

Lemma 4

Assume that o =0yy;y_...Y,y;, €F, where [ is a nonnegative integer and

Vs Vaseon ¥ €V
Then [ is even 4
Vigliis even = 3, y; = ;] 5)
Vi liis odd = 3, x; = y,] (6)
1< 2n. (7)

Proof of the Lemma. Use the valuation 0 to see (4). For (5) assume that for some even
i there is no j < i such that y, = v Let i be the smallest such. Assign 3 to y. and 0 to every

variable other than y. Then the value of o is 3-0---0, with an odd number of 0’s in this
expression. Hence o takes 4 under this valuation, a contradiction. Condition (6) is proved
similarly and (7) follows from (6) and (5). ]

By (3) there exists a proof using the rules from the set R that proves some term o € F.
Consider a shortest such proof t and let a € F be the term proved by this proof. Consider the

last rule (.¥,B)e R used in 7. So

Bl < 2n ®)
and there is a substitution ¢ such that:

o(B)=a 9

and all terms o(y) for y € X occur in the proof  earlier than a. Since T is a shortest proof
proving a formula in F, it follows that for every ye X

o(y)e E\F. (10)
Since a satisfies the assumptions of Lemma 4, by (7), (8) and (9) we get that
B=uv, ...v,
where w,v,..., v, €V, m<I, o(u)=ayy, ...y, and o(v;)=y, for each i=1,...,m.

Obviously, u = v,, for any i e {l,...,m}.
Let us define the valuation ¢ such that @(u) = 3 if m is odd, @(u) = 4 if m is even
and ¢(x) =0(c(x)) for every xeV \{u}. Notice that then for ie{l,...,m}, ¢(v;)=0,

so @(B) = 4. Since the rule (X,p) is valid in 91, there must be a term y € X such that

o(v) €{0,1,4}. (11)
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By (10), 6(c(y)) €{2,3}. So

o(y) = 0(c(7)). (12)
By the definition of ¢ and by (12), the term Y contains . Moreover, by (1), the term
vy takes one of the following three forms: y =ut;---t,, y=xt,---#, with xeV and x=u,

or y=3¢---1,, for some k and some sequence f,...,t, of terms. In the last two cases,

o(y) =0(o(y)), because on positions other than the initial one, the value 3 behaves the
same as the value 4. Similarly, if any of the terms ¢, would be composed, then we would
have ¢(y) = 0(c(y)). So it follows by (12) that the only form y may take is

Y =uz ...z,

where z,---,z;, are variables. But then o(y) is a left associated tautology of 90, with

a subterm o, which contradicts (10). ]
The technique of the proof is similar to the one used in [2, 6, 7]. The idea of the example
is similar to that of [5].

3. Questions

One may ask if there is a matrix of a smaller size or a matrix with a smaller number
of designated values that has the same property as presented here.

Question 5. Is there a non-algebraizable matrix with less than 5 elements with the
property that its tautologies are finitely axiomatizable while the tautologies of the same
matrix in the language expanded by a constant are not finitely axiomatizable?

Question 6. Find such a matrix with only one designated value.

The finite basis property mentioned in the Introduction is related but different from
the finite axiomatization property. Our example does not answer the following

Question 7. Find a non-algebraizable finitely based matrix that expanded by a constant
becomes non-finitely based.

An open problem, due to W. Rautenberg is whether the finite basis property of finite
matrices is independent of the language. More precisely, given a finite finitely based matrix,
is every matrix term-equivalent to it also finitely based? See [3]. The constant 3 added to
the language of our matrix 91 is clearly not definable.

Question 8. Is there a finitely based (resp. finitely axiomatizable) matrix 9 = <M JF ,D>
and a constant c definable in its language such that the consequence operation of the matrix
M, = <M,F U {c},D> is not finitely based (not finitely axiomatizable, resp.)?

If such a matrix 91 exists its consequence operation is necessarily non-algebraizable.
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In memory of Stanistaw Lojasiewicz [1926-2002]

1. Introduction

A convenient interpretation of ZFC which agrees with that of [8] is our basic set-theoretic
assumption. An evident frequent use of the axiom of countable choice (CC) makes it
impossible to rewrite in ZF most of the results of this work (cf. [4] and [6]-[8]); however,
some of the theorems presented below are also theorems of, for instance, ZF+UFT+CC
(cf[6]).

In what follows, X = (X,7) is a non-void metrizable space, B(X) is the o-field of all Borel
sets in X, and ‘B (X) is the collection of all separable Borel sets in X. Moreover, M is a o-field
of subsets of a set E, while W is an infinite o-finite measure on M. Let M(E, X) be the
family of all (91,28 (X))-measurable functions f/: £ — X such that p[f (X \B)] = 0 for some
B.e B (X). Of course, a function f: E — X'is (9, B(X))-measurable if and only iff'(Vyem
whenever V' e 1. If one wants to try to work without CC, since second countability and
separability are not equivalents in ZF+—CC, it might be more preferable to define B (X) as
the collection of all these Borel sets of X that are second-countable as topological subspaces
of X. Clearly, the second definition of 9B (X) is equivalent in ZFC to our previous definition
of B (X) but not equivalent to it in ZF.

Every compactification of X is assumed to be Hausdorff. For a compactification o.X of X
the collection of all bounded continuous real functions on X that are continuously extendable
over oLX is denoted by C (X). As usual, BX stands for the Cech-Stone compactification of
X. The collection of all bounded continuous real functions on X is C,(X). A great role in the
theory of compactifications is played by the collection £(X) of all sets F' < Cﬁ(X) such that
the evaluation mapping e, : X — R” is a homeomorphic embedding where [e,. (x)](f) = f(x)
for all fe F and x € X (cf. e.g.[1], [2] and [11]-[13]). If F € &X), then the closure in
R” of the set e, (X) is a compactification of X called generated by /" and denoted by e X.
In particular, every compactification oX of X'is generated by C (X). Since, in ZF, the sentence
that Tikhonov cubes (called Hilbert cubes in [6]) are compact is equivalent with the ultrafilter
theorem UFT (cf. Theorem 4.70 of [6]), it is true in ZF+UFT that, for every F € &X), the
compactification e X of X exists. This is why some theorems on compactifications in ZFC
are also theorems of ZF+UFT. It is still an open problem to investigate all significant details
on compactifications in ZF+UFT and show possible differences between the theories of
compactifications in ZFC and in ZF+UFT. Let us leave this problem for future considerations
not described in this article and, for simplicity, let us work in ZFC to avoid troublesome
disasters without AC. All topological and set-theoretic concepts that we use are standard and
they can be found in [2], [3], [6]-[8] and [10]. Useful facts of measure theory are taken from
[5] and [9].

The paper is mainly about the following concepts of metric and functional convergence
in measure:

Definition 1. Let d be a compatible metric on X and let /, /* be functions from M(E, X)
where n € . We say that the sequence ( fn> is d-convergent in measure | to f'if, for each

positive real number &, the sequence
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(n(ir e E:d(f,(0), f(1) = &})

converges to zero in R with the usual topology. For every compatible metric p on X, the
p-convergence in U will be called a metric convergence in L.

Definition 2. Suppose that & = F' < Cz(X) and let f, / be functions from M(E, X)

where n € ®. We say that the sequence ( fn> is F-convergent in measure W to f'if, for each

positive real number ¢ and for each ¢ € F, the sequence
(n(ir € E:[0(/,0) =6/ (1) = )

converges to zero, i.e. if for each ¢ € F, the sequence <¢° fn)> converges in [l to ¢o £
For each set H € £(X), the H-convergence in 1L will be called a functional convergence in L.

Definition 3. Let d, p be compatible metrics on X and let F, H be non-void subsets
of Cy(X). For i,j € {d, p, F, H}, we say that:

1. i-convergence in W implies j-convergence in [ if every sequence of functions from
M(E, X) which is i-convergent in W to a function f € M(E, X) is also j-convergent
in L tof;

2. i-convergence in L is equivalent with j-convergence in W if i-convergence in [l implies
Jj-convergence in [L and j-convergence in WL implies i-convergence in L.

In the sequel, the notions of d-convergence and F-convergence in W are applied
to a comparison of compactifications of X. Recall that, for compactifications oX and yX
of X, the inequality oX' < X holds if and only if C (X) < CY(X); moreover, oX and yX
are equivalent if and only if C (X) = C(X). We write 0.X = yX to say that o.X is identified
with X, i.e. to denote that oX and y.X are equivalent. One of the most interesting theorems
of this paper asserts that if there exists a metrizable compactification oX of X such that
C,(X)-convergence in U implies Cy(X)-convergence in L, then the space X is compact.
Moreover, among other results, it is shown that if o.X and yX are metrizable compactifications
of X, then oX < yX if and only if C(X)-convergence in p implies C_(X)-convergence in L.
Ideas of simple examples relevant to convergence in [ are described.

2. Metric convergence in measure and minimum uniform compactifications

For a compatible metric d on X, R. Grant Woods investigated in [14] the compactification
u X generated by the collection U;(X) of all these bounded real functions on X that

are uniformly continuous with respect to d and the standard metric induced by the absolute
value on R. If the metric d is not totally bounded, u X is not metrizable (cf. Theorem 3.3 (b)
of [14]). If the metric d is totally bounded, then u X is the Hausdorff metric completion of
the metric space (X, d) (cf. Theorem 3.3 (a) of [14] and Problem 4.5.6 of [3]). If one wants
to consider minimum uniform compactifications in ZF, one should be warned that models
of ZF in which there are infinite Dedekind-finite dense subsets of R (cf. [6]-[8]) can be used
to deduce the following:
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Proposition 1. If X is an infinite Dedekind-finite dense subset of the unit interval [0; 1]
and d(x,y) = |x - y| for x,y € X, thendis atotally bounded complete metric on X such that

u X = [0; 1], while the Hausdorff metric completion of (X, d) is (up to an obvious isometry)
X, d). Therefore, it is unprovable in ZF that, for every totally bounded metric space (X, d),
the minimum uniform compactification u X is the Hausdorff metric completion of (X, d).

That u X = [0; 1] for each dense in [0; 1] infinite Dedekind-finite set X in the proposition
above can be shown in ZF by using Lemma 4.3.16 of [3]. Interesting problems on Hausdorff
metric completions of metric spaces in ZF are described in [4]. To avoid misunderstanding,
let us recall that ZFC is our basic assumption throughout this paper.

For every metrizable compactification aX of X, there exists a totally bounded metric
p on X such that aX = u X To apply metric convergence in measure to minimum uniform
compactifications, the following notion is useful:

Definition 4. Let d and p be compatible metrics on X. We say that d is uniformly smaller
than p if the following condition holds:

V ee(0400) Foe(0:+00) Y, yex [P, 1) <8 = d(x,y) <e].

Proposition 2. Let d and p be compatible metrics on X such that d is not uniformly
smaller than p. Then there exist functions f,,f € M(E,X) where ne€ o, such that the
sequence <fn> is p-convergent in | to f but <fn> is not d-convergent in L to f.

Proof. Let us take € € (0,+00) such that, for each & € (0,+00), there are x,y € X such
that p(x,y) < 8, while d(x,y) > & Using CC, we find sequences (x,) and (y,) of points

of X such that lim,_, . p(x,.y,) =0, while d(x,,y,) >¢ for cach n € . Let (E,) be

a sequence of sets from 9 such that N, ., E, =9, W(E\E,) <400, WE,)=+oco and
E,, CE, foralln e o.Suchasequence (E,) exists because the measure |1 is infinite and

o-finite. Define f(f) = y, for t € E\E and, for each t € ENE, | let f (1) =y, if i < n, while
f.() =x,if i > n. Moreover, put f(¢) =y, for t € E\E, and, for each i€ o,let f(t) =y, when

te E\E, . The sequence < fn> p-converges in | to fbut it does not d-converge in L to f. O

The proof to Proposition 2 can serve as a scheme of examples of sequences p-convergent
in W that are not d-convergent in [L.

In much the same way as for the classical convergence in measure, one can prove
Propositions 3-5.

Proposition 3. Let d be a compatible metric on X and let f,g € M(E,X). If a sequence of
Sfunctions from M(E,X) is d-convergent in L to fand to g, then W({t € E: f(t) = g(t)})=0.

Definition 5. When d is a compatible metric on X, then we say that a sequence < fn> of

functions from M(E, X) converges (d, W)-uniformly on £ to a function f'e M(E,X) if, for

each € € (0,+00), there exists a set 4 € 9 such that W(E\A) < € and the convergence of < fn>
to f'is uniform with respect to d on A4.
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Proposition 4. When d is a compatible metric on X, then a sequence < fn> of functions
from M(E,X) is d-convergent in L to a function f € M(E,X) if and only if each subsequence
of < fn> contains a subsequence which converges (d,\\)-uniformly on E to f.

Proposition 5. If d is a compatible metric on X, then every sequence of functions
Sfrom M(E,X) which is d-convergent in |\ to a function f € M(E,X) contains a subsequence
which pointwise converges \\-almost everywhere on E to f.

In the light of Proposition 5, for every pair d, p of compatible metrics on X and for every

pair f, g of functions from M(E,X), it is true that if there exists a sequence < fn> of functions

from M(E, X) such that < fn> is both d-convergent in [ to f'and p-convergent in [ to g, then
f= g u-almost everywhere on £, i.e. W({t € E : f(f) =g(?)}) = 0.Therefore, if for compatible

n

metrics d and p on X, a sequence (h > of functions from M(E, X) is d-convergent in [ to

a function 7 € M(E, X) and the same sequence <hn> is not p-convergent in U to /4, then there

does not exist a function in M(E, X) such that (A,) is p-convergent in 1 to it.

Theorem 1. For every pair d, p of compatible metrics on X, the following conditions are
equivalent:

1. d is uniformly smaller than p;
2. Ui(X)c U;(X);

30 uX <u,X;
4. for every pair A, B of subsets of X such that d(A, B) > 0, the inequality p(4, B) > 0
holds;

5. p-convergence in \L implies d-convergence in |\.

Proof. It is obvious that implications (i)=(ii)=(iii) and (i)=(v) are true. Suppose that
(iii) holds and consider an arbitrary pair 4, B of subsets of X such that d(4, B) = 0. Then
CIudXAHCIudXB = by Theorem 2.5 of [14]. Since u X < ulX, in the light of 4.2(h) of

[10], we have cl, A4 N cl, yB=3. This, together with Theorem 2.5 of [14], gives that
P P
p(4,B) =0. Hence (iv) follows from (iii). Now, assume that (i) is not fulfilled. Then, with CC

in hand, we deduce that, for some € € (0,+00), there are sequences <xn> and < yn> of X such

that lim, ,, p(x,,y,)=0 and d(x,,y,)>¢ forall n,m € o (cf. hint to 8.5.19 of [3]). If
A={x :ne o} and B={y :ne o}, then p(4, B) = 0, while d(4, B) = 0. Therefore, (i) is
a consequence of (iv). That (v) implies (i) follows from Proposition 2. O

Corollary 1. Let d and p be compatible metrics on X. If p is totally bounded and
p-convergence in |\ implies d-convergence in \\, then d is totally bounded.

Proof. It is clear that if d is uniformly smaller than p and the metric p is totally bounded,
then d is also totally bounded. To complete the proof, it suffices to use the equivalence of (i)
and (v) of Theorem 1. 0O
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Theorem 2. Assume that d is a totally bounded compatible metric on X. Then d-convergence

in W is equivalent with Uy (X) -convergence in |L.

Proof. It is obvious that d-convergence in [ implies I{;(X) -convergence in L. Since d
is totally bounded, u X is a metrizable compactification of X. By, for example, Propositions
3.4 and 3.5 of [11] or by Theorem 7 of [12], there is a countable collection F < (X)
such that e, X = u X and, moreover, ¢(X)<[0;1] for each ¢ € F. Let F ={¢,:i€w} and

define p(x,y) = Z

on X such that u X = u X. Hence, in view of Theorem 1, d-convergence in [ is equivalent
with p-convergence in L. However, one can easily check that F-convergence in | implies
p-convergence in L. In consequence, F-convergence in | implies d-convergence in [, which
concludes the proof. O

%M)i (x) -9, (y)| for all x,y € X. Then p is a totally bounded metric

ico

Question 1. If d is a compatible but not totally bounded metric on X, must ;(X)
-convergence in [ imply d-convergence in [L?

A familiar theorem of ZFC states that a metrizable space X is compact if and only if
every compatible metric on X is totally bounded. The standard proof to this theorem
involves CC. However, one can easily prove in ZF that if X is a metrizable space such that
every compatible metric on X is totally bounded, then X is closed in every metrizable space
that contains X as a subspace. Indeed, let (¥, d) be a metric space and let X < Y be not closed
in (Y,d). Choose a point x, € (cl X)\X and, for x,y € X, define

R
|d(x,x0)  d(y,x))|

to get a compatible but not totally bounded metric p on X in ZF (cf. 4.3.E.(c) of [3]).
Unfortunately, this does not give a satisfactory answer to the following interesting question:

p(x,y)=d(x,y)+

Question 2. Is it consistent with ZF+—CC that there exists a non-compact metrizable
space X such that every compatible metric on X is totally bounded?

3. Functional convergence in measure

It has not been explained so far why it is assumed here that, for each function fe M(E,X),
there exists B e B (X) such that p[ f/~1(X\ B)]=0.1In fact, this assumption was needless
in the previous section; however, it is helpful to get the following theorem:

Theorem 3. Let us suppose that F € &EX), while < f,,> is a sequence of functions from
M(E,X) such that <fn> is F-convergent in |\ to functions f,g € M(E,X). Then the following

conditions hold:
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Lou({reE: f(0) = g(n})=0;

2. each subsequence of < fn> contains a subsequence that pointwise converges \-almost
everywhere on E to f,

3. if G € &X) is such that the sequence < fn> is not G-convergent in L to f, then there does
not exist a function h € M(E,X) such that < A > is G-convergent in \L to h.

Proof. Using CC, we deduce that there is a sequence <Bn> of separable Borel

neu)Bn

subsets of X and there are sets B/ Bge B (X), such that the sets X, =B, UB, vl

and E,=E\[f"'(X\X)ug "(X\X))UU,_, /. (X\X,)] have the properties that

W(E\Ey) =0 and all functions f, f, g restricted to E transform E | into the separable Borel

in X set X. It follows from Theorem 6 of [12] that there exists a countable collection H < F
such that the restriction to X, of the evaluation map e, is a homeomorphic embedding

of X into R” Let H ={¢, :i € w}. For each i € ®, choose a positive real number a, such

|¢i(x)_¢i(y)|

that |¢i| <a; and, for x,y € X, define p(x,y) = Z S
I€E® al

. Then p is a compatible

metric on X|. It is not difficult to check that the sequence < fn| £ > of the restrictions f,, | 5 of
0 0

functions f, to £ is p-convergent in [ to fn| , and g| 5 - Hence, in view of Proposition 3,
0 0

nw{te E: f(t) = g()}) =0. Now, to conclude that (ii) holds, it suffices to use Proposition 5.

Condition (iii) follows from (ii). O

Theorem 4. Let 0X be a compactification of X and let FF € £(X) generate 0.X, i.e. o.X=eX.
Then F-convergence in |\ and C (X)-convergence in |\ are equivalent.

Proof. Since F' c C (X), it is obvious that C (X)-convergence in [ implies F-convergence

in . Now, assume that a sequence <fn> of functions from M(FE, X) is F-convergent in [l
to a function /'€ M(E, X). Consider an arbitrary function ¢ € C (X) and a positive real
number €. By Theorem 4 of [13], there exist a non-void finite set H < F and a positive real
number 0, such that if

dyy (x,y) = max{|y(x) - y(y)|: y € H}
forx,y € X, then |¢(x) —o( y)| <& whenever d,(x,y) < 8. It follows from the F-convergence
inof (f,) tofthat
lim p(lr € E:dyy (/,(0./(0) 2 8) =0.
In addition,

{t e E:JoLf, (0]- 4L/ (O] > &} < it € E :dyy (f, (1), /(1) > 8}
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for all » € ®. In consequence,

Him p(lr € B[O/, (0] 4L (0] = ) =0.

This means that < fn> is C_(X)-convergentin L tof. O
We consider the set CB(X) as the metric space (CB(X)’ o) where the metric c on CB(X) is

defined as follows: o(f,g)=sup{f(x)—g(x)|;x € X} for f,g € Cy(X). In view of, for
example, Theorem 7 of [12], when F" € &(X), then the compactification e, X of X is metrizable
if and only if F is second-countable in (CB(X)’ o). In what follows, every subset of CB(X)
is equipped with the topology inherited from the topology on CB(X) induced by the metric c.

Theorem 5. Let aX and ¥X be compactifications of X such that 0.X is metrizable and
C (X)-convergence in | implies Cy(X)-convergence in W. Then YX is also metrizable
and yX < aX.

Proof. Since o.X is metrizable, there exists a totally bounded compatible metric p on X
such that uX=oX. Consider any function ¢ € CY(X) and let /"= C_(X) U {¢}. Of course,
F e &X). The compactification e X is metrizable because /" is second-countable. There
is a totally bounded metric d on X such that e, X = u X. It follows from Theorem 2 that
p-convergence in W implies d-convergence in W. Therefore, u X < u X by Theorem 1. This
implies that /" < C (X) and, in consequence, CY(X) c C(X). Then vX < o.X and Cy(X) is
second-countable. Hence X is metrizable. O

Corollary 2. Let oX and YX be metrizable compactifications of X. Then oX < yX if
and only if Cy()()—convergence in W implies C (X)-convergence in L.

From Theorems 4 and 5 we immediately deduce the following:

Corollary 3. Suppose that F, G € &(X) are such that F-convergence in | implies
G-convergence in \\. If F is second-countable, then G is second-countable and e X < e X.

Our final theorem is a nice conclusion from Theorem 5.

Theorem 6. If there exists a metrizable compactification 0X of X such that C (X)-
-convergence in y implies CB(X)-convergence in W, then X is compact.

Proof. Let us assume that oLX is a metrizable compactification of X such that C_(X)-
-convergence in W implies CB(X)-convergence in W Since oX < BX, it follows from
Theorem 5 that B.X is metrizable and BX = oX. If X were non-compact, BX would be non-
-metrizable (cf. 3.6. G of [3]). O

Corollary 4. A metrizable space X is compact if and only if there exists a totally bounded
metric d on X such that d-convergence in |\ implies Cy(X)-convergence in |L.
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1. Introduction

The paper concerns numerical speed of the convergence of the adaptive algorithm
based on a grid generator with a mesh size function [6, 7]. The rate of convergence will be
calculated by a description of the dependence between the number of degrees of freedom
and norm of error defined as the difference between a strict solution and an approximate
solution for a given mesh, provided that the strict solution is known. In case of an unknown
solution some properties of the solution are known and their fulfilment can be assessed.

For the sake of the numerical solution the infinite space is approximated by a finite
dimensional space spanned by a given set of basis functions [7, 11] of the finite element
method [10] generated by linear shape functions [10], the approximated solution to the
problem is equal to a linear combination of the basis functions. The coefficients of the linear
combination are found from the nonlinear algebraic system of equations. The system is led
out from stationarity conditions. The system of nonlinear algebraic equations is solved by
using the Newton-Raphson method. In consecutive remeshing (this means separate finite
element problems) steps of the adaptation algorithm the values of the mesh size function
taken at the nodes are so modified that at the points with greatest values of an error indicator
[2, 5] the values of mesh size function are the most diminished. Having the values of the
mesh size function at nodes the new mesh size function is defined by the linear interpolation.
The process is performed till the error indicator attains the assumed value. The error indicator
is found at every node as an approximated residual by the finite difference method for the
appropriate local formulation.

The presented numerical analysis of the convergence suggests better than linear
dependence between number of degrees of freedom and error norm for derivatives. In further
development it is planned to generalize the method to apply anisotropic meshes. The proposed
method was applied to both problems, in which the solution is known and unknown.
The obtained results were consistent with physical interpretations [4].

The adapted mesh for an example problem, where the strict solution is known, is presented.
It can be observed that the rapid change of the size function corresponds to the great gradient
of the solution. Additionally, it can be said that the final t mesh depends on both the solution
and the assumed error indicator. As an example problem the Poisson equation was taken with
known solution and elastic-plastic problem of twisting of bars with hardening, where some
physical properties of the solution to the problem are known.

2. Example problem

2.1. The Poisson equation

The boundary value problem for the Poisson equation is formulated as follows:
Au=f(x,y), in Q (1)
u=0, in OQ. 2)
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Fig. 1. The dependence between the strain and stress intensity
This equation is used for error indicator calculation:
e, = Au,(P)- f(x,y) ati-thnode (3)

where A is the finite difference approximation of A. In this case of the Poisson equation.
This problem is equivalent to search for the stationary point of the following functional:

I(u) = qu (x, )+ ui (x,y))dQ. 4)
Q
2.2. The elastic-plastic twisting of bars with hardening

In this section the elastic-plastic problem of twisting of bars with hardening is formulated.
According to [3] the problem can be led to search for the extremum of the following functional:

() = H[ LT sg(s)ds — 2034 qo, (5)
Q

where 7 is the stress intensity:

- (a_j Y o o
ox oy > ox’ 13 ay.

The function g defines the dependence between the effective stress and the effective
strain: 7' =g(I)I" (Fig. 1), where I' = Je;¢;, &; is the strain tensor and ® is the angle
of the torsion.

After the substitution s = /7 , it is obtained:

() = ”{ fz sg(x/;)%ds—Zwu}dQ. (6)
Q
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In both problems the current function u varies in the Sobolev space
1 2 ov 2 .
HQ)=3vel (), —el (Q),i=12;.
Ox;
In both problems the current function u varies in the Sobolev [3] space.
For the sake of the approximation the finite dimensional space of functions is defined:

NT
0 :{V:UTI' — R, v is continuos, v|Te]’1},
i=0

where T ={T;:i=1,...,N;} is a set of non-intersecting triangles covering the domain.

For the finite element approximation the approximate solution is defined as finite linear
combination of basis functions [10] of the space V°. The unknown coefficients of the linear
combination are found by solving the nonlinear system of algebraic equations, obtained
from the stationarity condition [6].

3. The unstructured grid generation with mesh size function in arbitrary domains

Grid generation with arbitrary mesh size function is performed using a 2-D generator
[5, 6]. The main idea of grid generation is based upon the algorithm of the advancing front
technique and a generalization of the Delaunay triangulation [5, 8] for wide class of 2 — D
domains. It is assumed that the domain is multiconnected with an arbitrary number of internal
loops. The boundary of the domain may be composed of the following curves:
— A straight line segment,
— An arc of circle,
— A B-spline curve.

In case of the advancing front technique combined with the Delaunay triangulation
the point insertion and triangulation can be divided into the following steps:
1. Point generation on the boundary,
2. Internal point generation by the advancing front technique,
3. Delaunay triangulation of the previously obtained set of points,
4. The Laplacian smoothing of the obtained mesh.

The algorithm for boundary point generation depends upon the type of boundary
segment: [5].

4. Algorithm of remeshing

The whole algorithm of the adaptation is realized in the successive generation of
a sequence of meshes {7}, where v = 0,1,2,... with a modified mesh size function. By
using every mesh of the sequence the approximate solution to the problem is obtained and
then appropriate error indicators at each node are calculated. Having values of errors at
nodes a continuous error function in the whole domain is constructed by using piecewise
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linear interpolation at all elements. The error function is appropriately transformed to obtain
a multiplier for mesh size function.

The proposed approach gives the possibility to solve the considered problem on well-
-conditioned meshes and to obtain optimal graded meshes.

4.1. Remeshing scheme

The algorithm of remeshing [4, 13] can be divided into the following steps:
1. Preparation of the information about the geometry and boundary conditions of the problem
to be solved,
Arrangement of an initial mesh size function,
Mesh generation with mesh size function,
Solution to the considered on the generated mesh,
Evaluation of error indicator at each node,
Definition of the new mesh size function by using the errors found at every point of the
computational grid,
If the error not small enough go to the point 3,
End of computations.
In the examples solved by the author it was sufficient to make from 5 to 9 steps of
adaptation.

AN i e

* N

4.2. Error indicators

The applied error indicators are calculated directly for every node, not in elements like
in [6, 9].

Let e, for i = 1,...,n, be an error indicator at i-the apex of the mesh fv, and
13\, ={P, i=1,...,np} setofnodes. We define a patch of elements for every node P, as:
L =%k, PeT} for i=1,..,np (7)

where T s is the k-th element of the mesh.

1. The first proposed error indicator is biased on the discretized form of the equation (1).
At every node partial derivatives are found according to the following recipe:

ou
ou, ZkeLi ~ (Parea(Ty)
e (F)=

ZkeL,. area(T},)

where u} is the restriction of the solution u, to the k-th element is a linear combination

Having found

®)

of shape functions of k-th element, then:

< o aw, xe, AV
uf = ZKJ-N_;‘, which gives a—xh = ZX_,- 8x] , )
j=0 J=0
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where u;, = N f is a shape function of the k-th element. Formula 9 is applied at nodal

. o 0 0 .
points. The derivatives %(Pi), %(PI ), i=L...,Np found in that way are used for
X

calculation of second order derivatives at nodes in the similar way by using the recurrent
formula:

I
P (Pi)_ax( . (B). (10)

In the similar way it is possible to calculate the derivatives of arbitrary order and put
them into formula 2 to obtain the value of the error indicator at i-th node.

2. Inthis case it is suggested to evaluate directly derivatives values of error indicator at every
node in the following way:

2 2
-] Y (%_%) {%_%J | an
kel,, IeL; 1=k ox  Ox oy

where L, is the set of elements meeting at i-th node.

4.3. Error indicators

The modification of the mesh size function is performed at every adaptation step for the
realization of the next one. The main idea of this part of the algorithm relies on a multiplication
of the values of the mesh size function by an appropriately chosen function. The chosen
function should be continuous, linear and should have the smallest value at the node where
the value of the error indicator is maximal and the greatest where the value of the error is
maximal. It should increase when the error decreases.

The error indicators ¢, are calculated at each node of the current mesh, then the minimal

and maximal values of the error are found:

o= min &, o= max ¢, (12)
k=1,2,...Nyop k=1,2,....Nyop

where N, is the number of nodes. Certainly, oo <&, < for k=1,2,..., Nyop.

The following values are introduced:

A — avalue indicating the greatest mesh size reduction.

p — avalue indicating the greatest mesh size reduction.

The values of A and W usually should be greater than 0.5, which means that the mesh size
does not change too rapidly, which would have an influence on mesh quality in the vicinity,
where there are big errors. Usually it is assumed that A varies from 0.5 to 0.6 and pu from
0.8 to 1.0.

The following affine transformation is defined:

[:[a, Bl = [1,A], (13)
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which satisfies the conditions /(o) =2 and /(o) =p. By these assumptions it can be

observed that u </I(x) <A, Vx e[a,B].
Provided that
0, =1l(&)<A, Vi=L...,Nyop> (14)

1

then we have
min O, =u, max @, =A\.
i=1,2,...Nyop i=1,2,..Nyop

Introducing the function r: D — R, as follows: r(x)=II(x), if xe fs, where IT is an

affine mapping of two variables satisfying the following equalities:
e)=0,, for i=1,2,3, (15)

where P, P,, P, are the vertices of the triangle 7, of the triangulation of €2, and appropriately
0., 0,, O, are the values defined by the formula (14). The function r(x) is defined in the
whole domain because the triangles {7} }i\;’l cover it. The new mesh size function is defined
as follows:

Vi (%) = 7; () (x). (16)
As p<r(x) <A then py;(x) <y, (x) <Ay;(x).
It can be checked that: 3x, y € Q such that:
ny; () =7, (x) and vy, (x) =Ay; (x). 7)

It can be shown, that ||y,,; -7, max {|1 -2, |1-pl}, where

" Q,max < ”Yl ”ﬁ,max

Y5 . = ma {0l (18)

5. Numerical examples

The manner of size function modification depends on the error indicator and on the
coefficients A, W, which determine the details of the mesh size function modification.
If the values of the coefficients A, |, are small then fewer adaptation steps is necessary.
How quickly an adapted grid will be close enough to an optimal mesh, besides of error
indicator function, depends on the initial mesh too. For the solved problems it was assumed
that A = 0.6 and A = 0.8, which caused performing greater number of adaptation steps, what
may lead to a better solution. In the plasticity theory problems it can observed (figures 5, 6),
that the adapted mesh densities at the border between elastic and plastic zones and the adapted
mesh (Fig. 5) coincide with the sand heap analogy [3]. It would be rather impossible to obtain
the effect by the methods based on mesh enrichment [1, 9].
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Fig. 2. The convergence curves for u, u, u for problem 1 with respect to the norms

For the sake of numerical rate of the convergence of the proposed method for the
problem defined in 4 the function f was defined in the way that the solution to the problem

is the function [13]: u(x,y)=x(l—x)y(l—y)arctan[a(x+y—&D, where a = 20

2

and & = 0.8. The figure 2 presents the dependence between number of nodes and norms

Ou _ oy Ou _ Oyl g |0 _ Oun

oy Oy ox Ox oy Oy

ou  Ou,
ox Ox
almost cover each other.

The figure 3 presents the adaptive mesh.
It can seen that the mesh for the example problem 1 and its strict solution 5 coincide.

e =, . The graphs of the norms

Fig. 3. Strict solution for the problem 1



157

Fig. 4. Adapted mesh for the problem 1

Fig. 5. Final mesh after 7 adaptation steps for problems 6
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Fig. 6. Adapted mesh for the problem 6
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6. Summary

— New error indicators based on generalized finite difference method were introduced
applied to the proposed adaptive remeshing.

— The numerical rate of the convergence was calculated by using the known strict solution.

— The optimal mesh size function is obtained iteratively and depends on values of error
indicators at nodes.

— The generator based on Delaunay condition and advancing front technique seems very
suitable to the class of problems where different zones of the domain are to be appointed.

— For further investigations the anisotropic mesh generation algorithm will be developed
an appropriate anisotropic adaptation algorithms as well too.
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1. Introduction

Most of the mechanisms estimating measures of similarity between text documents are
based on vector space models and weight methods [1, 2, 3] with compilation of other methods,
such as probability methods [4], semantic networks (e.g. WordNet) [5, 6] or genetic algorithms
[7], etc. The traditional text identification mechanisms usually use glossary of grammatical
variations which in some cases are difficult to implement. Most of the mechanisms are
composed of stemming algorithms [8], such as popular: Lovins stemming algorithm [9],
Porter stemming algorithm [10], Dawson stemming algorithm, Krovetz stemming algorithm,
etc. [11], causing increasing of time consumed by identification algorithm during the data
analysing process.

In our research we propose a model of effective mechanism for the calculation of similarity
between two short texts (e.g. sentences) mainly based on Levenshtein distance algorithm
(Lda) combined with the word coding technique. Our research indicates that the terms coding
technique with its implementation for measure of text similarity improves the results of text
identification significantly. The proposed technique seems to be easy for implementation
in most programming technologies and open to most European languages.

2. Description of the problem

The main idea of the mechanism of measuring the similarity of texts consists of:
— implementation of function of terms coding based on Levenshtein distance [16] (presented
in subsection 2.2) and thesaurus (described in subsection 3.2),
— calculation of similarity measure between two sentences based on Levenshtein distance
between encoded terms.

2.1. Levenshtein distance algorithm

The concept of the Levenshtein distance algorithm (Levenshtein Distance function) may
be depicted by the following pseudo-code:

Pseudo-code 1

input variables: char Textl[0..M-1], char Text2[0..N-1]
declare: int d[0..M, 0..N]
for i from 0 to M

dri, 0] =1
for j from 0 to N
aro, jl =73

for i from 1 to M
for j from 1 to N

if char of Textl at (i - 1) = char of Text2 at (j - 1) then
cost := 0 else cost :=1

end 1if
dari, jl :=

Minimum(d[i - 1, 3] + 1,
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dri, 3 - 11 + 1,

d[i - 1, j - 11 + cost)
end for (variable 3j)
end for (variable i)

return d[M, NJ;

where:
d — Levenshtein matrix of the size N+1, M+1, formed for two terms: Text1
and Text2,
M, N — lengths of two terms respectively,
d[i,j1—(,j) — element of Levenshtein matrix d,
min — a function to calculate minimum of three variables,
cost — variable that gets values either 0 or 1

The Levenshtein distance K is the minimum number of operations (insertion, deletion,
substitution) required to change one term into the other

K =d(M,N)

2.2. The measure of similarity between terms

Measure of similarity P is the quotient of number of Levenshtein operations (after
calculation of Lda) by the number of all Levenshtein operations in pessimistic case. This
means, before the calculations of Lda will be completed but with the maximum possible
number of Levenshtein operations well known.

The similarity measures P is calculated by the formula:

Py [KJ K (VM) K>0,M>0,N>0 )
=1= 5 max — MAX{V, ’
max Pe <O, 1>
where:
K . — thelength of the longest of analysed two terms/text strings (i.e. pessimistic case
where K is equal to the length of the longest term).
Table 1
Examples of the Levenshtein distance and the measure
of similarity between two short texts
No. Textl Text 2 K P
1. | Car Cars 1 0.75
2. | University Universities 3 0.75
3. | Tom is writing a letter Tom is writin letters 4 0.82

2.3. The algorithm to measure similarity between two sentences

The algorithm for measuring of similarity between two sentences, based on Lda, is
described by the formula (2) presented below:
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NS MS
i I_le_ldS(iS,jS) =min(ds(ig -1, jg)+Ldg(ig, js —D)+1,ds(ig -1, j¢ —1)+Bg)
SIS T
Bs =0:Alag(is).bs(js)) >=¢g
Bs =1:Alag(is),bs(Js)) <q (2)
dg(ig,0) =i
ds(0, js)=Js
dg¢(0,0)=0
where:
I — symbol for iteration (for loop presented in the pseudo-code 1)
NA+1, M +1 — matrix sizes made from two sentences,
d — matrix made from two sentences,

S
d(igj)—(iyj,) — element of matrix d,
— function which returns the measure of similarity between two terms P,
calculated based on Levenshtein distance algorithm (pseudo-code 1),
few terms creates sentence,

B — variable: O or 1,

afi)-ig — term of sentence a,

by —J — term of sentence b o

q — acceptable boundary of value of similarity measure for two texts

(terms in this case). This value is set by the user and it depends on
data (e.g. texts from old books, texts from newspapers).
The asymptotic computational complexity of the algorithm is O(n*). This derives from
the construction of the algorithm which consists of four nested loops'.
The similarity measures P, between two sentences may be estimated in the rule:

P =1‘[ - J; Ky =max(NMy), 570 M 20 =0
Smax Ps €(0,1)
Table 2
Examples of the Levenshtein distance and the measure of similarity between two sentences
in whose terms are treated as chars
No. Sentence 1 Sentence 2 K P, q
1. | My car isn’t working My bicycle isn’t working 1 0,75 | 1;0,75;0,3
2. | What did you do yesterday? What have you done? 3 0,40 | 1;0,6
3. | What did you do yesterday? What have you done? 3 0,60 |0,5;0,1
4. Tom is writing a letter Tom is writin letters 3 0,40 | 1,09
5. Tom is writing a letter Tom is writin letters 3 0,80 | 0,85;0,05

! Interesting research about parallelization of the Levenshtein distance algorithm (and Levenshtein-
-Damerau distance algorithm) for accelerate the calculations is described in [12].
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3. Procedure of Terms Coding based on thesaurus

On the figures and tables below concept of the coding process is described. Tables 3—5
include sample data to be encoded. Formulas 4-7 describe all steps of the coding process.

3.1. The data model

The database model of thesaurus (t) with tables of unique terms, groups of terms and
table of terms associations is presented below.

Terms Terms_association Groups
ID_terms PK |+ ID_terms PK FK //. ID_groups PK
ID_groups FK
Terms other columns
other columns other columns

Fig. 1. The database model of thesaurus (1)

Example of use of the model above:

Table 3 Table 4 Table 5
Terms Terms_association Groups
ID terms | Terms ID terms | ID groups ID_groups | Describe
1 Tom 1 1 1 names
2 Mary 2 1 2 my best friends
3 John 3 1 3 vehicles
4 car 1 2
5 auto 2 2
6 vehicle 4 4
5 5
6 6

It is easy to see that a term can belong to a few groups. The example shows that Tom
and Mary can belong to the groups: names and my best friends. It means that Tom, Mary and
John are the same terms (names) because they have the same meaning. Following terms: car,
auto, vehicle are the same terms — vehicle.

3.2. The coding process

The process of common group analysis proceeds with the following steps:
1. Get all codes of each terms of both texts (ag, b) from thesaurus (e.g. array of codes for
cases where one term can has a multiple meanings).

‘P(as > T, q) - Cas (iS’tiS ) and ‘P(bs 71:) - CbS (]S 7th ) (4)



where:
Y — function to get codes of terms,
T — thesaurus,
t; — the number of term’s codes variants,
C,, — array of codes of terms of sentence a.

2. Calculate number of occurrences of codes terms based on their frequency in texts
(i.e. matching process of common meanings).

[(Cy . Cp ) = Cyp (1) ()
where:
r — function which calculates frequency of occurrences of codes,
C,p, — array of the best codes of terms,
h — 1D of the term.
3. Replace each term in both texts with the most frequent code
D (Cyp,,Cyy) > NC, (i) and  D(Cy, ,Cp, ) > NCy (J) (6)
where:
() — function which replaces the most frequent code,

NG, — new sentence with encoded terms.

4. Function which calculates similarity K between two sentences (short texts).

Q(NC, ,NCy, .q.9.) = Fy (7)
where:
Q — function which calculates similarity K, measures between sentences,
g, — acceptable border value of similarity measure for two terms — between term

includes in text and term derives from thesaurus.

4. Verification of proposed similarity measures mechanism

The following tests show how term coding methods improve the mechanism of similarity
between two short texts. As a test of the proposed algorithms, 170 pars of correct and incorrect
sentences written in various tenses were checked. 10% of interesting sentences were chosen
and described below. Some examples based on the three popular languages of Eastern Europe
are provided in Appendix 1.

The terms and sentences used for the tests were presented in the tables below:

1. synonyms (thesaurus) (Table 6)
2. grammatically and spelling correct sentences written in various tenses (Table 7)
3. grammatically and spelling incorrect sentences written based on the correct sentences

(Table 7)

4. encoded texts based on the thesaurus (Table 8)
5. results of tests (Table 9)
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For all tests and in all cases the acceptable boundaries of similarity P are: g_ = 0.80 for
thesaurus and g = 0.75 for similarity between terms in sentences (formula 2).

Table 6

Example of the thesaurus schema with terms groups by common ID (code in text).
Similar term from column Describe in analysing text will be replaced by ID

ID of groups (e.g. nar]r)lzs(f; 1:;136 group) Terms
#1 names Tom, Mary, John, Jimmy, Jane, Derek, Gina
#2 cars car, auto, automobile, taxi, vehicle
#3 numbers one, two three, four, five, six, seven, eight, nine, ten
#4 seasons spring, summer, autumn, winter
#5 fruits apple, pear, cherry, mango, kiwi, watermelon
#6 cities Warsaw, Berlin, London
#7 phones phone, telephone, iPhone, mobile phone
#8 very very, extremely
#9 shortcuts1 is not, isn’t
#10 shortcuts2 are not, aren’t
#11 shortcuts3 don’t, do not
#12 fluid milk, water
#13 my_friends Tom, Jack, Ella, Olivia
Table?7
Correct and incorrect sentences for the tests
No. | Correct sentences Incorrect sentences with synonyms
sl Tom is writing a letter Dere is writin a letters
s2 We are waiting for a taxi We are waitin for car
s3 Is Mary having breakfast? Is Jane hasing brekfest?
s4 Tom is not writing a letter Jimm isn’t writin leter
s5 He isn’t looking at the stars He is not look at the start
s6 He drinks milk twice a day He is drinks water twice a day
s7 We go to work six times a week We goes to works seven times a week
s8 I always feel great in spring I alway feel great in summer
s9 Do you like apples? Does you likes pear?
s10 | I don’t like milk I do not likes water
sl1 | Tom was writing the letter all day yesterday | Jimmy writting the leter all day yestaredy
s12 | They met when they were studying in Berlin | They met when they were studying in Warsaw
s13 | I was working in London this time last year | I was work in Berlin this times last years
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s14 | I have found his telephone number I have found his phone number

s15 | I was shocked when I found out that Derek | I was shock when I found out that John and
and Gina had got divorced Mary has gotten divorced

s16 | I have been working for five hours I has been working for six hour

s17 | It had been raining for days so when they | It has been raining for days so when they
finally left, the roads were very muddy finaly left, the roads were extremly muddy

Table 7 shows the correct sentences with synonyms in the left column and incorrect
sentences with synonyms in the right column. Synonyms (not all) include mistakes, like for
example Dere instead of Derek in the first row.

Table 8
Correct and incorrect sentences after terms coding (based on the thesaurus)
No. Correct sentences after terms coding Incorrect sentens:;i:;tl;i}gggyms after terms
sl #1 is writing a letter #1 is writin a letters
s2 we are waiting for a #2 we are waitin for #2
s3 is #1 having breakfast? is #1 hasing brekfest?
s4 #1 #9 writing a letter #1 #9 writin leter
s5 he #9 looking at the stars he #9 look at the start
s6 he drinks #12 twice a day he is drinks #12 twice a day
s7 we go to work #3 times a week we goes to works #3 times a week
s8 i always feel great in #4 i alway feel great in #4
s9 do you like #5? does you likes #5?
s10 | i #11 like #12 i#11 likes #12
sl1 | #1 was writing the letter all day yesterday | #1 writting the leter all day yestaredy
s12 | they met when they were studying in #6 they met when they were studying in #6
s13 | i was working in #6 this time last year i was work in #6 this times last years
sl4 | i have found his #7 number i have found his #7 number
s15 | i was shocked when i found out that #1 and | i was shock when i found out that #1 and #1
#1 had got divorced has gotten divorced
s16 | i have been working for #3 hours i has been working for #3 hour
s17 | it had been raining for days so when they | it has been raining for days so when they finaly
finally left, the roads were #8 muddy left, the roads were #8 muddy

Table 8 includes sentences from table 7 after coding by the proposed algorithm.
The similarity of these sentences was calculated with (1)(2) and presented below.
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Table 9

Values of similarity of the sentences with and without the terms coding method based
on Levenshtein distance algorithm. Description of columns: Col. 1 — Similarity between
correct and incorrect sentences without methods of the: similarity measure between terms;
coding terms (based on Table 7 data); Col. 2 — Similarity between correct and incorrect
sentences (without using method of terms coding) based on Table 7 data; Col. 3 — Similarity
between correct and incorrect sentences (with using method of terms coding) based
on Table 8 data; No — number of sentence

No. Col. 1 Col. 2 Col. 3
sl 0.40 0.80 1.00
s2 0.50 0.67 0.83
s3 0.25 0.75 1.00
s4 0.00 0.33 0.80
s5 0.43 0.57 0.83
s6 0.71 0.71 0.86
s7 0.62 0.75 0.88
s8 0.67 0.83 1.00
s9 0.25 0.50 0.75
s10 0.20 0.40 1.00
sl 0.38 0.62 0.75
s12 0.88 0.88 1.00
s13 0.56 0.78 0.89
sl4 0.83 0.83 1.00
s15 0.64 0.71 0.86
sl6 0.57 0.71 0.86
s17 0.81 0.88 0.94

The obtained results show that the method of coding terms (column no. 3) increases
the precision of similarity estimation in some cases from 0-20% even up to 75-100%.

1.00 I |
imilarity — using coding terms
Lt kT T T ] s oo

. 0.80 | I 5 T 101 l i n Ul | i ; i I E | metod
iii;;iligigiiﬂﬂ
E 0.40 {|&!M F g N RR F I L B Similarity — without using coding
7 00 U L (O | terms metod

o2 TR A

0.00 -+ . - - , y p B Levenshtein distance — without using

1234567 8 91011121314151617 similarity measure and coding terms
Ordinal numbers of sentences methods

Fig. 2. Graphical results of quality test of English sentences. For all tests in this case
acceptable boundaries of similarity P are: ¢ = 0.75, g_ = 0.80
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5. Comparison quality of described method with popular methods

Results in table 10 (and in tables 11-16 in Appendix 1) show that the similarity methods
based on Levenshtein distance algorithm (i.e. Lda without coding terms method and
Lda with coding terms method — Table 9/Col. 3) are more precise than popular methods
like: Dice distance, Jaccard distance or Cosine distance [17]. Formulas (8—12) refer to these

distances.
Dice distance is described by the formula below:

n

Z j:laijbk/'

n n
M
Jj=1 y j=1 J

Dice_dist(a;,b,) =2

where:
a, — weight of the term in i position of the vector of text document a,
n — length of the two vectors created from two text documents a and b.

Jaccard distance is described by the formula below:
n
Z i by
n 2 n 2 n
Zj:laij +Zj:lbkj _ijlaﬁblg

Cosine distance is described by the formula below:

" ab
Zj:laij ki
nooo noa

2 a> § b2
\/ Jj=1 l/\/ j=1 K

Jaccard_dist (a;,b; ) =

Cosine_dist (a;,b;) =

®)

)

(10)

Weights are calculated by special formulas, i.e. ferm frequency method (tf) or term

frequency — inversed document frequency method (tf — idf) [18].
The idf method is described by the formula below:

N
idf, =log—
idf, gdft

where:
N — the number of analysed documents,
df, — the number of documents where term ¢ occurs.

The tf— idf method is described by the formula below:
. N
o —idfq = logd_f,X Bra

where:
if,, — the number of times that term ¢ occurs in document d.

(Im)

(12)
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Table 10
Values of similarity of the sentences using popular methods. Describe of columns (experiments):
Col. 1 - Similarity method based on Lda without coding terms method; Col. 2 — Cosine distance
based on term frequency weight method (tf); Col. 3 — Dice distance based on tf weight method;
Col. 4 — Jaccard distance based on tf weight method; No. — number of sentence. Experiments
2—4 based on Table 8 data (i.e. method of coding synonym terms was used)

No. Col. 1 Col. 2 Col. 3 Col. 4
sl 0.80 0.40 0.08 0.25
s2 0.67 0.55 0.10 0.37
s3 0.75 0.25 0.06 0.14
s4 0.33 0.00 0.00 0.00
s5 0.57 0.46 0.07 0.30
s6 0.71 0.77 0.12 0.62
s7 0.75 0.63 0.07 0.45
s8 0.83 0.66 0.11 0.50
s9 0.50 0.25 0.62 0.14
s10 0.40 0.22 0.50 0.12
sl 0.62 0.40 0.53 0.25
s12 0.88 0.90 0.00 0.81
s13 0.78 0.56 0.06 0.38
sl4 0.83 0.83 0.13 0.71
sl5 0.71 0.69 0.04 0.52
sl6 0.71 0.57 0.08 0.40
s17 0.88 0.81 0.05 0.68

3 4 5 6 7 8 9 10 M 12 13 14 15 16 17
MExp.1 MExp.2 MExp.3 BMExp.4 OExp.5

Fig. 3. Graphical results of similarity of the incorrect sentences using popular methods.
Description of experiments: Exp. 1 — Similarity method based on Lda without coding
terms method; Exp. 2 — Cosine distance based on term frequency weight method (#f);
Exp. 3 — Dice distance based on #f'weight method; Exp. 4 — Jaccard distance based on
tf weight method; Exp. 5 — Similarity between correct and incorrect sentences (with

using method of terms coding) based on Table 8§ data
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As can be seen, the described similarity methods (based on Lda) include a fully different
algorithm compared with the popular methods (based on terms weights and vector space
models) because of the identification of the distribution of terms. Described popular methods
based on the number of occurrences of terms in documents only. Methods based on Lda do
not need other documents instead of e.g. term frequency — inversed document frequency
method to estimate weight of terms (in case of two sentences impossible to apply). Graphical
interpretation includes all described methods is shown below (Figure 3). The best results
includes exp. no. 5.

6. Summary

The method of coding terms described in this paper increases the precision of calculation
of the similarity measures based on Levenshtein distance significantly. This method is
characterized by the speed of data analysis and simplicity of implementation. The coding
method of terms in combination with the Levenshtein distance and the similarity measures
can be used in: detecting plagiarism (resignation of variety of nouns and verbs based on
standard thesaurus and stemming algorithms), finding phrases in text documents [8] (or
web documents [13], etc.), algorithms for correcting mistakes, mechanism of identification
and classification of content based on term weighted methods [1, 14, 15], etc.

The proposed solutions are applied and have been tested in the mechanism of topic
analysis and descriptions of selected written works (diploma thesis) to automatic selection
of supervisors and reviewers at the Faculty of Physics, Mathematics and Computer Science
of the Cracow University of Technology?®. The solution also was included in Anti-plagiarism
System of Faculty of Physics, Mathematics and Computer Science®. Tests results show a high
quality of the text mining analysis.
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Appendix 1

Table 11

Example of Polish sentences. Stars define the same origin
(i.e. method of coding synonyms was used)

No. Correct sentence Incorrect sentence
sl Jutro bedzie nowy* dzien Jutro bedzie nowiutki* dzien
s2 Gdy** chcesz opisa¢ prawdg, elegancj¢ | Kiedy** chcesz opisac prawde, elegancje
pozostaw*** krawcom. zostaw®** krawcom.
s3 Kto si¢ lgka**** juz przegrat Kto sie boi**** juz przegral

Table 12

Values of similarity of the sentences using popular methods. Description of columns
(experiments): Col. 1 — Similarity method based on Lda without coding terms method;
Col. 2 — Similarity method based on Lda with coding terms method; Col. 3 — Cosine distance
based on term frequency weight method (tf); Col. 4 — Dice distance based on tf;

Col. 5 — Jaccard distance based on tf weight method; No. — number of sentence

No. Col. 1 Col. 2 Col. 3 Col. 4 Col. 5
sl 0.75 1.00 0.25 0.06 0.14
s2 0.86 1.00 0.57 0.08 0.40
s3 0.40 0.60 0.40 0.08 0.25

Table 11 includes correct and incorrect Polish sentences. Sentences have similar meaning
but include different terms. Column no. 2 in table 12 includes the best values of the tests.

Table 13
Example of Russian sentences. Stars define the same origin
(i.e. method of coding synonyms was used)
No. Correct sentence Incorrect sentence
sl 3aBTpa OyJeT HOBHIH* IeHb 3aBTpa OyneTs HOBEHKHIT* TeHb
s2 Ecnu**  Bbl xoTHTE CcKa3aTh*** mpasny, | Korma** BBl  XaTUTe€  pacckazarp***
OCTaBbTE JJICTAHTHOCTD INNOPTHBIM paBay,0CTaBTE BJICTAHTHOCTDb ITOPTHLIM
s3 Kro Gownrces yxe mpourpan Kro 6autbcs yxe mpaurpai
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Table 14

Values of similarity of the sentences using popular methods. Description of columns
(experiments): Col. 1 — Similarity method based on Lda without coding terms method;
Col. 2 — Similarity method based on Lda with coding terms method; Col. 3 — Cosine distance
based on term frequency weight method (tf); Col. 4 — Dice distance based on tf;

Col. 5 — Jaccard distance based on tf weight method; No. — number of sentence

No. Col. 1 Col. 2 Col. 3 Col. 4 Col. 5
sl 0.75 1.00 0.75 0.18 0.60
s2 0.75 1.00 0.75 0.09 0.60
s3 0.75 0.75 0.50 0.12 0.33

Table 13 includes correct and incorrect Russian sentences. Sentences have similar
meaning but include different terms. Column no. 2 in table 14 includes the best values
of the tests.

Table 15

Example of Belarusian sentences. Stars define the same origin
(i.e. method of coding synonyms was used)

No. Correct sentence Incorrect sentence
sl 3ayTpa* Oya3e HOBBI I3¢Hb 3ayTpa* Oy/i3illb HOBBIN JI3¢Hb
s2 Kami Bel xouwame ckaszamp mpayndy, | KamiBel xouame cka3aTh mpaBay, ma3actayme™*
MaKiHpLIe™** syeraHTHACIb IS Kpayoy | JeraHTHacIb Ui Kpayuoy
s3 Xro Gairiia yxo npanrpay Ko 6aina yxo mpairpay

Table 16

Values of similarity of the sentences using popular methods. Description of columns
(experiments): Col. 1 — Similarity method based on Lda without coding terms method;
Col. 2 — Similarity method based on Lda with coding terms method; Col. 3 — Cosine distance
based on term frequency weight method (tf); Col. 4 — Dice distance based on tf;

Col. 5 — Jaccard distance based on tf weight method; No. — number of sentence

No. Col. 1 Col. 2 Col. 3 Col. 4 Col. 5
sl 0.75 0.75 0.50 0.12 0.33
s2 0.89 1.00 0.77 0.08 0.63
s3 0.50 0.50 0 0 0

Table 15 includes correct and incorrect Belarusian sentences. Sentences have similar
meaning but include different terms. Column no. 2 in table 16 includes the best values
of the tests.
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1. Introduction

In experimental and applied particle physics, nuclear physics and nuclear engineering,
a particle detector is a device used to detect, track, or identify high-energy particles. It may
also deliver information on other attributes such as its momentum or charge.

Drift chambers are used to measure the space coordinates of the charged particle
trajectory. This is achieved by measuring the drift time of the ionization electrons to the
sensitive electrodes [1]. This technology is applied also in the straw drift tube chambers
[2]. The straw type detectors differ in the number of the straws and also their position or
orientation. The path is determined by the best fit to coordinates calculated using information
coming from hit straws. Additionally, the measured drift time, which is proportional to
the distance of the particle’s closest approach to that chamber’s sense wire, allows the
coordinate to be determined with precision better than the straw radius.

The track pattern recognition in detectors has been developed since the first detector
was built. A review can be found in [3]. The author after a brief introduction discusses
different approaches in global and local methods of track pattern recognition including their
strengths and shortcomings. In [4] a novel track finding algorithm, named the Drift Tube
Hough Transform (DTHT) algorithm, is presented. The DTHT algorithm uses the possible
explanations for a lack of particle hits as additional information, and takes into account all
possible scenarios that may occur in the tubes.

It is quite clear that not only the accuracy of the determination of the particle track
properties should be taken into account. One should also stress the importance of the analysis
time especially in case of on-line processing. For this reason a unique algorithm for each
detector is needed.

In this paper the algorithm for the 3D track recognition for a linear forward tracker
segment is presented. It is designed for the PANDA experiment [5]. This experiment is one
of the key experiments at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt,
Germany. It is foreseen to study the collisions of an anti-proton beam with different
fixed targets.

2. Construction of Forward Tracking Stations in PANDA experiment

The Forward Tracker (FT) in the PANDA experiment consists of three pairs of planar
tracking stations (Fig. 1). One pair (FT1, FT2) is placed in front of the magnet gap, the
second (FT3, FT4) is placed inside the magnet gap (dipole field) and the third pair (FTS5, FT6)
is placed behind the magnet gap, in order to track the low transverse momentum particles
exiting the magnet yoke [6].

Each tracking station consists of four double layers of straw tubes oriented respectively
at 0°, +5°, =5°, 0° (Fig. 2) with respect to the vertical direction.

Each double layer contains a different numbers of straws and has the beam pipe openings
of different dimensions. The details of the geometry of active areas, positions along the beam
direction and the number of straw tubes in individual tracking stations can be found in [7].
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FT1 FT2 FT3 FT4 FT5 FT6

Fig. 1. Forward Tracking Stations in PANDA experiment; FT1, FT2 — in front of the magnet gap,
FT3, FT4 — inside the magnet gap, FT5, FT6 — behind the magnet gap

A

v

@ — vertical straw
@ —skewed straw

Fig. 2. One Forward Tracking Station

The most important properties of the straws for the track pattern recognition are:
the straw diameter — 10.1 mm,

— the Mylar straw tube wall thickness — 0.03 mm,
— the tungsten, sense wire diameter — 0.02 mm,
the gas mixture: 90%Ar + 10% CO at 2 bar.

The positions of individual sense wires in the FT straw tubes are described by straight line
equations. The equations are given in a right-handed coordinate system with origin located
in the nominal PANDA interaction point, Z-axis is parallel to the beam direction and Y-axis
is oriented in the vertical direction.

Each straw has its unique ID number which can be used to access the layer and the
tracking station numbers as well as the set of parameters describing the position of the straw
sense wire.

Since the outer stations (FT1, FT2 marked as FT12 and FT5, FT6 marked as FT56)
are situated outside the magnetic field it can be roughly assumed, neglecting the multiple
scattering effects in light material, that in these areas particles will move along a straight line.
In contrast, the charged particle trajectory in the central stations (FT3, FT4 marked as FT34)
will be close to a helix: circle in X-Z and line in Y-Z projection.

To determine the particle track in three-dimensional space it is enough to calculate the
track parameters in two independent two-dimensional spaces:
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— horizontal plane ZOX using the vertical straws,
— vertical plane ZOY using the inclined straws.

This paper presents the three-dimensional track recognition using the FT12 and FT56
stations situated outside the magnetic field.

3. Description of the method

It is clear that the same algorithm the particle track finding can be used in the FT12
or FT56 stations since both of them are located in the regions free of the magnetic field.

In the FT12 tracking station there are four double layers of straw tubes. Half of them are
vertical and the others are skewed. A straw located above the beam pipe opening matches
the direction of the corresponding straw located below the opening i.e. both are described by
the same equation.

The first step of the algorithm is to read in the forward detector geometry data which
describe all the straw tubes arranged in 48 layers. In turn, each straw is attributed a set of
five numbers, {ID, /, x, y, z}, where ID is the unique straw ordinal number, / is the layer
number, x, y, z are the three coordinates which enable the determination of the equation
describing a wire in a give area of the detector. The next step is to load input data generated
by the PANDAROOT software. The simulator delivers events, containing for example
particles of selected energies and selected angles with respect to the beam, which are passed
through the detector simulation. During this operation the event number, ID-s of all hit straws
(hits) are stored, and the drift radius r for each hit is calculated. Also, real (true) coordinates
of the track are stored for each hit. This information is necessary at the later stage of the
track pattern recognition to verify the correctness of the obtained results. Input data are
loaded into two arrays. One stores information considering the vertical straws, the other one
the skewed straws.

3.1. Track recognition in the ZOX plane using the vertical straws

To determine the particle track in the ZOX plane the layers with vertical straws are
required. In the case of the tracking stations FT12 the processed layers are: 1, 2, 7, 8, 9, 10,
15 and 16.

At the beginning the track candidates are searched for. Based on the list of vertical hit
straws we choose all pairs of the straws (S1, S2), where the straw S1(z1, x1) with the drift
radius 1 belongs to the layer 1 or 2, and S2(z2, x2) with the drift radius 72 belongs to
the layer 15 or 16. Points (z1, x1) and (z2, x2) define the place of the intersection wires
with the ZOX plane. Next, the straight line L: x=4*z + B passing through these points is
constructed. In consequence, the algorithm then looks for all hit vertical straws S(z, x)),
whose distance from this line is smaller than a predetermined value d (Fig. 3):

|A*zi+B—xl~| <d

, (1)
1+ 42
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with d defined as:
d =max (rl,72)+0.5 cm 2)

where d is measured in centimetres and the constant 0.5 cm is the inner radius of a straw
tube.

Fig. 3. Candidates to the track on ZOX plane

If the number of selected straws (with S1 and S2) is greater than 6 the case is accepted
and two circles ¢(S1, r1) and ¢(S2, r2) are used to construct four tangent lines, see Fig. 4.
Later, for each tangent line a new straw search is performed. Again the distance between
the selected tangent line and the straw centre is calculated.

Fig. 4. Selection of the optimal tangent
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If this distance diminished by the size of the drift radius rs fulfills the condition
|d - rs| < Al, assuming Al =0.5 cm (size of the inner radius of a straw tube), then the straw

is accepted and added to the straw list associated with a hypothetical track and the sum
dd = min Z| d(S, tangent) — rs| (3)

is calculated. If more than 6 straws meet this criterion then it is assumed that the tangent is
a candidate for the track. From all selected tangent lines the one characterised by the smallest
value of dd is accepted as the track candidate.

Initially, the algorithm was initialised only for the pairs of the straws belonging to
layers 1 and 16 which prevented the track determination if there was no hit in one of these
layers. To improve the algorithm performance it was assumed that the signal due to the
particle passage was generated in at least one layer of straws belonging to the double layer
structure. Therefore, the initial straw can belong either to layer 1 or 2, and respectively
15 or 16. For this reason, the algorithm considers many more pairs and in cases in which all
the layers have a hit some tracks are duplicated. This implies that an elimination procedure
has to be carried out. Two track candidates are considered to be an “repetition event” if they
contain the same hit straws in at least 7 out of 8 layers or also if out of 7 hit straws no more
than 4 straws are not exactly the same but have neighboring numbers. Eventually, out of two
such candidates the one with more hits or with smaller value of dd is accepted.

The pseudo-code of the algorithm described above is presented in Fig. 5.

for each straw S1 from layer 1 or 2
for each straw S2 from layer 15 or 16
line(S1,S2);
find all straws S for which |d(S,line)-rs| < Al;

if (number of found straws < 6) take next pair;
else construct four 1lines tangent to c¢(Sl,rl) and
c(S2,r2) and compute
dd= 3 |d(S,tangent)- rs|;
select the tangent line having min(dd) ;
compare found tracks and eliminate duplicates

Fig. 5. Reconstruction of traces in the plane XOZ in FT12

The result of track recognition on ZOX plane is a set of hits belonging to the track and
two parameters o and B of x = o.*z + [ forming the track in this plane.

3.2. Track recognition in ZOY plane using the skewed straws

To determine the particle trace in the plane ZOY the layers with skewed straws are used.
In tracking stations FT12 the processed layers are: 3, 4, 5, 6, 11, 12, 13 and 14.

For each track found in the ZOX plane the plane Z'OY vertical to ZOX and containing the
found track is constructed (see Fig. 6).

Then for each processed straw (described by equation y = a*(x — x,) + y,) the point
P(z, y) of intersection of the straw with the plane is calculated. Given the drift radius the
coordinates of points Pl(z, y1) and P2(z, y2) belonging to the track (4) are determined.
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yl=y+ee; y2=y-cc; cc=ril+d’ @)

Z'0Y track

N

Z0OX track

Fig. 6. Points — candidates to the track on Z'OY plane

From the list of all points P1 and P2 (see Fig. 7) only those pairs of points (P, P') are
selected for which point P belongs to the layer 3 or 4, and P’ to the layer 13 or 14. Next for
each accepted pair a line passing through it points is determined.

A
Y

Vi

Fig. 7. The track candidates in the Z'OY plane
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At the next step, all points, one in each layer, whose distance to this line is the shortest,
but no greater than value of A2 (A2 = 0.5 cm; size of the inner radius of a straw tube), are
considered and out of all constructed lines the one with the smallest value of the sum:

dd = z d min (P, line) (5)
layer

is selected. If there are more than 6 points in the sum then the line is the track candidate in
the Z'OY plane. It is quite clear that the transformation of this line from the Z'OY to the
ZOY plane is required (Fig. 8). The results of the track recognition in the ZOY plane is
a set of hit straws belonging to the track and two parameters o and B defining the track line
x =0o*z [ in this plane.

A~

Z’OY track
ZOY track

ZOX track Zoy

NN\

\ beam

B ——

Fig. 8. Transformation of the track from the Z'OY to the ZOY plane
The pseudo-code of the discussed algorithm is presented below in Fig. 9.

for each track in ZOX plain
for each straw Si
compute points P1l(zi,yl) and P2(zi,y2)
for each point K belonging to layer 3 or 4
for each point M belonging to layer 13 or 14
line (K, M);
dd= Fiayer dmin (P, line);

Fig. 9. Reconstruction of traces in the plane XOY in FT12
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4. Results

The algorithm was tested for input data generated by the Pandaroot. The data extracted
from the simulations were ordered in the form of rows with a fixed number of columns
defining the order:

— the event number,

— the track number,

— whether it is a part of the primary particle (equal —1),
— the layer number,

— the global number of the hit straw,

— the radius,

— X, y, z coordinates.

The last three numbers are the coordinates of the point crossed by the particle allowing
to verify the obtained results with the data from the simulator.

Calculations were made for muons with energies of: 0.5 GeV, 2.55 GeV and 5.55 GeV.
The angle of incidence of a particle was within the range (2.5°; 5.0°). The generated events
contained one, three or five tracks. Only the tracks with at least one hit in each of the double
layer were considered in the present analysis.

Fig. 10 shows the distribution of the simulated track position at the first layer for muons
of 5.55 GeV energy.

Points_real_XYZ_L1

60 Points_real_XYZ_L1

5L Entries 1203552
s T Meanx -0.05013
~ Meany  0.06517
40— RMS x 13.9
C RMS y 13.92
20|—
D —
-20 ;
a0l —
= S IS SRR B
60 40 20 0 20 40 60
X [em]

Fig. 10. Distribution of the simulated track position at the first layer for muons of 5.55 GeV

In Fig. 11 and Fig. 12 the difference in X and Y coordinates at each layer of F12
between simulated and reconstructed tracks are presented. The difference in X coordinate
was computed using the vertical straws in the ZOX plane, the difference in Y coordinate on
skewed straws in the ZOY plane. The difference in X coordinate is about ten times smaller
than in Y coordinate.

The efficiency of the track recognition algorithm in the forward tracker F12 is illustrated
in Fig. 13. It is a function of the number of found tracks in generated events. The found track
is a track with minimum 14 hits in 16 layers.
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Fig. 11. The difference in X coordinate between the simulated and reconstructed track position
for muons of 5.55 GeV
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Fig. 12. The difference in Y coordinate between the simulated and reconstructed track position
for muons of 5.55 GeV
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Fig. 13. Efficiency of tracks recognition in FT12 for muons of 5.55 GeV
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5. Conclusions

In this paper, the three-dimensional track pattern recognition algorithm outside the
magnetic field for PANDA experiment in FAIR was presented. It is based on an analytical
solution. The algorithm uses the detector geometry, information about the particle hits
and the drift time/radius values.

Results indicate that the obtained accuracy of the particle path determination using the
vertical straws is much better than that which can be obtained using the skewed straws.
The efficiency of the track finding is still above 95% for events with five tracks.

The algorithm returns a list of straws associated with a track as well as the parameters
of the straight line allowing the three-dimensional determination of the particle path before
the magnetic field area (in FT12), and after leaving it (in FT56). This information is necessary
input for the determination of the particle trajectory of a particle in the magnetic dipole field.

1 am indebted to Cracow PANDA Group for stimulating discussions and help and to ACK CYFRONET
— Krakow for possibility of using the computing resources.
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1. Introduction

The increasing complexity of information processes in distributed computer systems
and microprocessor systems increases the probability of faults and disturbances. Hence,
there is the need to include them in the design process. These processes were treated as
occurring in class of discrete event systems (DES).

The DES class is very wide, covering manufacturing systems (including flexible and
assembly lines) [5, 6], road, railway and air transport systems [3, 19], as well as computer
networks [15]. In addition, one can also qualify processes in the field of Human System
Interaction, e.g. resource and task management, as well as process control technologies.
The variety of DES systems leads to different models. The MPLS model has been adopted
in this article, based on the algebra theory (max, +). One of the first scientists, who described
this theory was R.A. Cuninghame-Green [12] and then it was developed by the INRIA
team [7]. The authors of the articles showed that the behaviour of certain DES systems can
be described using linear equations. They have also pointed at many cases of analogies
to the problems in the systems theory, automation and control. Joint researches led to the
publication of collective work [2]. In the following article, based on the bibliographic
data, the theoretical basis of modelling and control in the DES systems are discussed,
supplemented with the authors’ results from the scope of this problem.

In the area of research, in particular should be mentioned:

— Optimal control in the open loop. Structure described by the Cohen [9], in which a well-
-known system model and time sequence of output signals are assumed, while the optimal
trajectory of the input signals is calculated,

— Preliminary compensator [14, 18]. The time sequence of output signals is not known, but
the reference model, which imposes the behaviour of the output relative to the input is
assumed.

— Corrector with the feedback. In the control structure the system output is modified by
the correctors in the feedback [10]. They converge the behaviour of the whole system to
the behaviour set in the reference model.

— R, S, T type correction. Strategy based on the introduction of three correctors into the
structure, has been inspired by the Astrom [1]. This leads to the better results than those
obtained with the single corrector [20].

— Control in the presence of disturbances [16]. System is exposed to the acting of
uncontrolled inputs. To reduce their impact, the control in the closed-loop is taken into
account.

— Robust control [17]. It is assumed that the system parameters are random, but are in the
specific range of values. Synthesis of control is based on the feedback.

The main part of the following article concerns the design of the open control structures,
including control under conditions of uncertainty in the data transmission aspect.

This article is organized as follows. Section 2 introduces the maxplus algebra theory and
MPLS modelling. In section 3, based on the literature review, the authors’ results related
to the selected problems of processes control in the DES systems have been presented.
Also some problems in the disturbances conditions, damages and uncertainty have been
discussed. In section 4 there is the general theory related with the open control. In section 5
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control system synthesis has been described and the practical results for the computational
processes and data transmission in model of IT systems have been presented.

2. Mathematical fundamentals

This section contains selected basic concepts of max-plus algebra providing the basis to
formulate a model MPLS. They are widely discussed in the Chapters 3 and 4 of publication
[2]. Max-plus algebra formalism is based largely on the lattice theory and partially ordered
sets, and residuation theory. In turn, the theoretical basis, allowing representation of MPLS
in the categories of the state equations system is presented in Chapters 5 and 6 of [2].

2.1. Max plus algebra [25]

In recent years, the concept of a max-plus-linear system (MPLS) has been increasingly
frequently used in the literature. It is based on a mathematical formalism, namely max-plus
algebra. The basic operations of max-plus algebra are maximization and addition, which

will be represented, respectively, by @ and ®:x® y = max(x,y) and x® y=x+y for
xyeR, R, =% R {00}

The reason for using these symbols is that there is a remarkable analogy between @
and conventional addition, and between ® and conventional multiplication: many concepts
and properties from linear algebra (such as the Cayley-Hamilton theorem, eigenvectors
and eigenvalues, Cramer’s rule) can be translated to max-plus algebra by replacing + with
@ and x with ®. Hence we also call @ the max-plus-algebraic addition, and ® the max-
-plus-algebraic multiplication. Note, however, that a major difference between conventional
algebra and max-plus algebra is that, in general, there are no inverse elements with

def

respect to @ in R_. The zero element for @ is € ="/ —oo and we have a®e=a=¢+a for

all a € R,. The structure (R,,®,®) is referred to as max-plus algebra. Let » € R. The r*
max-plus-algebraic power of x € R is denoted by x® and corresponds to rx in conventional
algebra. If x € R, then x®° = 0 and the inverse element of x w.r.t. ® is x* ' = —x. There is no
inverse element for € since € is absorbing for ®. If » > 0, then €® = ¢, and if r < 0, then €%
is not defined. In this paper, we have €*° = 0 by definition.

The implicit equation x = a ® x @ b determines a = a* ® b where the Kleene star operator:

o0
* i
@ =@ a
i=0

The rules for the order of evaluation of max-plus algebraic operators correspond to those
of conventional algebra. So the max-plus-algebraic power has the highest priority, and max-
-plus-algebraic multiplication has a higher priority than max-plus-algebraic addition.

The basic max-plus-algebraic operations are extended to matrices as follows.

If A,BeR" and CeR!"”, then:
(A@B)ij =ay @sz :max(aij,bi/-)
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(A®C); =P ay Ocyy = max (ay +c)
k=1 =l...n
for all i, j. Note the analogy with the definitions of the matrix sum and the product in
conventional linear algebra.

The matrix € is the mxn max-plus-algebraic zero matrix: (€,,,); ; =€ for all i, j;

mxn
and the matrix E_1is the n X n max-plus-algebraic identity matrix: (E ), = 0 for all / and
E(E), =€, jwith i #j. If the size of the max-plus-algebraic identity matrix or the max-

-plus-algebraic zero matrix is not specified, it should be clear from the context. The max-plus-
-algebraic matrix power of A € R*" is defined as follows: A =E and A®* = A®A®*™

fork=1,2, ...
The Kleene star operator can also be applied to matrices:

A"=@PA" with A" =A®A’ and A’ =E ()
i=0
where:
E — the identity matrix.
Equation (1), which has nilpotent matrix, achieves convergence (all coefficients equal €).

2.2. Model of the system

In article [5] Cohen showed that the nonlinear dynamic systems, whose structure and
behaviour is based on the timed event graph (TEG) may be described using the linear
equation system The example of a TEG with the determined holding time of 2 units in place
P1 is given in Fig. 1 [4].

Fig. 1. Graphical representation of a TEG

State-space descriptions in the max-plus algebra for a certain class of discrete-event-
systems become linear representations which are similar to state-space equations in the
traditional model control theory. Generally speaking, for any TEG system, one obtains the
following kind of equations as an MPLS [8]:

M
x(h) =P A, x(k—)®B, u(k—i) @.1)
i=0
M
y(k)=@PC; x(k i) (2.2)

i=0
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where x, u, and y are vectors of dimensions equal to the numbers of internal, input and
output transitions, respectively. A, B, and C, are matrices of the appropriate dimensions
with entries in the max-plus algebra, and M is the maximal number of tokens in the
initial marking. The variables of (2) are time instances and the represented events occur
at k-times. The coefficients of matrices A, B, C represent parameters associated with the
places located between these transitions. The classical theory of the continuous and discrete
systems in the time domain, revolutionized the integral transforms (e.g. Laplace, Fourier,
Z-transform). Similar transformations have become useful in the theory of discrete processes.
Each transition in the TEG model can be assigned to the appropriate of both, input or output
vector’s components, as well as to internal state.

In the article [9] is derived model, of the system is represented by 2-dimentional (Y, 8)

max

— transform noted as M [[y,08]] a set of formal power series for two variables y and

d. A finite series of M [[v,8]] is a polynomial and is used to code a set of information

concerning the transition of a TEG. The monomial y*& may be interpreted as the k-th event
occurring at least at time #.

Using transform by MX[[y,8]] the TEG system (2) has implicit form as

min
X = Ax® Bu 3.1
y=Cx 3.2)

where A € Mt ([v,6]],, » B € Mt [[7,61],, » € € MEE(Y, 811 »

System equation (3) by Kleene star (1) transform, gives the explicit form as
x=A"Bu 4.1
y = Hu 4.2)

where H =CA"B € MiH[[v,8]],,.,, is input/output transfer matrix relation

System equation (3) and matrix H is modelled as block schema (Fig. 2).

2) l_A < b)
u X y

__)B__)® » C |—> u_)H_y)

Fig. 2. Block schema of the system (a), and its substitute (b)

3. Control systems

3.1. Open control

First results concerning the open control, obtained using the (max,+) algebra are included
in the Cohen [9] and Menguy [21] articles. Control was proposed for developing set
a priori output trajectory, specified as open control. This control plays a key role in event
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planning [21] and scheduling of tasks. For example these tasks can be executed by the some
processes in a distributed computing micro-processors system. This issue will be presented
in detail with example in sections 5 and 6.

3.2. Feedback control from the output

Controlled structure consists with the corrector between the system’s output y and
its input v. Output signals of events are modified by the corrector and put together with
the input events. This problem is described in details in the work of B. Cottenceau [10]
and in the articles [15]. Structure of control with output feedback as the block diagram is
explained in the Fig. 3.

Fig. 3. Control with of the feedback from the output

For this system u=Fy®v
y = H(Fy ® v) = HFy ® Hv
and using (1) y = (HF)"Hv = Gyv
where Gy = (HF)'H<G, (%)

Expression (5) may be used to find F as the best control for applied desired characteristics
and may be at least as fast as the reference G,

3.3. Feedback control from the state

Structure of control with state feedback is explained in Fig. 4. In this case change of
control structure consists of the corrector between the system’s output and input. System
is being controlled using by signal of state system’s events, and changing by the corrector
F analogically as in previous subsection 3.2 modified input the system. This problem is
described in details in the work of B. Cottenceau [10] and in the article [15].

For this system u=Fx®v

and X = Ax® Bu = Ax ® BKx ® Bv
x=(A®BF)x®Bv

and solve using (1) x=(A@®BF)"Bv
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Output y=C(A®BF)'Bv=Gpv (6)
where Gy =CA*(A*BF)'A"B = CA*B(FA'B)’ 7)
G, <G, (®)
A
X Yy
——)@—) B > C —
\4 u
I F

Fig. 4. Feedback control from the state

Expressions (7) may be used to find F as the best control for applied desired characteristics
and may be at least as fast as the reference G, (8).

3.4. Control with the observer

The availability of state of the system in the previous point, is an important condition but
not always possible to fulfil. There is, however, based on a known model of the system can
calculate the analytical condition which is reconstructed state. On the basis of the analogue,
a conventional approach Fig. 5 shows the structure of an observer [26].

M @ x=Ax®Bu ] _
" y=Cx System J y

' v \

x’ Y

X y ;

A
Observer Fo
F Controller

Fig. 5. Structure of control with the observer
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Assuming the existence of matrices A, B and C the real system equation (3) in explicit
form is

x=A"Bu
and the equation of the observer is
x'=A"Bu®Fo(yQ®y) 9)

Our goal is to calculate the matrix F to ensure that the estimated output y’ is less than
or equal to the measured output y.

Typically, an observer is used to estimate the conditions necessary for feedback from
the state and it is possible now to use control as in subsection 3.3 with equation (6)

y =C(A ® BF)'Bv (10)

Now expressions (9) and (10) may be used to find F and F,; as the best control for applied
desired characteristics.

4. Data processing with control

Let us consider a data process that allows event-driven applications to take advantage
of multiprocessors by running the code for event handlers in parallel. To achieve high
performance, servers must overlap computation with the I/O. Programs typically achieve
this overlap by using threads or events. Threaded programs usually process every request
in a separate thread; while one thread block is waiting for the I/O, another thread can
run. Event-based programs are structured as a collection of call-back functions which are
called by the main loop when I/O events occur. Threads provide an intuitive programming
model, but require coordinating the access of different threads to the shared state, even on
a uniprocessor. Event-based programs execute call-backs sequentially so the programmer
need not worry about concurrency control; however, event-based programs have so far been
unable to make good use of multiprocessors. Much of the effort required to make existing
event-driven programs take advantage of multiprocessors is in specifying which events can
be handled in parallel.

This article presents a simple problem of designing the control of a system in which
the cost is chosen so that it provides a trade-off between minimizing the delays of the end
time of computational process operations (the real time to complete all the tasks in a cyclic
computational process, times of final results of one cycle) and the periodicity of the desired
output (the time desired or needed) to complete the process.

This problem was presented with no disturbances [22] and it was solved in max-plus
algebraic functions as dater equation. Now we introduce disturbances and this problem is

modelled in the 2-dimensional M [[v,8]] domain.

Simple data processing consists of several tasks linked by the wait for I/O data (Fig. 6).
To illustrate our approach, let us consider a process that consists of some tasks: T , which
runs on microprocessors: 1P , for i =1, ..., n. Each of these tasks is executed on a dedicated

microprocessor. In this process, the digital information flows as input/output processing data
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Fig. 6. The structure of the disturbing processes

and a control signal. Input data (i.e. from outer system) is processed as the first task on the
uP,, and its output data has to be saved to memory while it waits to be processed. The other
microprocessors operate in the same way, but their input data simultaneously constitutes the
output result from the previous microprocessor and /or may need extra outer data too.

5. Control in open structure

In this section, the specified project is considered to obtain open control problem.
In the context of data processing, this problem is to give final results and at the same time
minimizing the size of the memory. Specifically, the control problem in open loop resolved
as follows. It is system (a TEG with p inputs and q outputs) whose transfer matrix is known

to transfer H:CA*BeMmax[[y,S]]pxm. It is desired, using inputs weM([y,5]],

min
to ensure that the system outputs follow the best trajectory determined by z e M {[v,8]],,.
In [8], it is shown that this problem has an optimal solution, that there is a greater input
) is
less than or equal to the desired output z. The u, order is optimal from the point of view
the just-in-time criteria (yOpt the output is just-in-time). Here we implement restrictions.
— Input reference can be updated. For example, in the context of data processing the final
results may lead to modifications of outer processes.

— Deadlines for the firing of some of the input transition can’t be modified, which may
provide input data to the actual processes.

max

control uy, € My, [[v,8]], such that the output resulting from that input (y,, = Hu

opt
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Formally, transformation of L :Mit[[y,8]], = My [[v,8]],, u = H Qu, defines

min min

optimal control.

{u S Mmax[ |LH (uop[)<z}

min
More specifically this is the upper limit (marked uopl), which gives you the greatest
control satisfying the condition of Lj; (u,, )< z. We can already see that this set is not empty
since u = € is the solution, that is Ly(e)<z and it is inversion problem which the theory
residuation solves this problem directly.
The optimal command Uy, _exists and is given by:

={ue MIX[y,3] |LH(u) <zyLy(z)=H\z (11)

The optimal control for TEG corresponds to the order by entering the markers to the
system as late as possible.

6. Example

In order to accomplish achieve the results, we’ll look at an example of the system
processes. Consider the TEG model in Fig. 7. As mentioned in section 4 this model can
represent i.c. a tasks of a process in a distributed computing system constructed of some
micro-processors P and memory units T. In this example data results from P1, P2 and PS5
is buffered in T5, T6, T7 and then there are processed by P3 and P4. Note that processors
P1, ... P5 have different cycle times: i.e P1 can handle a task every 2 units while P2 every 4

units of time etc. For this system, according to M [[y,8]] representation (3,4) we have

min
[ € € € € € g € €| r 7
¥ ' ¢ ¢
2
S} € €& €& € € & g ¢ ¢ e &£ &
€ € ¢ € € € €& € ¢
v e & ¢
e € & e € y e e € ¢ e & &
5
g 9O € € € € &€ & & & e & ¢
A= 5 , B= )
€ € € € 0 € ¢ &g g ¢ € & &
e € € 8 € € &gy & ¢ e & &
€ € € € € ¢ € € ¢ € & g
2
€ € €& & € & & & & v € € O
e €& € €& € & & € 51 €| L& €& £ |
(6 ¢ ¢ ¢ €6 e ¢ & ¢ ¢
C-=
e € €8 € 8 € & e & &
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Fig. 7. TEG of the system processes

According to (4) and, we can rewrite system transfer
810 82 *
HCAB= (y87) € €
€ (Y €

We may to determine a desired output i.e.

L {510 ® y822 @y4830(y66)* ® ,Y108+oc:|

€

Y2
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By convention, the first event is the number 0 and the trajectory of this should be

Calculation of optimal control is determined by (11)

€(‘B’Y88 @YZSIO ®Y3812 @’Y4820 ®Y5826 @’\/6832 @’Y7838 (‘B’Y8644 @’Y98+OO

u= €

€

interpreted as follows: 0 task should be done no later than 10 time, and the task 1, 2 and 3
at the latest during the 22. Then there is to be executed task 4, at 32 and then each one next
task every 6 units of time. The final monomial 6" means that the task 8 is the last for this
process. It also means that the task 9 and the next is not implemented (the term is infinite).
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Fig. 8. Graphical representation of z , y and u,

Results as trajectories z,, y, and u, are shown in Fig. 8. We can check that the optimal
control u well meets the specification, i.e. that the output y is less than or equal to the z
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Fig. 9. VC++ platform of software tools for MPLS (in the implementation)
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Calculations were performed and graphically presented using own software package
currently developed on the Visual Studio 2013 platform (Fig. 9) with software library [28]
and plot application Gnuplot [27].

7. Conclusions

In this article an overview of selected control structures and particular consideration
of the control of the open MPLS has been presented. The main purpose is the synthesis of
the control input, when we know global transfer H and reference (desired) input is updated.
In the next step the problem of permissible deviations of real H should be elaborated,
and the presence of uncontrollable input transitions. The problem formulated in the article
has the close analogy with the problems encountered in classical control theory. There is not
only feedback control but also predictive and robust control. There may be a need for effective
control to use decoupling in multidimensional systems with cross-coupling interaction (like
in computer control system [24]). Other problems concern different failures — events of data
loss and damage while transmission. The solutions obtained do not completely eliminate
the consequences of failures (i.e. delay), but are used for maintenance of the stability
and elimination of memory overflow [23].

It is important to follow the new solutions and development of theoretical researches,
concerning the classical theory of the system. It is planned to evolve practical applications
and to create new or expand existing informatic tools. Further development of this software
is planned.
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1. Introduction

A modern network ensures the efficient and effective information transfer between
different types of users: individuals or corporate. For many years research was carried out
in order to define and implement mechanisms and architectures, which would provide the
diversifying qualities of carried out data transmission, and additionally possibility to define
and implement transmission according to determined QoS (Quality of Service) parameters.

Service providers usually charge a fee based on the maximum bandwidth possible to
obtain. Unfortunately, this bandwidth is rarely available mainly due to the temporary load
of individual nodes and links in the network. Temporal throughput is determined by the
least efficient bond in transmission between sender and recipient. Different types of methods
and architectures were defined, which enable the management of network traffic using
different approaches to the concept of service type, priority and category of transmitted
information. For classical IP networks models of IntServ and DiffServ services were
proposed, for multiservice network a complete ATM technology was defined, displaced by
MPLS. Nowadays, there are novel concepts, such as Software-Defined Networking (SDN),
in which the assumed control of the transport layer separation causes a greater network
performance. In the case of SDN it was assumed that management is carried out centrally i.e.
there is a central repository storing essential rules for network management, created based
on information collected from all over the network. Centralization does not always seem to
be a good solution due to performance issues (scalability of solution), safety of collected
and stored information (one node collecting information).

For the implementation of decentralized network management it is possible to propose
the use of agent system concept. The agent approach for the implementation of routing
in the graph was proposed in the work [1]. The recalled agent approach in the present
article was enriched with the Pay&Require (P&R) concept, in which the separation of the
transport layer was assumed (devices physically responsible for transport) from the control
(the logic of the system), and additionally decentralization of the control carried out in the
network. For that purpose an agent technology was used, which enables the avoidance of
the application of a central repository. One of the key aspects of this concept is the fact that
the user pays for a particular required connection quality. An important aspect of the article
is a reference to Software-Defined Networking, which is still a novel concept, but it seems
that it may provide a solution widely accepted in defining the future of computer networks.

In order to analyse the proposed concepts as well as to determine whether the use
of P&R is reasonable, an emulating environment of the proposed mechanism was carried
out, and the study results conducted on the network model (built for the project’s purposes)
were presented in this article.

2. The concept of SDN decentralization

SDN (Software-Defined Networking) [2, 3, 9, 10, 11, 12, 14] is a network architecture,
in which control layer and data transmission are separated. The separation of layers allows
for the introduction of a certain level of abstraction that facilitates the configuration
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process — the administrator does not need to have a specialized knowledge concerning the
configuration of the transport layer, just knowledge of the control layer management, which
takes care of the correctness of information provided to the transport layer. The management
process is centralized, and the architecture is independent of the topology or the applied
network technique. Centralized management is supposed to be among others able to obtain
information about full network topology. Important is the assumption that the interface
of information exchange between layers is supposed to be available on the principles of open
standards and protocols. As a result, modification of the network by external applications
will be possible. It consists in the fact that there are established rules concerning (e.g. packet
management) the operation of the transport layer.

Generally, the effect of the implemented SDN concept is supposed to be: increased
flexibility of solution, centralization of control, simplification of the construction of network
equipment and independence from individual producer solutions.

The solution applying SDN concept significantly facilitates network management, but
it also has some imperfections. The primary one is a large amount of data that must be
stored in a central repository. This results in a situation that when you want to download
some rules, it is necessary to search through an entire database of substantial size. Also,
the use of storage mechanisms in the cache may not resolve the problem. The downloading
and uploading process causes an additional load on the network, which can lead to slow
transmission and this in turn can directly cause delays. The suggested solution seems to
be also susceptible to failures mostly caused by the centralized repository of the rules.
A breakdown of a connection to the repository will cause the entire network to fail.

Additionally, there is a problem of transfer security. Assuming that the control information
is sent with the same connections as customer data, it is necessary to think about ensuring
the security of the system operation. Let us consider the case where a customer eavesdrops
on the control data and then their modified version is sent to the network in order to prevent
proper operation of the network or for other reasons, causing disruption to the entire network.
In this case, it is necessary to apply appropriate security —e.g. transmission encryption or other
mechanisms. These types of mechanisms will cause additional delays in the transmission
(exchange) of rules. Another problem constitutes the fact that when decisions are supposed
to be taken with regard to individual packets the process of searching for relevant rules

0, =(ps, G1)

—— SAG 0= (p, ) | 1AG, >

0,=(pn ,) | 1AG,

Fig. 1. Scheme of decision making process for packets routing
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ina central repository will last long enough so that it will not be possible to call it real-time
processing.

All these imperfections result from applying centralized system, created according
to the SDN concept. It seems that a decentralization of such a system would solve these
problems. Since an agent approach is one of methods of creating decentralized systems, it is
necessary to consider exactly this approach for the implementation of a decentralized quality
support system for the customer (user).

3. The concept of an agent system as SDN decentralized

To implement the concept of a decentralized SDN it is possible to use the agent
approach, which is a known method for implementing decentralized systems. The adoption
of the agent system concept requires defining agents appearing in the system. In the proposed
solution the following types of agents were introduced:

— NAG - agent in one copy on each node (router). Its task is to manage a given node
particularly in directing packets in the right direction.

— SAG - agent that represents the stream of information. Depending on a specific solution,
this agent can be a packet carrying information or a packet setting the way (routing).

— TAG — agent that represents the output interface.

The SAG agent further way choice algorithm can be carried out as follows (Fig. 1):

— SAG agent comes to a given node (router).

— TAG agent presents the offer for SAG agent in relation to a further way commencing
on a linked interface with this IAG agent.

— SAG agent based on its needs chooses the most convenient offer from those offered by
IAG agents. After choosing the recalled offer the SAG agent continues its way through
the chosen interface. The NAG agent can help the SAG agent in decision-making regarding
the choice of offer.

It remains to define the algorithm by which a decision is taken by the SAG agent of the
proposed offers by the IAG agent. Of course, it depends on the form of offer and the way
of its determination by the IAG agent.

In the presented solution the market approach to determine choice of offer was proposed.
For this purpose the Pay&Require conception was developed.

4. The Pay&Require concept

The main aim of the Pay&Require approach is to provide the quality of service
(transmission) that meets client requirements. It is worth applying a market approach as
a form of customer-supplier negotiations of services/resources.

Requests to provide quality services required by a customer can be implemented in such
a way that the user pays for the guaranteed transmission quality i.e. the actual transmission
parameters for a packet from the source node to the destination node. This quality is guaranteed
by the application of an appropriate routing protocol version, which combines static and
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dynamic protocol, as well as agent technique. In this case, the concept of quality refers to the
most often used parameters of the QoS network such as delay, delay fluctuation, transmission
time or the level of packet losses. Introducing such a concept of quality makes it possible
to determine certain rates for guaranteed quality (and not, as it is in computer networks for
maximum possible to obtain bandwidth, which in many cases is never achieved). It can
be assumed that all packets from a given user will be transmitted at a fixed path defined
statically in the network layer. To obtain a situation in which there will be a separate route
for each user is in practice usually impossible and users must share the same path. When
there are many users in the network who require a high level of quality and packets from
these users are transmitted in the same route, it may happen that some of the connections will
be overloaded. A deterioration of transmission, below the level for which individual users
paid, will be a consequence of this occurrence. Then a change of routes should be carried
out, i.e. establishing new routes for recalled users. For that purpose a control layer was
defined (system logic), which monitors the state of individual connections and in the case

of deterioration in quality, it reconfigures the network by defining new routing tables. [1, 4]
The proposed solution agents (NAG) residing on routers, are concerned with monitoring

the state of the connections and the configuration of the network layer. One router reports
to each agent (or group of routers). Agents exchange information necessary for defining
the process of the current form of the routing tables in order to obtain their mutual cohesion
and send recalled updated (reconfigured) routing tables to routers which after receiving
the tables start to route packets according to the adopted P&R algorithm of the defining
paths. In the end packet which do not require the quality on a high level can be directed
by a completely different path on which e.g. long delays appear, and the customer will
pay less for such a path agreeing to the lower quality of the transmission. As a result, the
quality of service will be adapted to requirements, which are expressed by the amount
of fees a customer (packet) is ready to incur. In consequence it is possible to state that such
an approach also enables pricing (by SAG agents) based on market methods. At fixed prices
the users can systematically bid individual levels of quality, and hence the path depending
on the demand and availability of paths at the given moment. The proposed approach
enables the application of different market methods to buy quality, which will affect the
dynamic pricing of individual paths — it will enable development and make use of the supply
and demand model of price determination.

From an agent point of view the control layer system constitutes agents, which will
reside on routers as well as monitor and change corresponding parameters. As a result
of the application of the agent approach decentralization was obtained, which causes
reduced susceptibility to network failures (there is no central database containing rules). It is
possible to consider two solution levels to the decentralization problem:

— Level 1 — each agent has full knowledge of network topology. This type of approach
means that each agent provides to all agents across the network information about the
networks connected to the router, on which it resides, in effect each agent has a full
information about all routers. In order to achieve consistency of such information, it is
necessary to exchange large amounts of data at every change in the network. However,
in the case of failure there is no need to exchange additional information the agent can
immediately and independently update relevant data or reconfigure the network.
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— Level 2 — every agent has only the necessary information i.e. about networks connected
to the given router. This approach assumes that the agent stores in its local base only this
information that is necessary from the point of view of its function. As a result, when
you start an agent it can start working in a relatively short time. In the case of breakdown
or a change of network topology there may be a need to obtain additional information.
An essential extension can be such a solution in which each agent residing on the router
has partial information about the entire network and full information about the nearest
neighbourhood.

5. Implementation of a model solution

A study of the proposed agent routing concept, using the Pay&Require approach, was
carried out by creating a solution for level 1, in which every agent has exactly the same set
of information and knowledge about the entire network topology. It seems that this case will
allow us to state whether an application of the proposed concept will affect the quality of data
transmission. In individual nodes (routers) an SAG agent selects appropriate further routes
(paths) by comparing the conditions offered by the IAG agents associated with individual
output routers. In the studied solution each SAG agent that represents packets sent by an
established sender has a determined level of price Ipacc approval — an established level
of maximum price, and quality which is determined by Par_ . and Par  _parameter defined
as percentage deviation from quality level.

Tablel
Exemplary features of links for various service levels
Rate Bandwidth [Mbit/s]

4 100

3 50

2 10

1 5

0 1
-1 link inactive

On every router there are IAG agents — each of them is connected to one interface it
represents. Every IAG agent presents to SAG agent the connection offer 0 (p q)
where p; - price of the connection offered by IAG agent, and q,— quality of the offered
connection. Next the SAG agent (if necessary with the help of the NAG agent) determines
a set of acceptable Of,  offers:

Of e =101 :0f =(p,q), P Slpm Aq €[Onin» Omax 1} (1

where

Qmin = (Pa mm q)’ Qmax = q + (Parmax * q)
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Next the SAG agent selects the best Of, from acceptable offers, according to the rule:
Ofy =ming, cor {P;:0f; =(p;,9,)} ()

Summing up: the presented offers by the IAG agents determine a further connection
(related to quality and price) and the SAG agent chooses the best quality offer out of those
which price is within acceptable limits.

6. Implementation of the emulation studied examples

For the purpose of the project an emulator was prepared, consisting of software
providing functions of control layer and routers in the transport layer. The Vyatta system
(VyOS) was used for routing. The first activity which the control layer carries out is to
download the initial router configuration concerning the interfaces. The downloaded
configuration is carried out for each router individually. When the software has downloaded
configuration of all routers an analysis of the information takes place. The analysis consists
of searching for active connections between individual routers.

It was assumed that between routers there are point-to-point connections. Software stores
information about all connections between the routers. Next, a bandwidth of individual
connections is established in order to carry this out, through every single connection a file
of fixed size is sent (e.g. 10 MB). The size of the file can be chosen arbitrarily, however,
in the study it was stated that 10 MB was an appropriate size. Information concerning
transmission time and average bandwidth in bit/s was obtained in this way. Information
of this type is stored for each link. Then based on measured bandwidth an evaluation of the
route is appointed. A rating scale resulting from measured parameters was defined. This scale
can be freely modified by the administrator — it is possible to define any rating scale.

For the presented emulation purposes a quality scale expressed by the allotted bandwidth
was used, presented in Table 1. A maximum bandwidth of 100 Mbit/s is caused by limitations
of virtualizing software used for emulation. Evaluation is assigned to individual links.

Fig. 2. Network example — characteristics of routing algorithm

The next step is to define paths. Paths lead from the source to the destination router
through other routers. In order to outline all possible paths the following algorithm is applied:
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1. Take the first free path of length 1 (linking only two routers). Proceed to point 2.

2. Outline all possible non-repeating paths (no loops - point-to-point connection can be used
only once) for length +1. Follow step 2 for so long until there is no longer path to choose
from — you cannot proceed further because all available point-to-point links were used.

3. Repeat the step from 1-2 for all point-to-point connections.

In Figure 2 a network used for the emulation was presented. Let R be a set of routers,
R = {R1, R2, R3, R4}, let P be a set of connections between routers, P = {pl, p2, p3, p4}
where pl = {R1, R2}, p2 = {R2, R3}, p3={R2, R4}, p4={R3, R4}.

PRI={{pl}}

PRI={{pl},{pl.p2},{p1.p3}}

PRI={{pl},{pl.p2},{p1.p3}}

PRI={{pl},{pl.p2}.{p1.p3},{pl.p2,p4},{p1l.p3.p4}}

PRI={{pl},{pl.p2}.{p1.p3},{pl.p2,p4},{p1.p3.p4}.{p1.p2,p4.p3},{p1.p3.p4,p2} }

Evaluations are assigned to individual paths. It is possible to consider two possible
approaches:

— appoint an average evaluation of the path based on evaluations of individual point-to-point
connections on a way from the source (the first router in a given path) to the destination
(the last router).

— as the evaluation of entire path taking the lowest evaluation of a point-to-point connection
on the way from the source to the target.

Use of the second approach seems to be preferable because a connection with the
lowest bandwidth will reduce the bit rate on the entire route. Evaluations of paths are stored
along with information about the number of routers which a packet must go through in
order to reach transmission target in a given path. This information will be used later to
take a decision about the choice of paths in a situation where several paths have the same
evaluation. Another step is to select a path for the customer. In the application information
about a client ID and expected service level are stored (in accordance with a rating scale).
At first, there is a verification to which routers the customers are connected (network
configuration enables transmission between individual customers). Next all possible paths
are outlined from one customer to all remaining customers (this process is carried out for all
customers). For accepting a given route its evaluation decides — if this is what a client expects
or higher (when there is no expected), then this route will be selected.

In the case that there is no route with the quality level for which the customer paid,
or higher, a message will appear about the lack of routes. In the future it is necessary to
consider how to solve this problem (e.g. a refund, negotiating with the customer). From
acceptable paths one is chosen — the one which has a low hop count. If there is more than
one route with the same rating then the first from the list will be chosen. When all paths will
be chosen for all customers, it will be followed by a configuration of routing layer (routers).

Routing and forwarding in computer networks is based on information brought in the
header of packet, i.e. for transmission purposes. In case of classical routing the device
compares the address of the network to which the packet is supposed (longest prefix
matching) to be sent with addresses included in its own routing table and based on this
information router redirects the packet to the next router or target device. In Figure 3
a scheme of computer network is presented, which will be used to describe the operation
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method. In the case of the described network between PC1 and PC2 computers and a PC3
computer there are two paths. The first path leads through R1-R2-R3, and the second leads
through R1-R4-R3. Metrics were assigned to individual connections. It was assumed that if
all the metrics have a lower value, the connection is better. Therefore, according to the rules
of classical routing the transmission between PC1-PC3 and PC2-PC3 will proceed exactly
along the same route (R1-R4-R3).

PC1

PC3

PC2

Fig. 3. Network example — classic routing and P&R comparison

In computer networks the PBR concept was defined (Policy Based Routing). [5-8, 13].
This technique allows the administrator to define complex routing rules, i.e. a decision about
the next change can be taken not only based on destination address, but also e.g. on source
of transmission, port number. PBR enables the definition of more than one routing table —
for each user (groups) the administrator can independently define which transmission path
will be stored. Of course, a substantial matter is that there should be more than one path
between the source and target — then PBR makes sense. By analysing the case presented in
Figure 3 the administrator has the possibility to configure routers, so that packets from a PC1
computer sent to a PC3 can travel a different route (e.g. R1-R2-R3) than packets from PC2
sent to PC3 (e.g. R1-R4-R3). Therefore, with the use of PBR it is possible to diversify the
routes depending on the transmission source. PBR technique was used in the emulator for
the routing purpose. After conducting the configuration of the transport layer (the routing
tables) the network begins to operate in accordance with customer expectations.

7. Research results

Emulation was started by setting the network of 4 routers (Figure 2). To router R1 and R3
— 4 users were connected. Users were simulated with the following requirements concerning
quality: two users needed the best quality (=4) — to router R1 and R3 one such user per router
was connected, two users needed low quality (=2) — to router R1 and R3 one such user per
router was connected.

An aim of the emulation was to present changes in the choice of paths depending on the
bandwidth of the individual connections. In the case of the used network a total separation
of transfer does not appear, since between router R1 and R2 an alternative connection does
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not appear. In the emulation paths outlined between users connected to R1 (high and low
quality) and R3 were taken into account. It was started by checking selected paths in a time
when there is no fault in the network.

Figure 4 presents the result for the network with maximum operating parameters.
A chosen route was marked with a thickened line in this case for both customers the same
path was chosen. This path has the smallest number hops, and parameters concerning
quality are comparable with the available paths. Another stage of the emulation assumes
a degeneration of the connection parameters between R1 and R2. This fault did not cause
a change in the chosen path since an alternative connection does not exist in the above
network for R1-R2. It means that still the chosen path corresponds to the one presented
in Figure 4. The next emulation was carried out when a bandwidth decreased between R2
and R4. In the case of a customer requiring the best quality the path did not change — this
path has the maximum quality (Fig. 4). In turn, the path for a customer requiring low quality
changed. A chosen path was presented in Fig. 5. It is possible to observe that a chosen
path is longer than the one which was chosen in a previous emulation. It is due to the fact
that the user paid for low quality and such quality he received. In the previous emulation
there were no possibilities to provide quality at the expected level — only the best quality

Fig. 4. The selected path for the network operating with maximum throughput

LA
F?\

Fig. 5. The selected path for the customer who accepts low quality in case of network with worse
R2-R4 link parameters



211

appeared and so the user also received it. This type of decision results from the characteristics
of the algorithm of path choice.

The next emulation was a reduction in bandwidth R3-R4. In this case, this fault did not
cause the path change of the user requiring the best quality — the earlier path is still the best
choice (Fig. 4). However, in case of the user expecting low quality the same path was chosen
as in case of the deterioration connection parameters R2-R3 (Fig. 5). Choice of this type
results from the fact that this path still provides the expected quality i.e. low level.

The last emulation case was a reduction in bandwidth between R2 and R3. In this case,
for the user requiring best quality a chosen path was presented in Figure 6. Next for the
user requiring low quality a chosen path was presented in Figure 7. Such a choice of path
results from the fact that route R1-R2-R4-R3 guarantees quality at a high level, despite the
fact that number of routers through which the packet must pass is higher. In turn, route R1-
R2-R3 in this case has low quality what is a result of the degeneration connection parameters
between R2 and R3.

Fig. 6. The selected path for the customer who accepts high quality in case of network with worse
R2-R3 link parameters

p3

e
E H

Fig. 7. The selected path for the customer who accepts low quality in case of network with worse
R2-R3 link parameters

Figure 8 presents comparison of transmission times in the case of classical routing
and Pay&Require. In order to determine times two measuring tools were used: ping and
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transmission of a file with a fixed size of 100 MB. Ping was carried out 1000 times for each
case, and file transfer was carried out 30 times. In order to determine the reference time
measured when the network operated with maximum parameters and the same path was
chosen for both customers. Results for both qualities are similar and the differences are slight.

The transmission time for classic routing and P&R with estimation
for confidence interval = 95%
40.000 1

35.11
35.000 -

B No load, the network is working
with the maximum parameters,
the same path for both quality levels

30.000

25.000 -

B The network significantly affected
by heavy traffic, the same path for
both quality levels

20.000 A

15.000 -

B The network significantly affected
by heavy traffic, used Pay&Require
technique — path depends on the
desired quality

10.000 -

5.000 -

0.000 -

High Low High Low
Average ping [ms] Average transmission time (100 MB file) [s]

Fig. 8. Comparison of the transmission time for classic routing and P&R

In a further step it is necessary to state how transmission time changes in the case of
overload network. The network was overloaded by the initiation of many simultaneous
transmissions of large data between devices connected to R1 and R3. At the same time
measurements of transmission time were carried out in the case of requiring high and low
quality. It is possible to observe a big increase in transmission time — in the case of ping
the time increased almost threefold.

In turn, the average transmission time of a file with sizes of 100 MB increased almost
twofold. Because of the above two measurements it is a point of reference for the last
research stage.

In the last stage a measurement of times for the same overload network was carried out
using Pay&Require. The customer requiring high transmission quality received a different
path than the one requiring low quality. The path for low quality is the same as the one which
packets that overload the network are sent. It is possible to observe that transmission time for
low quality in comparison to the previous case practically did not change, however, in the case
of the best quality a significant improvement was obtained. Transmission times significantly
decreased. Unfortunately, the connection between R1 and R2 constitutes a section that
affects transmission quality, since every transmission between R1-R3 must go through it.
Therefore, it is possible to suspect that if there was an alternative for connection R1-R2, then
transmission time for the best quality would be reduced and similarly for transmission in the
case of the unloaded network.

The conducted research suggests that the Pay&Require concept has merit and constitutes
an alternative to methods of providing quality and pricing in computer networks.
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8. Conclusions

The Pay&Require concept presented in this article may constitute an alternative
to methods providing quality and pricing in computer networks. The user pays for
guaranteed transmission parameters, which are practically implemented as a result of
the choice of appropriate path for transmission. Quality parameters of individual paths
are systematically monitored and, if such a need occurs, paths are modified, because
of decentralized function of the agent system.

The presented concept refers to Software-Defined Networking technology, which
constitutes a good starting point for a definition of a new mechanism for the separation of
the control layer from the transport layer. There was an attempt to remove SDN imperfections
specified in the article, such as centralization of the solution. In the case of the P&R
mechanism a decentralization of control and agent technique was used. It was necessary to
carry out a study aimed at the state of the legitimacy of the application of the P&R concept.

Research results show that the use of the P&R mechanism to provide specific quality
parameters caused the desired effects, i.e. a significant improvement was obtained in relation
to classical routing. Thus, it is possible to state that quality was provided at a level expected
by the customer. The conclusion from the conducted study is clear, i.e. the established effects
of the P&R mechanism application were achieved, therefore this approach is promising
and should be developed. It is necessary to carry out further research for more complex
networks in order to verify the performance of the algorithm and optimization of its operation
in different conditions.
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