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CORRELATION BETWEEN CRYSTAL AND MAGNETIC 
STRUCTURE OF THE POLYCRYSTALLINE 

AND NANOPARTICLE TBMNO3 MANGANITE

ZWIĄZEK MIĘDZY STRUKTURĄ KRYSTALICZNĄ 
I MAGNETYCZNĄ POLIKRYSTALICZNEJ 

I NANOROZMIAROWYCH PRÓBEK 
MANGANITU TBMNO3

A b s t r a c t
On the basis of neutron diffraction data the Mn−O bond lengths and Mn−O−Mn bond angles for the poly- and nanocrystalline TbMnO3 samples are 
determined. All the samples crystallize in the orthorhombically distorted perovskite structure (space group Pnma) and exhibit antiferromagnetic 
ordering below 41 K. The Tb atoms and O1 atoms are in (4)c site, Mn atoms − in 4(b) site and O2 atoms − in 8(d) site. The Mn−O2−Mn bond 
angles for the polycrystalline and nanosize samples are similar, whereas the Mn−O1−Mn bond angles for the nanoparticle samples are larger. 
The temperature dependencies of the Mn−O bond lengths and the Mn−O−Mn bond angles, the Jahn-Teller distortion parameter (JT) and MnO6 
− octahedron distortion parameter (delta) for polycrystalline sample exhibit anomalies at TN temperature for Mn sublattice.

Keywords:  crystal structure, exchange interactions, nanoparticle, grain size, Mn−O bond lengths, Mn−O−Mn bond angles, the Jahn-Teller 
distortion parameter

S t r e s z c z e n i e
Na podstawie wyników neutronowej dyfrakcji wyznaczono długości wiązań Mn−O oraz kąty wiązania Mn−O−Mn dla polikrystalicznej 
oraz nanorozmiarowych próbek manganitu TbMnO3. Wszystkie próbki krystalizują w rombowo zdystorsowanej strukturze perowskitu (grupa 
przestrzenna Pnma) i wykazują antyferromagnetyczne uporządkowanie poniżej 41 K. Atomy Tb i tlenu O1 zajmują pozycję 4(c), atomy Mn po-
zycję 4(b), a atomy tlenu O2 pozycję 4(d). Wartości kątów wiązania Mn–O2–Mn są zbliżone dla polikrystalicznej i nanorozmiarowych próbek 
związku TbMnO3 , podczas gdy wartości kątów wiązania Mn–O1–Mn są wyższe dla próbek nanorozmiarowych. Temperaturowe zależności: 
długości wiązań Mn−O, kątów wiązania Mn–O–Mn, parametru dystorsji Jahna-Tellera (JT) oraz parametru dystorsji oktaedru MnO6 (delta) 
wykazują dla próbki polikrystalicznej anomalie w temperaturze Néela dla podsieci Mn.

Słowa  kluczowe:  struktura krystaliczna, oddziaływania wymiany, nanocząstki, rozmiar ziarna, długości wiązań Mn−O, kąty wiązania Mn–
O−Mn, parametr dystorsji Jahna-Tellera
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1.  Introduction

The explanation of the complex magnetic interactions and correlation of the magnetic, 
structural and electron properties of the REMnO3 (RE are the rare ‒ earth ions) manganites 
is of fundamental interest [1].

TbMnO3 has been attracting a lot of attention in recent years because of its strong coupling 
between ferroelectricity and magnetism [2].

The main motivation for performed studies was to obtain the data concerning the crystal 
structure and magnetic properties of the TbMnO3 manganite as a function of the grain size. 
The model for interpretation of magnetic properties of the nanoparticle compounds is based 
on the ratio of ideal inner core and nonmagnetic surface, i.e., on the surface/volume ratio [3].

In this paper, we have discussed the influence of the internal structural parameters (Mn‒O 
bond lengths and Mn‒O‒Mn bond angles) on the magnetic behaviour of the polycrystalline 
and two nanopowder TbMnO3 samples. The structural distortion parameters, i.e. Jahn-Teller 
distortion (JT) and MnO6 ‒ octahedron distortion (delta) were found for all the samples.

2.  Experiment and results

The polycrystalline TbMnO3 manganite was prepared by the solid-state reaction. The 
final sintering treatment was performed at 1150ºC for 15 h. For preparation of the nanosize 
TbMnO3 manganite the sol-gel method has been used. The two samples of the nanopowders 
were obtained after annealing at 800 and 850ºC [4]. The crystal structure of the samples 
was obtained by X-ray powder diffraction at room temperature using the Philips PW-3710 
X’PERT diffractometer with CuKα radiation. The obtained data were analysed with the 
Rietveld-type refinement soft ware Fullprof program [5].

The X-ray diffraction data indicate that all the samples studied have orthorhombic 
crystal structure (space group Pnma ). In this structure the Tb and O1 atoms occupy 4(c) site: 
(x, y, 1/4), O2 atoms  are in 8(d) site: (x, y, z) and Mn atoms are in 4(b) site: (1/2, 0, 0) (Fig.1).

The obtained data indicate that the lattice constants and positional parameters xi, yi, zi 
slightly change with changing grain size [6]. The data for the nano-samples indicate that 
the a-constant is smaller and the b and c are larger than ones for the polycrystalline sample. 
All parameters have minimum at T = 30 K and quickly increase with increasing temperature.

Fig.  1.  The orthorhombic crystal unit cell
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The grain sizes of nano-samples (800 and 850ºC) were determined using the Scherrer 
relation d = λ/BcosθB, where d is the grain size, λ is the X-rays wavelength, θB is the 
corresponding angle of the Bragg diffraction and B is the difference between half-widths 
of the Bragg reflex of the nanopowder and the standard sample [7]. The grains sizes were 
calculated using the experimental X-ray data and the following relation: B = β – β0, where β 
is the half-widths of the Bragg reflex of the investigated sample and β0 the similar value 
for the standard sample of Si powder with the grain size of 10 µm. The exact method 
of determination of grain size is described in [8]. The average grain size values determined 
there are: 60 nm and 45 nm for 850-nano and 800-nano samples, respectively.

In the next step, the grain sizes and strain effects were determined based on the 
Williamson-Hall method [9]. In this method, the broadening of Bragg peak is a sum of grain 
size broadening βd = Kλ/dcosϴ and strain broadening βs = ϵ tgϴ, where the shape factor K is 
close to 1, d is a value of grain size and ϵ is a strain constant.

Thus, the resulting total broadening: βtotal = βs + βd = ϵ tgϴ + Kλ/dcosϴ.
Multiplication of the above equation by cosθ leads to

βtotal cosϴ = ϵ sinϴ + Kϴ/d.

Therefore, the grain size d can be determined from the intercept of line fitted with 
linear regression as applied to the βtotal cosϴ versus sinϴ data.

The experimental βtotal  values have been determined from the relation:

βtotal = [(βϴ)2
sample ‒ (βϴ)2

Si]
1/2,

where (βϴ)sample is a half – width of selected Bragg reflection of the investigated sample, while 
(βϴ)Si is a similar value found for the standard sample of Si powder.

The values of the grain size d are equal to 57 nm and 51 nm for 850-nano and 800- 
-nano samples, respectively. Presented data indicate that the value of grain size increases 
with increasing annealing temperature.

The analysis presented in this paper based on the neutron diffraction powder data 
collected using the E2 and E6 diffractometers installed at the BERII reactor (Helmholtz- 
-Zentrum Berlin) within the temperature range from 1.6 to 260 K. The data were processed 
using the program FullProf.

Neutron diffraction data [10] indicate that all the samples have orthorhombic crystal 
structure. Determined values of the lattice constants and atomic positions parameters are 
presented in Table I in [10]. Low temperature data indicate that the magnetic ordering 
of Mn and Tb sublattice for polycrystalline TbMnO3 is sinusoidal modulated described by 
the propagation vector k = (kx, 0, 0). The magnetic moments in Mn sublattice order below 
41 K, while in Tb one they order below 9 K.

In the crystal unit cell (space group Pnma) the Mn3+ and Tb3+ sublattices can be described 
by four modes proposed by Bertaut [11]: one ferromagnetic ordering: F = m1 + m2 + m3 + m4 
and three antiferromagnetic arrangements: A = m1 – m2 – m3 + m4, C = m1 + m2 – m3 – m4  
and G = m1 – m2 + m3 – m4.

Below 41 K, neutron diffraction patterns for the polycrystalline sample exhibit additional 
magnetic peaks connected with the antiferromagnetic modulated ordering with kx = 0.28  
in Mn sublattice described by Cx ‒ mode (see Fig. 1a in [6]).
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The Mn magnetic moments, parallel to the a-axis, form a collinear incommensurate 
structure of Cx ‒ mode. At T = 16 K a noncollinear magnetic structure described by CxAz ‒ 
mode with the Mn moment in the a‒c plane was observed (see Fig. 2).

The Tb sublattice exhibits the antiferromagnetic incommensurate ordering of the FyAz ‒ 
type at T = 5 K. The Tb magnetic structure is described by propagation vector k = (kx, 0, 0) 
where kx is equal to 0.423(1) (Fig. 2). At the same temperature, the Mn moments still form 
the CxAz structure described by propagation vector k = (kx, 0, 0) where kx is equal to 0.282(1).

The refinement of the magnetic peaks intensities for the nano-800 and nano-850 samples 
below TN shows that the Mn moments form a collinear incommensurate magnetic structure 
of Cx ‒ type described by the propagation vector k = (kx, 0, 0) (see Fig. 3). The corresponding 
patterns for the nano-800 and nano-850 samples are presented in Figs. 1b and 1c in [6]. 
At 1.6 K, the additional peaks connected to the Tb moments ordering are visible. The Tb 
structure can be described by the Az ‒ mode with propagation vector k = (kx, 0, 0) (see Fig. 3), 
while for the polycrystalline sample the FyAz ‒ mode was evidenced.

The Mn magnetic moments values for nano-samples (at 1.6 K µ(Mn) = 2.94(2) 
µB and  3.03(4) µB for nano-800 and nano-850, respectively) are smaller than for the 
polycrystalline  sample (at 5 K µ(Mn) = 4.06(2) µB), whereas for the nano-samples the kx 
components equal to 0.321(2) and 0.328(2) for nano-800 and nano-850, respectively, are 
larger than in the polycrystalline sample (0.282(1)).

Similar conclusions concern the parameters characterizing the ordering in Tb sublattice. 
At 1.6 K µ(Tb) = 3.68(11) µB and 4.43(7) µB for nano-800 and nano-850, respectively.

For polycrystalline sample µ(Tb) is equal to 6.55(4) µB at 5 K. The values of kx component 
for Tb sublattice are larger for nano-samples (0.443(5) and 0.451(3) for nano-800 and nano- 
-850, respectively.

The TN Néel temperature connected with the Tb sublattice is lower for nano-samples 
(6.7 K) in comparison to polycrystalline sample (9 K).

Magnetic structures of the polycrystalline and nanoparticle TbMnO3 compounds are 
presented in Figs. 2 and 3, respectively. These magnetic structures are incommensurate 

Fig.  2.  Sinusoidal magnetic ordering in Mn sublattice ‒ violet (CxAz ‒ mode, kx = 0.282(1)) 
and in Tb sublattice ‒ black (FyAz ‒ mode, kx = 0.423(1)) for polycrystalline TbMnO3
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in  comparison with the crystal one. The periods of modulation of the magnetic structure 
are equal to 3.54a (Mn sublattice) and 2.36a (Tb sublattice) for polycrystalline sample 
and 3.06a (Mn) and 2.25a (Tb) for nano-samples, respectively.

In this paper we have focused on the behaviour of the internal structural parameters 
in the polycrystalline and two nanoparticle samples (Mn‒O bond lengths and Mn‒O‒Mn 
bond angles) as a function of temperature. In the orthorhombic unit cell there are the three 
crystallographically independent (Mn‒O1(4c) = r1, Mn‒O2(8d)1 = r2, Mn‒O2(8d)2 = r3) bond 
lengths and the two (Mn‒O1‒Mn = α, Mn‒O2‒Mn = β) bond angles (Fig. 4). The temperature 
dependencies of the Mn‒O bond lengths and Mn‒O‒Mn bond angles for the polycrystalline 
and two nanoparticle TbMnO3 samples are presented in Fig. 5.

Fig.  3.  Sinusoidal magnetic ordering in Mn sublattice ‒ violet (Cx ‒ mode, kx = 0.326(4)) and 
in Tb sublattice ‒ black (Az ‒ mode, kx = 0.443(5) ) for 800-nano TbMnO3

Fig.  4.  The orthorhombic crystal unit cell with the marked Mn‒O bond lengths (r1, r2, r3) and 
Mn‒O‒Mn bond angles (α, β) and the exchange integrals J1, J2
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Fig.  5.  Mn‒O bond lengths (r1, r2, r3) as a function of temperature for polycrystalline and 800 
and 850-nano-samples of TbMnO3
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The temperature dependencies of the r1 and r2 bond lengths show that r1 and r2 are smaller 
for the nanosize samples as compared to the polycrystalline sample (see Fig. 5). This suggests 
that in these samples there are a greater overlap of p and d orbitals.

We have observed an increase of the r1 and r2 bond lengths for the nanosize samples with 
approaching to the Néel temperature. For the polycrystalline sample above T = 50 K the 
stabilization of all three r1, r2 and r3 bond lengths is visible. The dependence of r3(T) exhibits 
an inverse behaviour as compared to r2(T) (see Fig. 5).

Fig. 6 presents a gradual increase of the α bond angle vs temperature for the polycrystalline 
sample, whereas for the nanosize samples a decrease of α till to the Néel temperature and an 
increase beyond TN is observed. The α bond angles are larger for the nanoparticle samples as 
compared to α for the polycrystalline sample.

Fig.  6.  Mn‒O‒Mn bond angles (α, β) as a function of temperature for the polycrystalline 
and 800-nano and 850-nano TbMnO3 samples
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This suggests an increase of superexchange interactions along the b-axis. Values of β 
bond angle are similar for the nano- and poly-TbMnO3 samples. For both types of samples 
an increase of β is observed till the Néel temperature. Beyond this temperature the β bond 
angle value substantially drops. Using the r1, r2 and r3 bond lengths the Jahn-Teller parameter 
[12] for the polycrystalline and nanosize samples has been determined according to the 
formula [13]:

	 JT r rii
= − < >

=∑1
3

2
1

3
[( ) ] 	

where ri are the experimentally determined values of (Mn‒O) interatomic lengths (see Fig. 4) 
and < r > is the average value of these lengths.

Fig.  7.  Temperature dependences of the Jahn-Teller parameter (JT) and the parameter delta 
for the polycrystalline and nanosize samples of TbMnO3
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The parameter delta, which describes the distortion of MnO6 octahedron is calculated 
using the formula:

	 delta =
− < >
< >





=∑13
2

1

3 r r
r

i
i

	

Temperature dependences of the Jahn-Teller parameter (JT) and the parameter delta for 
the polycrystalline and nanosize samples of TbMnO3 are presented in Fig. 7.

The values of both the Jahn-Teller parameter and the delta parameter indicate the MnO6 
octahedron distortion. Distortion is much smaller for the nanocrystalline samples than for 
polycrystalline one. For polycrystalline sample the Jahn-Teller parameter has anomaly at 
Néel temperature.

3.  Discussion

The data presented in this paper indicate that the magnetic properties of the nanoparticle 
samples strongly depend on the grain size. This manifests itself in decrease of the value 
of both magnetic moments in the ordered state and magnetic ordering temperature with 
decreasing grain size.

The TbMnO3 manganite exhibits a para- antiferromagnetic phase transition at 41  K, 
where the Mn3+ ions develop a sinusoidal incommensurate ordering propagating along the 
a – direction of the unit cell, described by CxAz – mode. Magnetic order in the Mn sublattice 
is collinear of Cx – type in the temperature range of 21‒41 K. For the investigated nano- 
-samples a magnetic ordering in the Mn sublattice is described by collinear Cx – mode only.

Observed antiferromagnetic order in the Mn sublattice is result of the superexchange 
mechanism (cation-anion-cation) which exists in manganites. The superexchange interaction 
depends on the Mn‒O‒Mn bond angles (α, β) and is joined with partial overlap of the p (O) 
and d (Mn) orbitals. The interactions between Mn moments are based on the exchange 
integrals discussed by Bertaut [14].

At temperature 1.6 K, the values of α and β bond angles are equal to 142º and 146º for the 
polycrystalline sample while they are equal to 145º and 145.5º for the nanoparticle samples, 
respectively.

The obtained values of the Mn‒O‒Mn bond angles (α, β) are smaller than 180º. This fact 
indicates the moderate ferro- or antiferromagnetic interaction between magnetic moments 
of Mn according to the Goodenough-Kanamori rules [15, 16].

Analysis of interactions in the orthorhombic manganites with magnetic structure 
described by the propagation vector k = (kx, 0, 0) gives the following dependence between 
kx and exchange integrals: cos(πkx) ≈ (2J2 ‒ J1) [17], where J1 is the exchange integral in the 
basal a‒c plane [t2g(Mn) – 2pπ (O) ‒ t2g (Mn)] and J2 is the exchange integral along the b-axis 
[eg(Mn) ‒ 2pπ (O) ‒ eg (Mn)].

The inelastic neutron scattering for the bulk TbMnO3 yields  the positive value of 
J1 ≈ 0.15(1) meV and negative one of J2 ≈ ‒0.31(2) meV [18]. This result confirms, that 
for the  TbMnO3 manganite the superexchange interaction between Mn–O2–Mn spins 
in the a–c plane (J1) is ferromagnetic, while the interaction Mn‒O1–Mn along the b-axis 
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is antiferromagnetic (J2) (see Fig. 4). An increase of the kx component observed in the 
nanoparticle  TbMnO3 sample indicates the decrease of the exchange integrals in nano- 
-samples.

The presented results suggest that the nanoparticle size plays an important role in the 
formation of magnetic properties. The influence of deformation of the MnO6-octahedron 
on the magnetic structure of TbMnO3 manganite is observed. The values of Mn–O2–Mn 
bond angles in the polycrystalline and nanosize samples are similar and the temperature 
dependences exhibit anomalies at TN temperature. The values of the Mn–O1‒Mn bond angles 
are larger for the nanoparticle samples.

For nano-samples the Jahn-Teller distortion parameter (JT) and MnO6-octahedron 
distortion parameter (delta) are lowered in comparison to the polycrystalline sample.
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NAMEDELEMENT REVISITED  
IN AN ASPECT-ORIENTED APPROACH 

NOWE SPOJRZENIE NA NAMEDELEMENT  
W PODEJŚCIU ZORIENTOWANYM NA ASPEKTY

A b s t r a c t
In this paper a novel concept of adding structural responsibilities to meta-model classes for decreasing the 
meta-model complexity is introduced. This mechanism is supported by a combination of new Context-Driven 
Meta-Modeling Paradigm (CDMM-P) and its implementation in the form of the Context-Driven Meta-Modeling 
Framework (CDMM-F) with aspect-oriented paradigm and its AspectJ implementation supporting functionality 
and structure enrichment. The concept presented in the paper confirms the openness of CDMM-P and CDMM-F 
on the applicability of the aspect-oriented approach. It is also crucial for the process of generalization of notions 
introduced into the meta-model when a new modeling language is designed. It also helps to restructure the meta-
model from the perspective of reusability. The NamedElement, known from many Object Management Group’s 
(OMG) standards, was chosen.

Keywords:  aspect oriented design, aspect oriented programming, model, meta-model, meta-meta-model, 
responsibility, cross-cutting concern, dependency injection, inversion of control

S t r e s z c z e n i e
W artykule wprowadzono nową koncepcję dodawania odpowiedzialności strukturalnych do klas metamodelu słu-
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1.  Introduction

The paper is addressed to the NamedElement meta-model or meta-meta-model element, 
which is common to many well-known (meta-)meta-models. For convenience, the following 
notions are applied further in the paper:
–	 (meta-)meta-model or (m)mm denotes meta-meta-model or meta-model respectively
–	 mm denotes meta-model
–	 (m)mm denotes meta-meta-model 
–	 (meta-)model or (m)m denotes meta-model or model respectively
–	 m denotes model
–	 (m)m is an instance of (m)mm, that is m is an instance of mm and mm is an instance  

of (m)mm
–	 s suffix denotes plural number of each notion above

The NamedElement can be met for example in (m)mms, like Meta-Object Facility (MOF) 
and its different realizations as well as in (m)ms, like Unified Modeling Language (UML) 
and  Business Process Model and Notation (BPMN2). This (m)mm element is specific, 
because the responsibility it introduces into (m)mm affects many (m)mm elements. So, the 
nature of such common responsibility can be named cross-cutting structural responsibility 
or cross-cutting structural concern. Its responsibility is to enrich many (m)mm elements by 
the  name represented in the form of a string. This way for example instances of classes 
or meta-classes or relationships may store their names in (m)ms.

Traditionally, the NamedElement class is introduced to (m)mms via a generalization 
relationship. However, this relationship is not supported directly by Context-Driven Meta- 
-Modeling Framework (CDMM-F) [10‒12] based on Context-Driven Meta-Modeling 
Paradigm (CDMM-P) introduced in [9] as the framework is located in data-layer. That is 
why the paper was introduced, just to explain how this kind of (m)mm elements may be 
introduced in the context of CDMM-F with the help of an aspect-oriented approach. The way 
of the element is introduced impacts on the features of the (m)mm as the whole.

The analogy between functional responsibilities and structural responsibilities which is 
referenced in the paper results from the observation that both responsibilities have a dual 
nature. Moreover, the problem of functional responsibilities is widely discussed in [1, 2, 
7, 8] while the problem of structural responsibilities is almost completely ignored. However, 
it is crucial for meta-modeling domain as well as to data layer design. This paper is focused 
on the meta-modeling domain only.

2.  Traditional Approach to NamedElement

As mentioned in section 1, the NamedElement is represented in the form of the 
class that contains one field of type string to store the name of the instance of this 
class. The  NamedElement class is related to other mmm elements via a generalization 
relationship.  If  the NamedElement class is not abstract, then, in the case of the mm, the 
NamedElement instance is the model element which contains the name of model class. 
In the case of the mmm the NamedElement instance is the mm element which contains the 
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name of the mm class. Otherwise, if the NamedElement class is abstract, then, in the case 
of the mm, the NamedElement instance is the instance of the nearest concrete subclass of 
NamedElement class. This instance constitutes the model element which contains the name 
of the model class. In the case of the mmm the NamedElement instance is the instance of 
the nearest concrete subclass of NamedElement class. This instance constitutes the mm 
element, which contains the name of the mm class. NamedElement is represented in (m)mm 
by abstract classes.

The main problem with the traditional approach to creating (m)mms is the fact that 
their elements are interrelated at compile-time. So, the (m)mm graph is created during 
compilation  process and not at run time. Thus, the relationships are static. This kind of 
interrelating mm elements influences the change introduction ease significantly. Different 
relationships interrelate classes differently. The weakest static relationship is UML 
dependency relationship, the stronger relationships are associative relationships, association 
(the weakest from this set), aggregation and composition (the strongest from this set). 
Unfortunately, the generalization relationship is the strongest one. And just this relationship 
is applied not only for NamedElement but for many other (m)mm classes. The popularity 
of  this relationship was originated by knowledge modeling, where generalization is one 
of the most important relationships ‒ it helps to build generalization hierarchies. However, 
in the software engineering domain the application of this relationship should be limited. 
And  it  is limited in target applications in many ways, like for example by application 
of design patterns. Nevertheless, in the meta-modeling domain it is promoted.

The approach discussed in the paper is different than the one presented above ‒ it helps 
to interrelate (m)mm classes with their additional static responsibilities dynamically by 
injecting static responsibilities to (m)mm classes. The mechanism of injecting this kind 
of  responsibilities is supported by aspect-oriented approach while (m)mm classes are 
managed by CDMM-F. The injecting concept and its applicability to (m)mms construction is 
discussed in section 3 while the role the CDMM-F plays in (m)mms definition is explained 
in section 4.

3.  Structural Responsibility Injection

In contrast to the static compile-time concept of interrelating (m)mm classes presented 
above, this section is focused on application of the concept of interrelating (m)mm classes 
dynamically. Some consequences of the dynamic injection of relationships into (m)mms are 
also briefly discussed below.

The static responsibilities help to construct top hierarchies for (m)mms. They can be 
injected to (m)mms in order to address two modeling language designer needs – to introduce 
cross-cutting structural responsibilities for many existing (m)mm classes or to perform an 
mmm restructurization/refactorization process. The first need is typically planned from 
the very beginning of (m)mm defining process while the second need is usually involved 
by the observations made during the process of (meta-)modeling language definition. The 
characteristics of each need and its possible solution is presented in succeeding subsections 
below.
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3.1.  Cross-Cutting Structural Responsibility

The notion of cross-cutting concern is well known in Aspect-Oriented Design (AOD) 
and Aspect-Oriented Programming (AOP) [1‒8], but it is related there to the functional 
concerns and is handled there by pointcuts and advices. However, at the same time AOD 
and AOP introduce the concept of enriching existing class hierarchies by classes interrelated 
statically to these hierarchies. Thus, for symmetry, the concept of enriching hierarchies 
statically can be seen from the perspective of static/structural concerns. Per analogy we 
have core structural concern, that is (m)mm to be enriched statically and other concerns. 
As the aspect-oriented approach fits to the concept of inversion of control (IoC) architectural 
pattern, all concerns both functional and static may be injected to the core concerns both 
functional and static respectively in the form that does not impact core concern’s source code 
in any form. Moreover, the concerns are orthogonal, which means that one concern does 
not influence other any concern. In consequence, the static responsibilities can be added to 
(m)mm independently of each other.

It is worth noticing that there is also a notion of cross-cutting concerns in AOP. The cross- 
-cutting concern is such a concern that crosses core-concern in a significant number of places. 
The more such places can be encountered, the more useful the IoC architectural pattern is. 
However, this pattern was applied so far for adding functional concerns, like error handling, 
system activity logging, auditing and many others. In this paper the same approach is applied 
to adding cross-cutting structural concerns. The NamedElement is a good example for such 
the cross-cutting concern as having the name is very common feature of (m)mm elements. 
Cross-cutting concerns are usually identified well before the meta-modeling process starts. 
However, they can be also added during this process in the case when they are recognized 
late. In section 3.2 the last cross-cutting structural responsibility addition is presented.

3.2.  Meta-Model Refactorization

This section is focused on the (m)mm refactorization problem. A special case of the 
refactorization is involved by late recognition of a cross-cutting concern – this problem 
was characterized in section 3.1. But, usually the scope of the (m)mm refactorization for 
the purpose of structural responsibility addition is limited. As the consequence, both 
kinds of refactorization can be handled in the similar way although they have different 
purposes in the (meta-)modeling language design process. So, the same mechanism of 
adding structural responsibilities as the one described in section 3.1 can be applied for both 
forms of refactorization.

A simple example of such refactorization is presented in Figures 1 and 2. The UML class 
diagram for the mm structure before refactorization is presented in Figure 1 while the model 
after refactorization is depicted in Figure 2. The refactorization is limited to generalization 
of  the fact, that both classes B1 and B2 have the same data field. The data field is thus 
moved to the new class T, which is aggregated both in B1 and B2.

Figure 2 presents a conceptual UML diagram, as it is informal for AOP. Nevertheless 
it reflects the fact of sharing common data field from class T well.
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The example from Figures 1‒2 can be implemented in Java/AspectJ technologies in the 
form presented in Listings 1‒2 respectively.

Fig.  1.  Sample meta-model before structural refactorization

Fig.  2.  Sample meta-model after structural refactorization in AOP approach ‒ conceptual 
UML class diagram

Listing  1.  Java implementation of sample meta-model before refactorization

The classes that constitute structural responsibilities are located in the aspects layer 
(aspects) while the hierarchies to be enriched are placed in the class-object layer (classes). 
All these constructs are already available in AspectJ in the form of inter-type declarations (for 
modifying class hierarchies) and aspects (containers for all elements introduced by AspectJ 
to Java language).

In Listing 2 just the AspectJ AOP implementation was used to inject the T class as the 
default implementation of its IT interface. And this is a typical approach for this technology 
– classes are injected in the form of the relationships constructed from @DeclareParents 
annotation arguments.

One step more may be done in AOP – the aspects layer may be moved to the Spring 
framework and combined with AspectJ. However, the most important limit in the application 
of AOP to meta-modeling this way is connected to the fact that aspects are not instantiable 
(their lifecycle is synchronized with the lifecycle of the appropriate class instance in the 
best case, so they cannot exist without the class instance). As the result, the relationships 
represented by aspects do not have their instances. In consequence the relationships cannot 

package pl.edu.pk.pz.aop.mm;

public class B1 {
  String name;
}
public class B2 {
  String name;
}



22

be differentiated, used or re-used between different (m)mms as separate entities. The CDMM 
approach is different as the relationships may have their instances as they are represented 
by classes. The core concept of CDMM-F is also based on the same mechanism as the one 
shown in Listings 1‒2. However, the aspects in CDMM-F are used to interrelate (m)mm 
graph nodes represented by (m)mm entity classes by (m)mm edges represented by (m)mm 
relationship classes.

The NamedElement class can be injected in place of class T to the class layer or to 
the  classes defined in CDMM-F. However, the classes from the example in this section 
have different names than the ones presented in the context of CDMM in order to underline 
significant differences between AOP approach and CDMM approach. The specifics of the 
CDMM approach from the refactorization perspective is explained in section 4.

Listing  2.  Java/AspectJ implementation of sample meta-model after refactorization

// meta-model classes
package pl.edu.pk.pz.aop.mm;

public class B1 {}
public class B2 {}

// top hierarchy package
package pl.edu.pk.pz.aop.th;

public interface IT {
  public String getName();
  public void setName(String name);
}

public class T implements IT {
  private String name;
  public String getName(){return name;}
  public void setName(String name){this.name = name;}
}

// aspects layer
package pl.edu.pk.pz.aop.aspect;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.DeclareParents;

import pl.edu.pk.pz.aop.th.IT;
import pl.edu.pk.pz.aop.th.T;

@Aspect
public class B1 {
  @DeclareParents(value=”pl.edu.pk.pz.aop.mm.B1”,defaultImpl=T.class)
  public IT t;
}
@Aspect
public class B2 {
  @DeclareParents(value=”pl.edu.pk.pz.aop.mm.B2”,defaultImpl=T.class)
    public IT t;
}
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4.  Structural Responsibility Injection in CDMM

It was shown in section 3 that direct application of AOP to the meta-model classes 
introduces an important limit – relationships are not represented in the form of classes but 
in the form of aspects. In consequence, (m)mms can be built in this approach from classes 
located in (m)mm graph nodes interrelated by relationships located in (m)mm edges, which 
are represented in the form of an aspect. So, this approach just supports the concept of 
modeling relationships between classes in the form of references. Moreover, this feature 
introduces asymmetry to this approach. As the result of this asymmetry, (m)mm graph nodes 
are reusable (classes and their instances) while (m)mm graph edges are not reusable (aspects 
without instances).

In contrast to the typical AOP approach presented above, relationships in CDMM are 
represented in the form of classes which are reusable. CDMM approach allows for injecting 
relationships as classes that represent relationships in place of injecting relationships into 
classes in the form of aspects. In consequence, the relationships play the role of structural 
responsibilities of the interrelated classes. This approach is symmetrical and more general 
than the one based on naive application of AOP paradigm. In the CDMM approach both 
classes and relationships exist independently of each other and they are interrelated at run- 
-time by Spring application context XML file [12]. So, (m)mm graph node classes as well as 
(m)mm graph edge classes are subject of reuse between different (m)mms. Thus, the (m)mms 
constructed according to CDMM approach may be easily customized, changed, designed 
from scratch and each part of them can be easily reused.

The paper is focused on handling the problem of NamedElement handling in CDMM. 
It is worth noticing that the structural responsibilities can be injected with the help of 
aspect oriented approach to the CDMM based (m)mm. The same technique can be used 
for  injecting NamedElement into (m)mm graph. The NamedElement may be seen as just 
another structural responsibility of the (m)mm graph node or edge classes – the responsibility 
of (m)mm element name storage.

The concept of introducing NamedElement into CDMM (m)mm graph with the help of 
aspect orientation is presented below in the form of the example similar to the one presented 
above. However, this example refers to Spring notions like beans and application context 
and it is related to CDMM-F (m)mm.

The same (m)mm as the one presented in Figure  1 was chosen to represent the  
(m)mm before refactorization. The result of the refactorization of this (m)mm is presented 
in Figure 3.

Both Figure 2 and Figure 3 contain conceptual diagrams – they are not formal as since 
2001 the AOP is out of scope of the UML standard. The CDMM approach makes it possible 
to define any (meta-)modeling language and to generate the self-organizing MDA-like 
modeling tool for this language. This way the concept of automatic model-driven aspect-
oriented software generating can be achieved without standardization of the (meta-)modeling 
language. This CDMM characteristic feature applies for any technology which is in scope or 
out of scope of MDA standards.

The most important elements of the source codes for the example from Figure 1 that 
implement (m)mm in CDMM are presented in Listing 3 and Listing 4. Java source code 
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for two (m)mm classes is shown on Listing 3. The most important part of the CDMM-F’s 
application context file for the (m)mm from Figure 1 is presented on Listing 4.

Now, a new (m)mm element is introduced. As a consequence of its introduction the 
name field migrates from B1 and B2 CDMM (m)mm classes to the new (m)mm element. 
This new element is just NamedElement and its definition is presented on Listing 5.

The structural responsibility represented in the paper by NamedElement can be added 
to some (m)mm elements via inclusion of the application context file presented in Listing 6 
in  the application context file from Listing  4. It was already stated that each such cross- 
-cutting structural responsibility like NamedElement is orthogonal to the core concern –  
(m)mm and to other cross-cutting concerns. This orthogonality is represented by independence 
between responsibilities injected this way and by inclusion of extra application context.

The example presented above shows how to apply aspect oriented approach to enrich 
(m)mm defined in CDMM-F structurally. This approach to adding new concerns to (m)
mm does not impact classes from (m)mm as long as this addition does not result from (m)
mm refactorization. However, even in this case, the (m)mm change does not result from 
addition of new structural responsibility by aspects, but from the nature of the refactorization 
process itself. In the case of designing (m)mm and defining cross-cutting responsibilities 

Fig.  3.  Sample meta-model after structural refactorization in CDMM approach ‒ conceptual 
UML class diagram

Listing  3.  Meta-model elements before refactorization

package com.componentcreator.metamodel.coremetamodel.domainsimpl;

public class DB1 extends BaseMetamodelCore implements IDB1 {
  String name;
}
public class DB2 extends BaseMetamodelCore implements IDB2 {
  String name;
}
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for it in advance, the addition of these responsibilities may be done in separation from the 
(m)mm’s definition.

Listing  4.  Meta-model graph before refactorization

Listing  5.  New meta-model element to be injected into meta-model graph (NamedElement)

<beans>
  <!-- Root -->
  <bean class=”com.componentcreator.metamodel.coremetamodel.root.RootMetamodelCore”
    id=”root” scope=”singleton”></bean>
  <!-- Root direct neighbours (collections) -->
  <bean class=”com.componentcreator.metamodel.coremetamodel.domainsimpl.DB1”
    id=”generalization” scope=”prototype”></bean>
  <bean class=”com.componentcreator.metamodel.coremetamodel.domainsimpl.DB2”
    id=”class” scope=”prototype”></bean>
  <!-- Responsibility implementations -->
  <!-- Root direct neighbours (collections of CPoliOMulti type) -->
  <bean class=
    ”com.componentcreator.metamodel.coremetamodel.responsibilitiesimpl.RCollectionCPOM”
    id=”collectionImplForRoot”>
      <constructor-arg>
        <list>
          <value>com.componentcreator.metamodel.coremetamodel.domainsimpl.DB1</value>
          <value>com.componentcreator.metamodel.coremetamodel.domainsimpl.DB2</value>
        </list>
      </constructor-arg>
  </bean>
  <!-- Responsibility injections -->
  <aop:config>
    <aop:aspect id=”holderA” ref=”holderAAspect”>
      <aop:declare-parents 
        types-matching=
          ”com.componentcreator.metamodel.coremetamodel.root.RootMetamodelCore” 
        implement-interface=
          ”com.componentcreator.metamodel.coremetamodel.responsibilities.IRCollectionCPOM”
        delegate-ref=”collectionImplForRoot”/>
    </aop:aspect>
  </aop:config>
</beans>

package com.componentcreator.metamodel.coremetamodel.metaontologies.namedelement;

public interface INamedElement {
  public void setName(String name);
  public String getName();
}
public class NamedElement implements INamedElement {
  private String name;
  @Override
  public void setName(String name) {
    this.name = name;
  }
  @Override
  public String getName() {
    return name;
  }
}
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5.  Conclusions

This paper shows that the CDMM concept may be joined with other concepts applicable 
in software engineering domain. More specifically, it illustrates how the (meta-)meta- 
-model graph implemented in CDMM-F can be enriched structurally by the application 
of  AOP approach. The examples have shown that the most important advantages of 
AOP are  preserved when the CDMM approach is used for (meta-)meta-model creation. 
Moreover, the combination of CDMM and AOP can be applied both for (meta-)meta-model 
refactorization as well as for the initial (meta-)meta-model design decisions.

The fact that AOP-oriented structural responsibilities can be injected into (meta-)
meta-model results in very important feature of the presented combination of technologies 
– it introduces independence of life-cycles. The CDMM based (meta-)meta-model can be 
changed in large extent independently from changes introduced into AOP based structural 
responsibilities and vice versa. This feature helps to simplify and manage the process 
of  designing modeling languages (meta-models) or designing languages used to define 
modeling languages (meta-meta-models).

Listing  6.  Meta-model graph after refactorization

<beans>
 <!-- NamedElement responsibility injections -->
 <aop:config>
  <aop:aspect>
   <aop:declare-parents
    default-impl=
     ”com.componentcreator.metamodel.coremetamodel.metaontologies.namedelement.NamedElement”
    implement-interface=
    ”com.componentcreator.metamodel.coremetamodel.metaontologies.namedelement.INamedElement”
    types-matching=”com.componentcreator.metamodel.coremetamodel.domainsimpl.DB1” />
  </aop:aspect>
  <aop:aspect>
   <aop:declare-parents
    default-impl=
     ”com.componentcreator.metamodel.coremetamodel.metaontologies.namedelement.NamedElement”
    implement-interface=
     ”com.componentcreator.metamodel.coremetamodel.metaontologies.namedelement.INamedElement”
    types-matching=”com.componentcreator.metamodel.coremetamodel.domainsimpl.DB2” />
  </aop:aspect>
 </aop:config>
</beans>
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1.  Introduction

Scope management in a broad sense comprises managing the number of instances 
during the  process of constructing them, that is, at run-time. The conventional approach 
of programmers associates the responsibility of multiplicity determining mentioned above 
with a class. This is apparent, among other things, in singleton (anti)pattern. However, 
in Java EE frameworks this responsibility is moved to the framework. A bean multiplicity 
in the framework can be specified by the application context. The bean, on the other hand, 
reflects the way the framework (and in the consequence the software system implemented 
in  the framework) perceives classes. The bean contains more information than the class, 
among other things just information about multiplicity of the bean. This additional information 
stored in the bean is specified in the application context file based on which the framework 
creates bean instances (and thus class instances). A particular class may occur once as the 
instance of one bean the scope of which is specified as singleton and, at the same time in 
the same application, the same class may occur multiple times as instances of other bean 
(associated to the same class) the scope of which is defined as prototype. In contrast to meta- 
-models (modeling languages) constructing this solution turns out not to be sufficient due to 
the high complexity of graph meta-models. Also relating the scope to the bean only turns out 
not to be sufficient while applying it to graph modeling languages. That is why the need to 
enrich the current mechanism occurred.

In scientific papers [12] as well as in the IT industry literature [5] and in industry standards 
[6, 13, 19] meta-models are created statically – modeling languages are defined at compile 
time. However, as research results achieved by the author show [20], it is possible to define 
modeling languages at run-time. The application context mentioned above can be used to 
specify graph-like interrelations between language elements.

Further in the paper it is shown that when the scope notion is addressed to modeling 
languages constructed at run-time, this notion should be addressed both to Java EE beans 
and to classes. Moreover, bean sets as well as sets of classes involved with relationships 
interrelating particular bean sets play an important role in meta-modeling.

A characteristic feature of the CDMM approach [21] is constructing meta-model graph 
from elements consisting of meta-model entity classes and meta-model relation classes. 
The graph is constructed from Java EE beans defined for these classes, thus from entity 
beans and relation beans. Entity beans are placed in graph nodes while relation beans are 
placed in graph edges. In such an approach the application context XML file constitutes the 
definition of the meta-model graph. However, in such approach the correct management of 
relation instances quantity during relation beans injections into entity beans is an important 
problem. It is especially evident with reference to N-ary relationships [4, 8, 9, 14, 15, 17], 
relations that join more than two graph nodes at the same time. In the case of such relations 
the mechanism of injecting the same relation object (relationship bean instance or relation 
class instance) to all nodes involved with this relation must be provisioned. It appears, 
however that the possibilities offered by Java EE frameworks are not sufficient in the area 
of multiplicity management, as they are focused on management of multiplicities of singular 
beans only. It is worth noticing that the implementation of N-ary relations and the so called 
“arity problem” is difficult while constructing graph modeling languages. It is shown by 
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documented problems visible in Object Management Group (OMG) standards, like Meta- 
-Object Facility (MOF) – the definition of N-ary association was omitted here because of 
too much difficulty [1, 13], then the implementation of this relationship as a separate notion 
in Unified Modeling Language (UML) standard was retired [19] (it is represented on the 
diagramming and not on the modeling level, so the code cannot be generated from UML 
modeling tools) [7]. The root cause for these problems and limits is the lack of representation 
for relationships in all sources known from scientific literature, IT industry publications 
and software modeling tools documentation [3, 10, 11, 18] However, these problems can be 
solved in CDMM technology as the relations have their representation in it.

It should be pointed out that the scope management problem with reference to the CDMM 
technology concerns such meta-model elements only which are involved in representing 
relations, so they play the role of edges of the graph being the representation of a modeling 
language. Edge (meta-model relation) classes play the role of static responsibilities for node 
(meta-model entity) classes. These responsibilities are injected to entity classes as default 
implementations of interfaces of these relation classes with the help of dependency injections 
(Spring) and with the help of aspect-oriented inter-type declarations (AspectJ).

2.  Scope Management in Spring Framework

The Spring framework offers scope management limited to the Spring beans. The bean 
is  the way Spring as well as the Spring-based application (more generally – a software 
system),  sees Java POJO classes. The object model in Spring is enriched in comparison 
to Java object model by many attributes that can be associated to beans. One of them is 
the “scope” attribute of a bean. According to the documentation of Spring framework [16] 
the scope attribute can have one of the following values: “singleton”, “prototype”. The 
“singleton” attribute informs Spring that the bean with this attribute value can have exactly 
one instance – the bean and not the POJO class behind the bean. The “prototype” attribute 
informs that the bean with this attribute can be multiplied as needed.

Static information about beans is defined in Spring application context XML file. 
As long as bean instances are created from the application through the Spring Application 
Programming Interface (API) the solution offered by the framework is sufficient.

When the instance of a particular bean is created from the Spring-based application 
through the API of Spring the constructor of the class which is behind the bean is called by 
default. However, Spring offers also another mechanism, which is applied in the approach 
presented in the paper. The bean instances may be created through factories. This approach 
is  much more flexible and was originally added to Spring to simplify application of 
creational design patterns.

3.  Scope Management Problems in AspectJ with Spring

The situation described in section 2, when Spring is used as the only framework and 
when bean instances are created from the Spring-based application is simple and does not 
trigger any problems. However, when the Spring is superposed with other framework and 
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this additional framework influences or even takes control over bean instances creation 
process, some problems appear. They result from the fact that the additional framework 
may take responsibility for bean instance creation from the Spring-based application to the 
additional framework. Moreover, the additional framework may delegate this responsibility 
back to Spring and to application context. And this is the case when Spring is superposed 
with AspectJ [2].

The Spring framework is integrated to Aspect Oriented Programming (AOP) via two 
Spring  sub-projects: SpringAOP [16] and Spring+AspectJ [16]. The first one constitutes 
a limited implementation of AOP concepts and is not sufficient for the CDMM-F 
implementation. However, the second project offers full AspectJ functionality and is 
sufficient for the application of the CDMM concept. The rest of the paper is limited to the 
full integration of Spring with AspectJ.

The implementation of CDMM-F is based on extensive usage of AOP concept 
applicable to influencing class hierarchies, thus inter-type declarations, and more specifically, 
declare-parents construct. This way the relationship classes of a meta-model can be injected 
as default interface implementations to particular meta-model entity classes as their structural 
responsibilities (in contrast to dynamic responsibilities, which are more typical). The method 
for such injections is specified in Spring+AspectJ application context file according to 
the sample code presented in Listing 1.

Listing  1.  Meta-model elements defined in Spring and their injections defined in Spring+AspectJ 
application context file (extract only)

It is clear from the Listing 1 that meta-model entity beans have their scope defined 
as “prototype” while the attribute is ignored for relationship beans. It is not specified in 
application context file to underline the fact that AspectJ ignores this attribute for beans it 
injects.

When the Spring integrated to AspectJ loads an application context file that contains 
such injections, the default implementations of interfaces are created as Spring beans. This 

<!— Meta-Model Entity Beans (Spring) -->
<bean
  class=”com.componentcreator.metamodel.coremetamodel.domains.DEntity”
  id=”entity”
  scope=”prototype”>
</bean>

<!— Meta-Model Relation Beans (Spring) -->
<bean
  class=”com.componentcreator.metamodel.coremetamodel.relations.RRelation”
  id=”relImplForDEntity”>
</bean>

<!— Meta-Model Graph Creation (Spring+AspectJ) -->
<!— Meta-Model Relation Injections to Meta-Model Entities -->
<aop:declare-parents 
  types-matching
    =”com.componentcreator.metamodel.coremetamodel.domainsimpl.DEntity”
  implement-interface
    =”com.componentcreator.metamodel.coremetamodel.relations.IRRelation”
  delegate-ref=” relImplForDEntity”/>
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behavior influences and destroys the original Spring concept of scope management. It is even 
impossible to change the Spring+AspectJ behavior from the bean “scope” parameter – from 
its predefined as well as from its user-defined version. The Spring interpretation of the “scope” 
bean parameter is completely overlapped by AspectJ. But, fortunately, Spring+AspectJ 
create injected beans of default implementation classes for each such injection. Moreover, 
the  AspectJ mechanism does not overwrite the option of calling factories in place of 
constructors when a bean is instantiated. It is shown further in the paper that combining 
both mentioned features helps to take full control over the instantiating process when meta- 
-model is created.

4.  Scope Management Problem

This section is focused on two goals – showing how the control over scope management 
(introduced intuitively before) can be regained in case of overlapping incompatible 
solutions offered by different Java EE frameworks and presenting the skeleton of the concept 
of advanced scope management for meta-modeling purposes.

In order to address the two goals mentioned above, the scope management problem 
should be clearly stated and then its solution can be presented. At the end the correctness 
of the solution should be verified. All these stages are presented below.

4.1.  Problem statement

The scope management problem is the problem of controlling the multiplicity of 
application elements while their construction process driven by Java EE application context 
under the assumption that the application context file is interpreted by more than one 
Java EE framework.

As the consequence we have the following situation – the superposition of frameworks:
F F F FN= ° ° °1 2 

where:
F	 –	 the framework created as the result of superposition of other frameworks,
F1 ‒ FN	 –	 superposed frameworks.
The problem is at least two-dimensional as it concerns both classes and their beans. 

The problem of the actual dimension is discussed in section 4.2. The size of the problem 
does not depend of the number of frameworks F1 – FN.

The problem is limited to meta-model relation beans and classes.
The problem can be solved if the following conditions are fulfilled:

–	 FN framework tries to construct application elements whenever needed
–	 FN framework does not eliminate the ability to access factories for application elements 

construction purpose
Topological aspects only are taken into account in the paper. This means that such problems 

like cardinalities of meta-model relationships (meta-cardinalities) as well as the problem 
resulting from the above – the problem of existence of some nodes at the meta-model relation 
ends are ignored in the paper. The problem of meta-model relationship cardinalities which 
is new and separate from the scope management problem is intended for future publications.
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4.2.  Problem solution 

It was mentioned before that scope may be addressed to beans and/or classes specified 
in the application context. Another observation related to Spring scope management is that 
the concept of scope management is related to the whole application. This means that the 
particular scope associated to a particular bean defines the multiplicity of the bean instances 
in the whole application. However, in the meta-modeling problem the range of the scope 
should be differentiated to such areas like meta-model, context file, constructor.

As the result, in the meta-modeling problem, the following dimensions of the scope 
management problem should be assumed:

Subject (relationship class, relationship bean)
Scope (meta-model, context file, constructor)
Thus, the name of scope fits better to the true meaning of this notion.
For each combination of the above elements, for each pair (Subject, Scope) the element 

of the framework F which is responsible for scope management should be identified. So, 
the divagations should be enriched by the following mapping:

(Subject × Scope) → ScopeManager
where:

ScopeManager = {class, bean, context, framework} ⊂ F
The communication between framework F and the right ScopeManager is controlled by 

factories that are called while constructing application elements. The special case is when the 
factory does not delegate the scope management responsibility to dedicated ScopeManager 
but takes this responsibility. This assumption was assumed in the rest of the paper for 
simplification. As the result, the naming convention for factories, which in consequence 
of this assumption can be predefined in F, can be introduced. The naming convention may 
be as follows:

Responsibility<Subject><Scope><Manager>ScopeFactory,

where, under the above assumption <Manager>=Factory ⊂ F
In consequence, the names of such factories are as the ones contained in Table 1.

T a b l e  1
The names of factory classes which are responsible for managing meta-model relationclasses

Scope                
Subject

Class Bean

Metamodel ResponsibilityClassMetamodel 
ScopeFactory

ResponsibilityBeanMetamodel 
ScopeFactory

Context file ResponsibilityClassFile 
ScopeFactory

ResponsibilityBeanFile 
ScopeFactory

Constructor ResponsibilityClassConstructor 
ScopeFactory

ResponsibilityBeanConstructor 
ScopeFactory
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The ResponsibilityBeanConstructorScopeFactory class is sufficient to solve the arity 
problem. That is why the nature, implementation and verification of just this class is discussed 
further in this section as the illustration of the factories implementation concept.

Two variants are taken into account below to characterize the nature of 
ResponsibilityBeanConstructorScopeFactory class. The simple case is presented first (one 
relation for a particular set of entities). Then the complex case (many relations for a particular 
set of entities) is shown. The problem of number of relations in meta-model has not been 
identified and has not been investigated before. The name suggested by the author for this 
problem is meta-cardinality and it is related to the CDMM system of notions. However, this 
problem is discussed in a separate paper. The two cases mentioned above are defined for:
–	 a particular relation (for a particular bean of a relation class) joining a set of entity 

classes – one bean instance is created by the factory
–	 many relations of the same kind (represented by the same bean of a relation class) joining 

a set of entity classes – the number of bean instances created is equal to the number 
of relations.
More generally speaking, for a particular set of constructors of any number of a relation 

beans (for the same relation class) the number of instances of this bean is equal to the number 
of beans and not to the number of the bean class injections to the set of entity classes.

The characteristics of ResponsibilityBeanConstructorScopeFactory class can be 
referenced to Figure 1 and Listing 3 in section 4.2.

In the next research stage all possible combinations of relation construction cases were 
identified for the meta-modeling application domain. These observations have theoretical 
nature (all cases were identified for consideration completness).

The following notational system was designed to specify scope in the application context 
file:
–	 CDMMFsubject (applied in each bean to determine if the scope is related to the bean or 

to its class)
–	 CDMMFscope (applied in each bean to define the scope for CDMMFsubject)
–	 CDMMFmanager (applied in each bean to define the element responsible for the scope 

management for this bean)
–	 The following comments are related to the system of tags introduced above:
–	 CDMMFmanager may be optional (if we assume that the scope management is default)
–	 CDMMFmanager may not be required if the right class will be determined by the pair 

(CDMMFsubject, CDMMFscope)
–	 as long as any Java EE framework F has its notation related to scope management 

the CDMM prefix is required
The implementation of the ResponsibilityBeanConstructorScopeFactory scope manager 

is presented in Listing 1.
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The factory implemented in the form presented on the Listing 1 works as follows. 
The meta-model relation bean (represented by beanId in the source code) is defined in the 
application context file for Spring Java EE. Then the relation bean is injected by AspectJ 
framework when the default interface implementation of a relation class is associated to 
a meta-model entity class. In place of constructor the method getInstanceMinimal() is called 
with the following parameters: beanId equal to the Id of relation bean, cls equal to the 
pathname of the relation class, str equal to the list of pathnames of entity classes the relation 
bean is injected to. The method determines if the object was already constructed for the set 
of parameters (beanId, cls, str) and creates it or returns the reference to already existing bean 
instance.

4.3.  Verification

The concept of scope management was tested for the superposition of Spring and AspectJ 
frameworks. This combination of frameworks is sufficient for obtaining the superposition 
with required features as defined in section 4.1. This superposition of just these frameworks 
is also good enough for defining sufficiently complex meta-models.

The correctness of the approach presented in the paper was verified in three following 
stages:
–	 all factory classes presented in Table 1 were implemented,
–	 appropriate meta-models were defined to generate all test cases (at least one test case was 

needed to test each factory class),
–	 appropriate unit tests were implemented to test each test case resulting from meta-models 

defined above.

Listing  2.  Scope management factory class dedicated to N-ary relationship instance  
multiplicity handling

public class ResponsibilityBeanConstructorScopeFactory implements
  IResponsibilityBeanScopesFactory {

  private static Map<String, IResponsibility> relationshipMinimal
    = new HashMap<String, IResponsibility>();

  public IResponsibility getInstanceMinimal(String beanId, String cls, 
    List<String> str) throws NoSuchMethodException, SecurityException, 
    ClassNotFoundException, InstantiationException, IllegalAccessException, 
    IllegalArgumentException, InvocationTargetException {
      // the instance of the beanId was already created
      if (relationshipMinimal.containsKey(beanId)) return 
        relationshipMinimal.get(beanId);
      // the beanId has not been created yet
      else {
        // create the instance of cls object passing it str parameters
        // - Java reflection needed here
        relationshipMinimal.put(beanId, (IResponsibility) 
          ResponsibilityBeansRegister.get(cls).getConstructor(new Class[] 
          {List.class}).newInstance(new Object[] { str }));
        return relationshipMinimal.get(beanId);
      }
  }
}
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All test case executions confirmed the correctness of both the approach and the 
implementation of all factories dedicated to support meta-modeling. It is worth noticing 
that the elaboration of all meta-model concepts required to implement test cases for each 
factory class was especially demanding and time consuming. This complexity resulted from 
the fact that in this case the special meta-modeling problems should be invented to check 
the correctness of the solutions which were foreseen before during theoretical research. This 
approach was abnormal as usually the problem appears first and the solution comes later.

As the illustration of the use of the factory for a sample meta-model is presented in 
Figure 1 and then the extract from the application context file is shown.

The way the factory is specified in the application context file and how it is associated to 
the RN-ary bean is clarified in Listing 3.

Fig.  1.  Sample meta-model for the N-ary relationship



38

5.  Conclusions

The scope management problem was identified for meta-modeling purposes. The meta-
modeling application domain as defined by CDMM approach is complex enough to study 
the problem. The concept of the scope management solution was also implemented in 
CDMM-F with the help of appropriate factories. Then the solution correctness was verified 
by appropriate test cases.

The paper initiates further research efforts in the field of scope management by creating 
solid fundamentals and presenting the skeleton of the solution for the next problems related 
to scope management. The mentioned problems are named and characterized briefly below.

Several interesting subjects for research are connected to meta-cardinality (the problem of 
defining the number of relation instances). This problem is very complex and is not supported 
by currently available technologies.

Another interesting problem which is new for meta-modeling and modeling disciplines 
is the problem of navigability of meta-model relationships named by the author meta-
navigability. This problem is connected to traversing the directed graph of modeling language 
and impacts CDMM-F API significantly.

Also a complex problem of combining scopes may appear when several application context 
files that are based on different scope management concepts are used (reused) to constitute 

Listing  3.  Meta-model scope factory and relation beans specification in the application context file

<bean
  class=”com.componentcreator.metamodel.coremetamodel.scopefactories
  .ResponsibilityBeanConstructorScopeFactory”
  id=” responsibilityBeanConstructorScopeFactory ” scope=”singleton”></bean>

<bean class=”com.componentcreator.metamodel.coremetamodel.relations.RNary”
  id=”naryImpl”
  factory-bean=”responsibilityBeanConstructorScopeFactory”
  factory-method=”getInstanceMinimal”>
    <constructor-arg>
      <value>”naryImpl”</value>
    </constructor-arg>
    <constructor-arg>
      <value>
        ”com.componentcreator.metamodel.coremetamodel.relations.RNary”
      </value>
    </constructor-arg>
    <constructor-arg>
      <list>
        <value>
          com.componentcreator.metamodel.coremetamodel.domainsimpl.DC1
        </value>
        <value>
          com.componentcreator.metamodel.coremetamodel.domainsimpl.DC2
        </value>
        <value>
          com.componentcreator.metamodel.coremetamodel.domainsimpl.DC3
        </value>
      </list>
    </constructor-arg>
</bean>
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the whole meta-model application context. In the paper a simple case is implemented (see 
relationshipMinimal), but the concept of relationshipRedundant was also designed (but not 
verified yet) to support future solution of the scope combining problem.

Other challenging problems are connected to the so-called arity problem. The N-ary 
relationships can be handled in CDMM-F but in order to gain the full solution of the 
problem the meta-cardinality and meta-navigability problems must be completely solved 
and published.
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1.  Introduction

In paper [6] we investigated operators of the Szász-Mirakjan type defined as follows
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Γ is the gamma function and Iν the modified Bessel function of the first kind defined by 
the formula ([15], p. 77)
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This means that we replaced the coefficients of well-known Szász-Mirakjan operators by 
some terms involving the modified Bessel function Iν.

We studied the approximation properties of these operators in exponential weight  
spaces
	 E f C w fq q= ∈{ ( ) :0 is uniformly continuous and bounded on 0},	

where C(0) denotes the space of all real-valued function continuous on 0 = [0;¥) and wq 
is the exponential weight function defined as follows
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for x ∈ 0.
In the spaces we introduced the weighted norm
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and we established ([6], Theorem 2.1) that operators Ln
ν  are linear, positive, bounded and 

transform the space Eq into Eq.
In this paper we introduce an integral modification of (1)
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	 g n q
k

et n q tn k
n q t k

,
( )( ) (( ) )ν ν

ν
=

+
+ +

+− + +

Γ( )2 1
2 	



45

The idea of integral modifications of this kind of operators comes from J.L. Durrmeyer 
([2]) who introduced the integral modification of the genuine Bernstein operators. Later on 
new modifications of other classical operators appeared, for example, M.M. Derriennic ([3]), 
S.M. Mazhar and V. Totik ([11]), A. Sahai and G. Prasad ([13]), M. Heilmann ([5]). Now the 
operators are still under consideration [1, 4, 7‒10, 12, 14].

The note was inspired by the above results which investigate approximation problems 
for integral operators and it is a natural continuation of the author’s results from paper [7].

Among other things, in the paper we shall prove the theorems giving the degree 
of approximation of functions from Eq by operators Ln

ν .  We will estimate the error of 
approximation using the weighted modulus of continuity of the first and the second order 
defined as follows

	 ω1 0 0( ), ; : [ , ] ,f E t f h t tq h q= ∈{ }sup ∆ > 	 (5)

and

	 ω2
2 0 0( ), ; : [ , ] ,f E t f h t tq h q

= ∈{ }sup ∆ > 	

respectively, where

	 D Dh hf x f x h f x f x f x h f x h f x( ) ( ) ( ), ( ) ( ) ( ) ( )= + − = + − + +2 2 2 	

for x, h ∈ 0.
It is worth mentioning that Bessel functions are the most important special functions 

which play a pivotal role in mathematical physics, for example: signal processing, heat 
conduction, diffusion problems. We hope that the operators examined will have applications 
to these areas of study.

Remark 1.1
In the paper we shall denote by M(p, t) suitable positive constants depending on the 

parameters indicated p, t.

2.  Auxiliary results

Let us denote

	 e t e e t x et f t t t t tr
r

r r
qt

x r
r

x r x r
qt( ) , ( ) ( ) , ( ) , ( ) ( )( ), , ,= = = − =φ ψ φ 	

for r q x∈ = ∪ ∈N N R0 00: { } , , .
In this section we shall recall preliminary results which are immediately obtained from 

papers [6, 7] and definition (4).
Remark 2.1
For all ν ∈ ∈R N0 and n r,  it holds

	  L e L fn n
ν ν( ; ) , ( ; )0 00 1 0 1= = 	
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	    L e L L L fn r n r n r n r
ν ν ν νφ ψ( ; ) ( ; ) ( ; ) ( ; ), ,0 0 0 0 00 0= = = = 	

Lemma 2.1 ([6], Lemma 2.1)
For each ν ∈ 0 there exists a positive constant M(ν) such that for all n ∈  and x ∈ 0 

we have

	
I
I

M nx
I
I

M
nx
nx

nx
nx

ν

ν

ν

ν
ν ν+ + −1 1 1

( )
( )

( )
( )

( ), ( )£ £ 	

By elementary calculations and Lemma 2.2. ([6]) we get
Lemma 2.2
For each n q x∈ ∈ ∈N R R, ,ν 0 0and

	  L e x L e x L e x L e x
n q

n
n q

xI
n n n n
ν ν ν ν νν( ; ) ( ; ) , ( ; ) ( ; )0 0 1 11 1

= = = +
+
+

=
+

++ +
+







1 1( )

( )
,

nx
nxI nν

ν 	

	

L e x L e x
n q

L e x
n q

n
n

n n n
ν ν νν ν ν( ; ) ( ; ) ( ; ) ( )( )

( )2 2 1 2
2 3 1 2

= +
+

+
+

+ +
+

=
+ qq

x I
I n

xI
I nx

nx
nx

nx







 +

+
+

+ ++ +
2 2

2 12 5 1 2ν

ν

ν

ν

ν ν ν( )
( )

( )
( )

( ) ( )( )) ,
n2











	

	 L x L x
n q

x n
n q

I
I

nx
nxn x n x

ν ν ν

ν
φ φ

ν( ; ) ( ; )
( )

( ), ,1 1
11 1= +

+
+

=
+

−








+  +

+
+

ν 1
n q

, 	

	

L x L x
n q

L x x
n qn x n x n x

ν ν νφ φ
ν

φ
ν ν( ; ) ( ; ) ( ; ) ( )( )

, , ,2 2 1
2 3 1 2

= +
+

+
+

+
+ +
(( )

( )
( )

( )
( )

n q

x n
n q

I
I

n
n q

I
I nx

nx
nx

nx

+

=
+









 −

+
+


+ +

2

2
2

2 12 1ν

ν

ν

ν









+
+
+ +

−








 +

+
+ +2 1 1 31

2
( ) ( )

( ) ( )
ν ν

ν

νx
n q

n
n q

I nx
I nx

nx
n q

I 11

2
1 2

( )
( )

( )( )
( )

.

nx
I nx

n q

ν

ν ν
+

+ +
+

	

By Lemmas 2.2 and 2.5 [7] we get
Lemma 2.3 ([7], Lemma 2.6)
For all ν, q ∈ 0 there exists a positive constant M(ν, q) such that for each n ∈   

we have

	 L f M qn q
ν ν( ; ) ( , ).0 ⋅ £ 	

An obvious consequence of the above lemma and definition (4) is
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Theorem 2.1 ([7], Theorem 2.1)
For all ν, q ∈ 0 there exists a positive constant M(ν, q) such that for each n ∈  and 

f ∈ Eq we have

	 L f M q fn q q
ν ν( ; ) ( , ) .⋅ £ 	

Note that in the case of the integral modification of our operators we also have the 
endomorphism Eq into Eq. This is a better result than the one in [8], Theorem 3.1.

Applying Lemma 2.1 and Lemma 2.2 we immediately obtain
Lemma 2.5 ([7], Lemma 3.1)
For all ν, q ∈ 0 there exists a positive constant M(ν, q) such that for each n ∈  and  

x ∈ 0 we have

	 L x M q x x
nn x

ν φ ν( ; ) ( , ) ( ) .,2
1

£
+ 	

Lemma 2.6 ([7], Lemma 3.3)
For all ν, q ∈ 0 there exists a positive constant M(ν, q) such that for each n ∈  and  

x ∈ 0 we have

	 w x L x M q x x
nq n x( ) ( ; ) ( , ) ( ) .,



ν ψ ν2
1

£
+ 	

3.  Degree of approximation

The following theorems estimate a weighted error of approximation for functions 

belonging to the space E f E f f f E kq
k

q
k

q= ∈ ′ ′′ ∈ ={ : , , , } , . for 1 2
The proofs of the theorems are analogous to the proofs which are known from the 

literature but we enclose them for the completeness of the paper.
Remark 3.1
Note that for x = 0 in the following lemmas and theorems we get the assertion using 

Remark 2.1.
Theorem 3.1
For all ν,  q ∈ 0 there exists a positive constant M(ν,  q) such that for all n ∈ ,  

x ∈ 0 and f Eq∈ 1  we have

	 w x L f x f x M q f x x
nq n q( ) ( ; ) ( ) ( , ) ( ) .

/


ν ν− ′ +





£

1 1 2

	

Proof. Let x > 0. For f Eq∈ 1  we have

	 f t f x f u du
x

t
( ) ( ) ( )− = ′∫ 	
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for t > 0. By Lemma 2.2 we have L e xn
ν ( ; ) ,0 1=  hence we can write

	  L f x f x L f u du xn n
x

tν ν( ; ) ( ) ( ) ; ,− = ′





∫ 	

using the linearity of Ln
ν .

Note that

	 ′ ′ ′ + −∫ ∫f u du f e du f e e t x
x

t

q
qu

x

t

q
qt qx( ) ( ) .£ £ 	

Therefore, we have

	 w L f x f x w f L x f L xq n q q n x q n x
  

ν ν νψ φ( ; ) ( ) ; ; ., ,− ′ ( ) + ′ ( )£ 1 1 	 (7)

If we apply the Cauchy-Schwarz inequality and Lemma 2.2 we get

	  L x L xn x n x
ν νφ φ, ,

/
; ; ,1 2

1 2( ) ( )( )£ 	

	   L x L x L f xn x n x n
ν ν νψ ψ, ,

/ /; ; ( ( ; )) .1 2
1 2

0
1 2( ) ( )( )£ 	

Now we can use Lemma 2.3, 2.5 and 2.6 to estimate (7)

	 w L f x f x M q f x x
nq n q



ν ν( ; ) ( ) ( , ) ( ) /

− ′ +





£

1 1 2

	

for x > 0 and n ∈ .
Theorem 3.2
For all ν,  q ∈ 0 there exists a positive constant M(ν,  q) such that for all n ∈ ,  

x ∈ 0 and f ∈ Eq we have

	 w x L f x f x M q f E x x
nq n q( ) ( ; ) ( ) ( , ) , ; ( ) .

/


ν ν ω−
+
















£ 1

1 21 	

Proof. Let x > 0. As always we denote by fh the Steklov function of  f, this means

	 f x
h

f x t dth

h

( ) ( )= +∫
1

0

	

for h > 0. Note that

	 f x f x
h

f x t f x dth
h

( ) ( ) ( ) ( ) ,− = + −∫
1

0
	

	 ′ = + −f x
h
f x h f xh ( ) ( ( ) ( ))1 	
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for h > 0. Therefore, we immediately conclude that f f E f Eh h q q, ′ ∈ ∈because  and we 
have the following estimations

	 f f f E hh q q− £ω1( , ; ) 	 (8)

	 ′f
h

f E hh q q£
1

1ω ( , ; ) 	 (9)

for h > 0. By the linearity of the operators Ln
ν  we get the inequality

	

w x L f x f x

w x L f f x w x L f x f x

q n

q n h q n h h

( ) ( ; ) ( )

( ) ( ; ( ) ( ; ) ( )



 

ν

ν ν

−

− + −£

++ −w x f x f xq h( ) ( ) ( )

	

Taking into account the boundedness of the operators Ln
ν  and (8) we obtain

	 w x L f f x M q f f M q f E hq n h h q q( ) ( ; ( , ) ( , ) ( , ; )

ν ν ν ω− −£ £ 1 	

for x, h > 0. From Theorem 3.1 and (9) we have

	
w x L f x f x M q f x x

n

M q
h

q n h h h q( ) ( ; ) ( ) ( , ) ( )

( , )

/


ν ν

ν ω

− ′ +





£

£

1

1

1 2

11

1 21( , ; ) ( ) /

f E h x x
nq
+








	

for x, h > 0.

By the definition of the norm ⋅ q  and (8) we get

	 w x f x f x f f f E hq h h q q( ) ( ( ) ( ) ( , ; )− −£ £ω1 	

for x, h > 0.
Using above inequalities we estimate the expression

	 w x L f x f x f E h M q M q
h

x x
nq n q( ) ( ; ) ( ) ( , ; ) ( , ) ( , ) ( )



ν ω ν
ν

− +
+






£ 1

11 //

.
2

1+










	

Now substituting h x x
n

=
+








( ) /1 1 2

 we get the assertion of our theorem.

Theorem 3.2 implies the following corollary.
Corollary 3.3
If ν, q ∈ 0 and f ∈ Eq then for all x ∈ 0

	 lim { ( ; ) ( )} .n nL f x f x→ − =¥


ν 0 	
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Moreover, the above convergence is uniform on every compact subset of the interval 
[0; ¥).

Remark 3.4
We can obtain the above convergence in a different way, see Theorem 3.1 ([7]).
To estimate the error of approximation by the second order modulus of smoothness (5) 

we define the following linear operators

	   H f x L f x f L e x f xn n n
ν ν ν( ; ) ( ; ) ( ( ; )) ( )= − +1 	 (10)

for ν, q ∈ 0, f ∈ Eq and x ∈ 0.
Note that the operators preserve linear functions, namely

	 H xn x
ν φ( ; ) .,1 0= 	 (11)

Lemma 3.5
For all ν,  q ∈ R0 there exists a positive constant M(ν,  q) such that for all n ∈ N,  

x ∈ R0 and g Eq∈ 2  we have

	 w H g x g x M q g x x
nq n q



ν ν( ; ) ( ) ( , ) ( ) .− ′′ +
£

1 	

Proof. Let x > 0 be fixed. By the Taylor formula we can write

	 g t g x t x g x t u g u du
x

t
( ) ( ) ( ) ( ) ( ) ( )− = − ′ + − ′′∫ 	

for t > 0. Now applying linearity of Hn
ν  and (11) we derive

	   H g x g x H g t g x x H t u g u du xn n n x

tν ν ν( ; ) ( ) ( ( ) ( ); ) ( ) ( ) ;− = − = − ′′

 ∫ 


 . 	 (12)

Further, the definition of Hn
ν  implies

	

 H t u g u du x L t u g u du xn x

t
n x

tν ν( ) ( ) ; ( ) ( ) ;− ′′





 = − ′′








−

∫ ∫
(( ( ; ) ) ( ) .

( ; )




L t x u g u dun
x

L t xn ν
ν

− ′′∫
	

Estimating (12) we can write

	   H g x g x L t u g u du x L t x un n x

t
n

ν ν ν( ; ) ( ) ( ) ( ) ; ( ( ; ) )− − ′′







 + − ′∫£ ′′∫ g u du

x

Ln
( ) .



ν

	

Note that

	 ( ) ( ) ( ) ( )t u g u du g t x e e
x

t

q
qx qt− ′′ ′′ − +∫ £

1
2

2 	
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and

	
( ( ; ) ) ( ) ( ( ; ) ) (

( ; )
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

L e x u g u du g L e x x en
x

L e x

q n
n ν ν
ν

1 1
21 1
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



ν

νν φφ
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( ( ; )) ( ,

1

11
2

11
2£ )) ).

	

Now we can observe that the expression eqL xn x


ν φ( ; ),1  is bounded. We immediately obtain 
it from Lemma 2.2 and 2.1 as follows

	 e e e eqL x
qx n

n q
I nx
I nx q

n q
nx I

n x


ν
ν
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ν
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1 1 1
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
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+
+

1 1 1
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nx

I nx q
qv e M
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Therefore, we have

	

w x H g x g x

g L x g w x L

q n

q n x q q n x
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( ; ) ( ) (, ,



 

ν
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1
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1
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1
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2
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x

M g L xq n x+ ′′ν φν


	

Applying the Cauchy-Schwarz inequality to the term L xn x
ν φ( ; ),1  and Lemmas 2.5, 2.6 

we get the desired estimation.
Theorem 3.6
For all ν,  q ∈ R0 there exists a positive constant M(ν,  q) such that for all n ∈ N,  

x ∈ R0 and f ∈ Eq we have

	 w L f x f x M q f E x x
n

fq n q


ν ν ω ω( ; ) ( ) ( , ) , ; ( ) /

−
+
















 +£ 2

1 2

1
1 ,, ; ( ; ) .,E L xq n x



ν φ 1( ) 	

Proof. Let x > 0 and fh  be the second order Steklov mean of f ∈ Eq, i.e.

	 f x
h

f x s t f x s t dsdt h xh
hh

( ) { ( ) ( ( ))} , ,
//

= + + − + +∫∫
4 2 2 02 0

2

0
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Note that

	 f x f x
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f x dsdth s t
hh

( ) ( ) ( ) .
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2
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2
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D 	

By definition (6) we get the following estimation

	 f f f E hh q q− £ω2 ( , ; ) 	

and since

	 ′′ = −f x
h

f x f xh h h( ) ( ( ) ( ))/
1 82 2

2 2D D 	
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we have

	 ′′f
h

f E hh q q£
9
2 2ω ( , ; ). 	

The above inequalities imply that the Steklov mean f fh hand ′′  belong to Eq.

Moreover, by the linearity of  L Hn n
ν ν,  and the connection (10) we can write

	



 

L f x f x

H f f x f x f x H f x f x

f

n

n h h n h h

ν

ν ν

( ; ) ( )

( ; ) ( ( ) ( ) ( ; ) ( )

−

− + − + −

+

£

(( ( ; ) ( ) .L e x f xn
ν

1 −

	

By the above, the boundedness of the operators Hn
ν  and Lemma 3.5 we conclude that
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where L x x n
n q

I nx
I nx n qn x

ν ν

ν
φ
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.,1

1 1 1
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+
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+
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n

=
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
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


( ) /1 1 2

 we get 

the estimation in the theses of Theorem 3.6.
The above theorem shows that one can estimate the weighted error of approximation 

for positive linear operators reproducing constant functions by the sum of two moduli 
of continuity.

The author is thankful to the referees for making valuable suggestions leading to the overall improvement 
of the paper.
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NAUKI PODSTAWOWE

NAVNIT JHA*, LESŁAW K. BIENIASZ**

AN O hk( )5  ACCURATE FINITE DIFFERENCE METHOD 
FOR THE NUMERICAL SOLUTION OF FOURTH 

ORDER TWO POINT BOUNDARY VALUE PROBLEMS 
ON GEOMETRIC MESHES

METODA RÓŻNICOWA O DOKŁADNOŚCI O hk( )5
, 

DO ROZWIĄZYWANIA DWUPUNKTOWYCH 
ZAGADNIEŃ BRZEGOWYCH CZWARTEGO RZĘDU 

NA SIATKACH GEOMETRYCZNYCH
A b s t r a c t

Two point boundary value problems for fourth order, nonlinear, singular and non-singular ordinary differential equations occur in various areas of science and technology. 
A compact, three point finite difference scheme for solving such problems on nonuniform geometric meshes is presented. The scheme achieves a fifth or sixth order 
of accuracy on geometric and uniform meshes, respectively. The proposed scheme describes the generalization of Numerov-type method of Chawla (IMA J Appl Math 
24:35-42, 1979) developed for second order differential equations. The convergence of the scheme is proven using the mean value theorem, irreducibility, and monotone 
property of the block tridiagonal matrix arising for the scheme. Numerical tests confirm the accuracy, and demonstrate the reliability and efficiency of the scheme. 
Geometric meshes prove superior to uniform meshes, in the presence of boundary and interior layers.

Keywords:  Geometric mesh, finite difference method, compact scheme, singularity, stiff equations, Korteweg-de Vries equation, maximum absolute errors

S t r e s z c z e n i e
Dwupunktowe zagadnienia z warunkami brzegowymi, dla nieliniowych, osobliwych i nieosobliwych równań różniczkowych zwyczajnych czwartego rzędu, występują 
w różnych obszarach nauki i techniki. Zaprezentowano kompaktowy, trzypunktowy schemat różnicowy do rozwiązywania takich problemów na niejednorodnych siatkach 
geometrycznych. Schemat ten osiąga dokładność piątego lub szóstego rzędu, odpowiednio na siatkach geometrycznych lub jednorodnych. Proponowany schemat przed-
stawia uogólnienie metody typu Numerowa, autorstwa Chawli (IMA J Appl Math 24:35-42, 1979), opracowanej dla równań różniczkowych drugiego rzędu. Udowodniono 
zbieżność schematu, korzystając z twierdzenia o własności średniej, nieredukowalności oraz monotoniczności macierzy blokowo-trójdiagonalnej wynikającej ze schematu. 
Testy numeryczne potwierdzają dokładność, oraz demonstrują niezawodność i wydajność schematu. Siatki geometryczne wykazują przewagę nad siatkami jednorodnymi, 
w obecności warstw brzegowych i wewnętrznych.

Słowa  kluczowe:  Siatka geometryczna, metoda różnic skończonych, schemat kompaktowy, osobliwość, równania sztywne, równanie Kortewega-de-Vriesa, maksymalne 
błędy bezwzględne
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1.  Introduction

In this paper we consider a numerical solution of the fourth order ordinary differential 
equation (ODE):

	 − + = −U r g r U r U r U r U r a r b( ) ( ) ( ) ( )( ) ( , ( ), ( ), ( ), ( )) ,4 1 2 3 0 ∞ < < < < ∞ 	 (1.1)

subject to the boundary conditions U a m U b m U a m U b m( ) , ( ) , ( ) , ( ) ,( ) ( )= = = =1 2
2

3
2

4  where 
m1, m2, m3, m4 are finite real constants. We assume that g ∈ C(6)(a, b), with the possibility that 
g(.) can be singular inside and on the boundaries of the domain [a, b].

Boundary value problems of this kind play an important role in various areas of science 
and technology. The mathematical formulation of noise removal and edge preservation (Yu- 
-Li and Kaveh [1]), Kirchhoff plates (Zhong [2]), theory of plates and shell (Timoshenko 
and Krieger [3]), waves on a suspension bridge (Chen and McKenna [4]), geological folding 
of  crock layers (Budd [5]) and hydrodynamics equation (Wasow [6]) are some examples 
of such problems.

The solvability, existence and uniqueness of the solutions of fourth order boundary 
value problems have been discussed by O’Regan [7], Agarwal [8] and Atabizadeh [9]. For 
solving Eq. (1.1) a number of approaches have been proposed, such as differential transform 
(Momani et. al. [10] ), Adomian decomposition (Wazwaz [11]), homotopy perturbation (Din 
et. al. [12]), variational iteration (Noor et. al. [13]), exponential spline (Zahra [14]) and finite 
difference approximations (Usmani [15], Schroder [16] and Shanthi [17]).

Possible approaches to solving Eq. (1.1) can be roughly divided into two categories. 
The  first category includes methods which solve Eq. (1.1) as is, either analytically as 
in  [10‒13] or numerically as in [14‒17]. The second category includes methods in which 
Eq. (1.1) is first converted to a system of second order ODEs:

	 − + =U r V r( ) ( ) ( ) ,2 0 	 (1.2)

	 − + = −V r g r U r U r V r V r a r b( ) ( ) ( )( ) ( , ( ), ( ), ( ), ( )) , .2 1 1 0 ∞ < < < < ∞ 	 (1.3)

Subsequently, one solves system (1.2) and (1.3) by a technique appropriate to second 
order ODEs (see, for example Twizell and Boutayeb [18]).

In the present paper we describe a new method that belongs to the second category. 
The method uses a fifth order accurate, compact three point finite difference scheme that 
approximates system (1.2) and (1.3) on a specific nonuniform mesh called a geometric 
mesh (Jain et. al. [19], Kadalbajoo [20] and Mohanty [21]); in some application areas, 
like electrochemistry the name “exponentially expanding grid” is also used (Britz [22]). 
The geometric mesh is defined by the formulae: a r r b h r rn k k k= = = −+ −0 1 1< < , ,  
k n h hk k= + =+1 1 1 1( ) , ,τ  where τ > 0 is a constant mesh ratio parameter and n + 2 is the 
total number of nodes. Such a mesh is particularly suitable when ODEs such as Eq. (1.1) or 
(1.2) and (1.3) are singularly perturbed, so that their solutions possess boundary or interior 
layers (Roos [23], Farrell et. al. [24]). The compact, three point character of the scheme 
makes it particularly convenient. This is because in the process of the numerical solution 
of the resulting nonlinear algebraic equation systems (for example, by the Newton method) 
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one obtains linear algebraic systems with block tridiagonal matrices. Such systems are easy 
to solve, using standard algorithms, for example the generalized Thomas algorithm (Thomas 
[25], Bieniasz [26]). In contrast, higher order discretizations associated with non-compact 
stencils lead to the increase of the bandwidth of the resultant coefficient matrix, which 
implies a larger number of arithmetic operations.

There exists an ample literature devoted to the development of compact schemes for 
solving two point boundary value problems for single second order ODEs. In particular, we 
mention here the various improvements of the classical Numerov scheme (Numerov [27], 
Agarwal [28]) and the arithmetic average schemes, obtained by (Chawla [29, 30], Wang [31], 
Bieniasz [32], Mohanty [33], Zhang [34] and Jha [35, 36]). The new scheme proposed in the 
present work, can be regarded as an extension, and adaptation to the nonuniform mesh, of the 
sixth order compact scheme of Chawla [30]. Minor modifications of the scheme are required 
for the singular problems.

The paper is organized as follows: In section 2, we develop the higher order finite 
difference scheme on the geometric mesh. The convergence analysis is contained in section 3. 
In section  4, some computational experiments are described that show the reliability 
of the algorithm. In the last section, the findings are summarized.

2.  Formulation of the O hk( )5  finite difference scheme on the geometric mesh

Let Uk, Vk be the exact solution values and uk, vk be the approximate values of U(r) 
and  V(r) at the mesh node rk respectively. With the help of finite Taylor’s expansions, 
we  first  obtain  the following relation that approximates the second order derivative at rk 
using geometric meshes:

	

h c U U U U

h cU c U c U
k k k k k

k k k

2
0

2
1 1

2
1 1

2
2 1

2
3

1( )

( ) ( )

( )

(

= − + + −

− + +

+ −

+ −

τ τ

kk k kc U O h+ −+ +1 2
2

4 1 2
2 7

/
( )

/
( ) ) ( ), 	 (2.1)

where:

	 c0
21 3 7 3 60= − + + +( )( ) / ,τ τ τ 	

	 c c1
3 2

3
22 1 60 1 2 2 1 2 2 1 15 2= − + − + + = − + + − +( ) / [ ( )], ( )( ) / [ ( )]τ τ τ τ τ τ τ τ ,, 	

	 c c2
3 2

4
22 60 2 2 1 2 2 15 1 2= − − + + + = + − − +τ τ τ τ τ τ τ τ τ τ( ) / [ ( )], ( )( ) / [ ( )] 	

As Eq. (1.3) involves first solution derivatives, we need certain approximations to these 
derivatives. Consider the following geometric mesh approximations to U(1):

	 U U U U hk k k k k
( ) [ ( ) ] / [ ( )],1

1
2 2

11 1= − − − ++ −τ τ ττ 	 (2.2)

	 U U U U hk k k k k+ + −= + − + + +1
1

1
2 2

11 2 1 1( ) [( ) ( ) ] / [ ( )],τ τ τ ττ 	 (2.3)

	 U U U U hk k k k k− + −= − + + − + +1
1

1
2

11 2 1( ) [ ( ) ( ) ] / [ ( )],τ τ τ ττ 	 (2.4)
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In a similar manner, we can obtain approximations  V V Vk k
( ) ( ) ( ) .1

1
1 1and to±  We denote

	   G g r U U V Vk k k k k k+ + + + + += = ±θ θ θ θ θ θ θ( , , , , ), , .( ) ( )1 1 0 1 	 (2.5)

With the help of Eqs. (2.2)‒(2.5), we obtain

	

G g h A U D V h A U D Vk k k k k k k k k k k k= + + + − +2 3 3 3 4 46 1τ τ τ( ) / ( )( ) /( ) ( ) ( ) ( ) 224

2 724 2 3 2 3 3 3 2
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h B U C U V E V

h
k k k k k k k k

k

τ
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[ ( ) ( ) ] /

(
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ττ + + +1 1205 5 5)( ) / ( ),( ) ( )A U D V O hk k k k k 	 (2.6)
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G g h A U D V h A U D Vk k k k k k k k k k k k− −= − + + − +1 1
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( ) [ ( ) (

2 3

4 2 3 2 3 3

120

1 2τ kk kO h( ) ) ] / ( ),3 2 572 + 	 (2.8)

where:

	 A g U B g U C g U Vk r k r k rk k k
= ∂ ∂ = ∂ ∂ = ∂ ∂ ∂( / ) , ( / ) , ( / ) ,( ) ( ) ( ) ( )1 2 1 2 1 12

	

	 D g V E g Vk r k rk k
= ∂ ∂ = ∂ ∂( / ) ( / ) .( ) ( )1 2 1 2

and 	

By using  G Gk kand ±1,  one can look for the approximations to the solution values and 
derivatives;
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where a b l mlm lm, , , ( )=1 1 6  are free parameters to be determined in such a way that we can 
achieve the following high order approximations
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	 U U O h V V O hk k k k k k± ± ± ±− = − =1 2 1 2
5

1 2 1 2
5

/ / / /( ), ( ),  	 (2.11)

	 U U O h V V O hk k k k k k+ + + +− = − = = ± ±θ θ θ θ θ( ) ( ) ( ) ( )( ), ( ), , / .1 1 4 1 1 4 1 1 2  	 (2.12)

With the help of algebraic calculations using MAPLE (see Ref. [37]), explicit expressions 
for the free parameters were obtained and they are shown in Table 1, where we have denoted 
σ τ τ ρ τ τ= + + = + +2 23 1 1and .  Consequently,

	 U U h U O hk k k k k+ += + + + +1
1

1
1 4 2 3 5 51 4 360( ) ( ) ( )( ) ( ) / ( ) ( ), τ τ τ σ 	 (2.13)

	 U U h U O hk k k k k− −= + + + +1
1

1
1 4 3 5 51 1 4 360( ) ( ) ( )( ) ( ) / ( ) ( ), τ τ σ 	 (2.14)

	 U U h Uk k k k+ += − + + − −1 2
1

1 2
1 4 2 3 2 54 7 9 5 4 5760/

( )
/

( ) ( )( )( ) / ( ) τ τ τ τ τ σ ++O hk( ),5 	 (2.15)

	 U U h Uk k k k k k k− −= + + + − −1 2
1

1 2
1 4 3 2 51 4 4 5 9 7 5760/

( )
/

( ) ( )( )( ) / ( τ τ τ τ σσ) ( ),+O hk
5 	 (2.16)
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Further, we define

	 G g r U U V Vk k k k k k± ± ± ± ± ±=1 1 1 1
1

1 1
1  ( , , , , ),( ) ( ) 	 (2.21)

	 G g r U U V Vk k k k k k± ± ± ± ± ±=1 2 1 2 1 2 1 2
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1 2 1 2
1

/ / / /
( )

/ /
( )( , , , , ).     	 (2.22)

With the help of the above approximations (2.13)‒(2.20), we obtain
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G g h D A U D Vk k k k k k k k− −= + + − − +1 1
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We define additional approximations to the first derivatives:
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where tk’s and zk’s are unknown coefficients to be determined so as to achieve the following 
final approximations:
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where k = 1(1)n and 


Gk  is an extra approximation to Gk, to be determined.
The explicit expressions for the unknown coefficients are given in Table 2, where we have 

denoted δ τ τ= + +3 7 32 .  From Eqs. (2.7), (2.8) and (2.23)‒(2.26), we obtain
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Finally, by using Eqs. (2.27) and (2.28), we define

	
  

G g r U U V Vk k k k k k= ( , , , , ).( ) ( )1 1 	 (2.33)

Hence, we have obtained the final geometric mesh finite difference scheme (2.29) and 
(2.30), which is compact and applicable to the numerical solution of the boundary value 
problem (1.1) or (1.2) and (1.3). A more detailed analysis reveals that the local truncation 
error of the scheme is ( ) ( ) ( )τ − +1 7 8O h O hk k  and hence in the case of a uniform mesh (τ = 1), 
the proposed method is sixth order accurate.

The scheme needs an amendment in the vicinity of a singularity, which arises when, 
for example, our domain of integration is [0, 1] and we need to evaluate the terms like rk−

−
1

1
 

at  k  =  1. This leads to the division by zero and hence in order to avoid such situations, 
we need  to incorporate the Taylor’s approximations r h r O hk r

l
k

l
l k−

− − +
=

= +∑1
1 1

0 1 4
5( )

( )
( ),  into 

Eqs. (2.29) and (2.30). The resulting scheme is applicable to singular ODEs such as ODEs 
involving the Laplacian operator in cylindrical and spherical coordinates. For practical 
implementations, one replaces the exact values Uk and Vk present in Eqs. (2.29) and (2.30) by 
approximate values uk and vk, and one omits the residual terms O hk( ).7  The resulting system 
of algebraic equations for uk and vk must be extended with boundary conditions.

3.  Convergence analysis

In this section, we discuss the convergence property of the proposed finite difference 
scheme (2.29) and (2.30) for the numerical solution of the two point boundary value problem 
(1.1). At r = rk, k = 1(1)n, Eq. (1.1) can be written as

	 U V V g r U U V V G k nk k k k k k k k k
( ) ( ) ( ) ( ), ( , , , , , ( ) .2 2 1 1 1 1= = =) ≡ 	 (3.1)

Then, the geometric mesh finite difference method (2.29)‒(2.30) is given by

	
φ

ϕ
k k k k k k k k k

k k k k k

U U U V V V L h
U U U V

( , , , , , ) ( ) ,
( , , ,

− + − +

− + −

+ =1 1 1 1

1 1

0

11 1 0 1 1, , ) ( ) , ( ) ,V V M h k nk k k k+ + = =




	 (3.2)

where

	
φ τ τk k k k

k k k k k

U U U

h c V c V c V c V c

= − + + −

− + + + +

+ −

+ − +

1 1
2

0 1 1 2 1 3 1 2 4

1( )

( /
 VVk−1 2/ ),

	

	
ϕ τ τk k k k

k k k k k

V V V

h c G c G c G c G

= − + + −

− + + +

+ −

+ − +

1 1

2
0 1 1 2 1 3 1 2

1( )

( /


 

 ++ −c Gk4 1 2/ ),
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	 L h O h M h O hk k k k k k( ) ( ) ( ) ( ).= =7 7and 	

The scheme (3.2) in the matrix/vector notation is written as

	 φ( , )
( , ) ,
U V L
U V M

+ =
+ =





0
0ϕ

	 (3.3)

where

	 U V L M=
















=
















=
















=
U

U

V

V

L

L

M

n n n

1 1 1 1

� � �, , , ��
Mn
















. 	

We wish to find the approximations u and v for U and V, respectively, which are 
determined by solving 2n × 2n systems

	
φ
ϕ
( , )
( , ) .
u v
u v

=
=





0
0

	 (3.4)

From (3.3) and (3.4), we obtain

	
φ

ϕ
( , ) ( , )
( , ) ( , ) .
u v U V L
u v U V M

− =
− =



 ϕ

φ
	 (3.5)

Let εk = uk ‒ Uk, ηk = vk ‒ Vk, k = 1(1)n be the discretization errors and ε = u ‒ U,  
η = v ‒ V be the vectors of these errors. Let us denote

	 � � � � �g g r u u v v Gk k k k k k k+ + + + + + += = ±θ θ θ θ θ θ θ θ( , , , , ) , , ,( ) ( )1 1 0 1 	

	 g g r u u v v Gk k k k k k k± ± ± ± ± ± ±=1 1 1 1
1

1 1
1

1


 

( , , , , ) ,( ) ( )
 	

	 g g r u u v v Gk k k k k k k± ± ± ± ± ±=1 2 1 2 1 2 1 2
1

1 2 1 2
1

/ / / /
( )

/ /
( )( , , , , )







 ±±1 2/
 	

	 � � � �
�

g g r u u v v Gk k k k k k k= ( , , , , ) ,( ) ( )1 1 	

	 



E g Gk k k+ + += − = ±θ θ θ θ, , ,0 1 	

	 E g Gk k k± ± ±= − =θ θ θ θ



 , , / ,1 1 2 	

	






E g Gk k k= − , 	

	  



 

ε η θθ θ θ θ θ θk k k k k ku U v V+ + + + + += − = − =( ) ( ) ( ) ( ) ( ) ( ), , ,1 1 1 1 1 1 0 ±±1, 	

	 ε ηk k k k k ku U v V± ± ± ± ± ±= − = −1 2 1 2 1 2 1 2 1 2 1 2/ / / / / /, , 



 

 	

	 ε η θθ θ θ θ θ θk k k k k ku U v V± ± ± ± ± ±= − = − =( ) ( ) ( ) ( ) ( ) ( ), , ,1 1 1 1 1 1 1 



 

 11 2/ , 	

	
 



 



ε ηk k k k k ku U v V( ) ( ) ( ) ( ) ( ) ( ), ,1 1 1 1 1 1= − = − 	

	 ξ ξ τ ξ τ ξ τ τ ξ ε ηk k k k kh
( ) [ ( ) ] / [ ( )], { , },1

1
2 2

11 1= − − − + ∈+ − 	

	 ξ τ ξ τ ξ τ ξ τ τk k k k kh+ + −= + − + + +1
1

1
2 2

11 2 1 1( ) [( ) ( ) ] / [ ( )], 	
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	 ξ ξ τ ξ τ τ ξ τ τk k k k kh− + −= − + + − + +1
1

1
2

11 2 1( ) [ ( ) ( ) ] / [ ( )]. 	

By applying the mean value theorem, one obtains:

	 

 Ek k k k k k k k k+ + + + + + + + += + + + = ±θ θ θ θ θ θ θ θ θα ε β ε γ η δ η θ( ) ( ) , , ,1 1 0 1 	 (3.6)

where

	 α β γ δl
r r

l
r r

l
r r

l
r r

g
u

g
u

g
v

g
v

l k=
∂

∂
=

∂
∂

=
∂

∂
=

∂
∂

=
= = = =

( ) ( ), , , , ,1 1
1 1 1 1

kk k± ±1 1 2, / . 	

Let us define:

	

[ , , , , , ]/ /
( ) ( )

/
( )

/
( )ε ε ε ε ε εk k k k k k

T
+ − + − + −1 2 1 2 1

1
1

1
1 2

1
1 2

1
 

    ==

































+
−

+

a a a

a a a
h

ak

k

k

k

11 12 13

61 62 63

1

1

2
  

ε
ε

ε

114 15 16

64 65 66

1

1

a a

a a a

k

k

k

  

































−

+

η
η

η
,
	 (3.7)

	

[ , , , , , ]/ /
( ) ( )

/
( )

/
( )η η η η η ηk k k k k k

T
+ − + − + −1 2 1 2 1

1
1

1
1 2

1
1 2

1
 

    ==

































+
−

+

b b b

b b b
h

bk

k

k

k

11 12 13

61 62 63

1

1

2� � �
η
η

η

114 15 16

64 65 66

1

1

b b

b b b

E
E
E

k

k

k

� � �

�
�
�

































−

+

,
	 (3.8)

where  are coefficients given in Table 1 and 2, and

	 Ek k k k k k k k k± ± ± ± ± ± ± ± ±= + + +1 1 1
1

1 1 1 1
1

1 1


 α ε β ε γ η δ η( ) ( ) , 	 (3.9)

	 Ek k k k k k k k± ± ± ± ± ± ± ±= + + +1 2 1 2 1 2
1

1 2 1 2 1 2 1 2
1

/ / /
( )

/ / / /
( )

 α ε β ε γ η δ 11 2 1 2/ / ,ηk± 	 (3.10)

	 � � �ε ε η η ηk k k k k k k kh t t t h t E( ) ( ) ( ) ,1 1
0 1 1 2 1

3
3 1= + + + ++ − − 	 (3.11)

	 � � � �η ηk k k k k k k kh z E z E z E z E z E( ) ( )
/(1 1

1 1 2 1 3 1 4 1 5 1 2= + + + + ++ − + − +
   ++ −z Ek6 1 2/ ), 	 (3.12)

	


 Ek k k k k k k k k= + + +α ε β ε γ η δ η( ) ( ) .1 1 	 (3.13)

In view of the Eq. (3.5), we obtain

	
R u u u v v v U U U V V Vk k k k k k k k k k k k k kº φ φ( , , , , , ) ( , , , , ,− + − + − + −−1 1 1 1 1 1 1 kk

k k k k k k k kh c c c c

+

+ − + − += − + + − − + + +

1

1 1
2

0 1 1 2 1 3 1 21

)

( ) ( /ε τ ε τε η η η η ++ −c k4 1 2η / ),

	

	
S u u u v v v U U U V V Vk k k k k k k k k k k k k kº ϕ ϕ( , , , , , ) ( , , , , ,− + − + − + −−1 1 1 1 1 1 1 kk

k k k k k k k kh c E c E c E c E

+

+ − + − += − + + − − + + +

1

1 1
2

0 1 1 2 1 3 11

)

( ) (η τ η τη


 

// / ).2 4 1 2
 + −c Ek

	

Equivalently, in the matrix notation

	
φ
ϕ

ε
η

( , ) ( , )
( , ) ( , )

,
u v U V
u v U V

P
−
−









 =











φ
ϕ 	 (3.14)
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where
P

C R C R
C S C S

Ck k k k

k k k k

=











− −

− −
tridiag

( , ) ( , )
( , ) ( , )

,
(ε η

ε η
1 1

1 1

RR C R
C S C S

C R C Rk k k k

k k k k

k k k k, ) ( , )
( , ) ( , )

,
( , ) ( , )ε η

ε η
ε η









+ +1 1

CC S C Sk k k k( , ) ( , )ε η+ +





















1 1

is a block tridiagonal matrix and C(Rk, ηk) = Coefficient of ηk in Rk etc.
From (3.5) and (3.14), one obtains

	 P T T L Mξ ε= = =, [ ] , [ ] .T Tξ η 	 (3.15)

In the limiting case of small hk, matrix P takes the form

	 lim , ,
hk →

=
−

−










+
+











−
−













0

0
0

1 0
0 1

1 0
0 1

P tridiag
τ

τ
τ

τ



. 	

Thus, the lower, upper and main diagonal blocks are non-zero, since τ > 0. Hence 
the  graph G(P) of the matrix P is strongly connected and consequently, the matrix P is 
irreducible (Varga [38]).

Let
	 α α α α β β β β= =± ± ± ±min { , , }, min { , , },/ /k k k k k k k k1 1 2 1 1 2 	

	 γ γ γ γ δ δ δ δ= =± ± ± ±min { , , }, min { , , }./ /k k k k k k k k1 1 2 1 1 2 	

Further, let ∑l be the sum of the lth row elements of the matrix P, then

	

For

For

l O h O h

l n
h

l l l l

l
l

= ∑ + ∑ +

= − ∑ +

+1

3 2 2 2
2

1

2
1

2

: ( ), ( ).

( ) : (

³ ³

³

τ τ

τ τ)) ( ), ( )( ) ( ).

: (

+ ∑ + + +

= − ∑ +

+O h h O h

l n O h

l l l

l l

4
1

1
2

3

2
2

1

2 1 1

³

³

τ τ β δ

For )), ( ).∑ ++l lO h1 1³

	

This implies that for sufficiently small value of hk, i.e. in the limiting case of hk → 0,
	 ∑ = ∑ = − ∑ = −l l ll l n l n n≥ > ≥ ≥ >τ 0 1 2 0 3 1 2 2 1 0 2 1 2, , ; , ( ) ; , , . 	

Hence, P is monotone (Henrici [39], Young [40]). Consequently P‒1 exists and is non- 

-negative. Let Pi l,
−1  be the (i, l)th element of P‒1, and define

	 P−
=

−
== ∑ = ∑ + =1

1 2 1
2 1

1 2 1
2

∞ ≤ ≤ ≤ ≤max , max ( ) ( ),i n l
n

i l l n l
n

l l l lP T L h M h OO hl( ).7 	

From the obvious identity, P‒1 = (PJ) = J, where J = [1, 1, …, 1]T, we obtain

	 ∑ ∑ = ==
−

l
n

i l lP i n1
2 1 1 1 1 2, , ( ) . 	 (3.16)

Thus, the following bounds can be estimated by using Taylor series expansions
For l = 1:

	 P O hi l l l, ( ),− −∑ = +1 1 21
£

τ
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	 P O hi l l l, ( ).+
−

+
−∑ +1

1
1

1 1
£ £

τ
	

For l = 3(2)2n ‒ 2:

	 P
h

O h vi l l l
l

l
v

, min
( )

( ), ,− −∑
+

+1 1
2

2
1

0≤ ≤ ≥
τ τ

	

	 P
h

O h vi l l l
l

l
v

, min
( )( )

( ), .+
−

+
−∑

+ +
+1

1
1

1
2

2
1

0≤ ≤ ≥
τ τ β δ

	

For l = 2n ‒ 1:
	 P O hi l l l, ( ),− −∑ = +1 1 21£ 	

	 P O hi l l l, ( ).+
−

+
−∑ +1

1
1

1 1£ £ 	

As a result, from Eqs. (3.15) and (3.16), we obtain the following error estimates:

	 ξ ≤ ≤
∞

P T−1 5
. ( ),O hl  provided that β +δ ≠ 0.	 (3.17)

This proves the fifth order convergence of the proposed method. Another result is that 
the coefficients ck, k = 0(1)4 in Eq. (2.1) are negative if ( ) /3 1 2− < τ  and hence we obtain 
a lower bound on τ, whereas the upper bound on τ is less than 1.5, otherwise the grid will 
be too non-uniform to be practical. Thus, we summarise the above result in the following 
theorem:

Theorem 3.1. The geometric mesh finite difference method (2.29) and (2.30) for the 
numerical solution of differential equation (1.1) or (1.2) and (1.3) with sufficiently small 
hk and ( ) / . , ,3 1 2 1 5 1− < < ≠τ τ  gives a fifth order of convergent solution provided that 

∂
∂

+
∂
∂

g
U

g
V

¹ 0.

4.  Computational experiment

To verify the theoretical predictions, we have solved several linear and nonlinear 
problems. We defined the geometric mesh as follows 

	 r a h
b a

b a

n

n0 1

1

1

1 1 1

1 1 1
= =

− − −

− − −







+

+
,

( )( ) / ( ),

( )( ) / ( ),

τ τ τ

τ τ τ

<

>
	

Hence, hk+1 = τhk, k = 1(1)n. If a boundary value problem exhibits a boundary 
layer at the left  boundary, choosing τ > 1 is appropriate. If the layer occurs at the right 
boundary, we choose τ <  1. If the layer occurs in the interior region, then the mesh can 
be arranged by choosing τ > 1 in the first half of the interval and τ < 1 in the second half. 
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The numerical accuracy of the results is expressed using maximum absolute errors ( )( )
( )ε
u m
¥

 
and computational orders of convergence (Θm) for mth order derivatives of u(r).

	 ε
ε

εu k n k
m

k
m

m
u n

u

m

m

m

u U( )

( )

( )

( ) ( ) ( )

( )

( )
max , log∞

≤ ≤= − =1 2

2

2
Θ grids

22ngrids
















. 	

Numerical computations were performed using long double arithmetic extended precision 
variables having 80 bits and 18 digits precision. The code was written in C and run under 
Linux operating system. For solving linear or nonlinear algebric equations resulting from 
the discretisation, the Newton method and the Thomas algorithm were used, with the error 
tolerance being £ 10‒15.

Example 4.1 (Conte [41]) The fourth order two point boundary value problem

	 U r U r U r r r( ) ( )( ) ( ) ( ) ( ) , ,4 2 21
2

1 0 1− + + = +λ λ
λ

< < 	

	 U U U U( ) , ( ) sinh( ), ( ) , ( ) sinh( ),( ) ( )0 1 1 3
2

1 0 1 1 1 12 2= = + = = + 	

possesses analytical solution U r r r( ) sinh( ).= + +1
2

2
 We know that ±1 and ±λ are the 

eigenvalues of this equation and hence the problem is stiff for large values of λ. We have 
solved the problem for small as well as for large values of λ. The solution is found accurate 
for λ < 108 both in the case of uniform and geometric meshes. Table 3 presents errors of 
the approximate solutions and computational orders of convergence obtained for λ = 108, 
in the case of uniform meshes (τ = 1) and geometric meshes (τ ≠ 1). It is evident that the 
geometric mesh technique is superior to the uniform mesh.

Example 4.2 (Mohanty [33]) The fourth order singular linear problem in polar coordinates

	 ∇ +








 = + +

−
−

−



4
2

2

2

2 31 2 2 2U r d
dr r

d
dr

U r
r r r

( ) ( ) ( ) ( )
≡

λ λ λ λ λ λ 

e rr , ,0 1< < 	

	 U U U U e( ) ( ) , ( ) ( ) ,( ) ( )0 0 1 1 12 2= = = = 	

possesses analytical solution U(r) = er. The choice of λ = 0,1 and 2, corresponds to Cartesian, 
cylindrical and spherical coordinates respectively.The errors for the various values of n 
and λ are reported in Table 4.

Example 4.3 (Elcrat [42]) The nonlinear boundary value problem arising from a model 
of the axisymmetric flow of an incompressible fluid contained between infinite disks is:

	 U r U r U r r r r e r r e rr r( ) ( )( ) ( ) ( ) ( )( ) ( ) ,4 2 2 2 2 21 1 4 11 8 0= − − + + − + +λ λ < <11, 	

	 U U U U e( ) , ( ) , ( ) , ( ) .( ) ( )0 1 1 0 0 1 1 62 2= = = − = − 	

The analytical solution is U(r) = (1 ‒ r2)er. The errors obtained are given in Table 5, for 
various values of n, and for λ = 103.



67

Example 4.4 (Takaoka [43]) The boundary value problem arising from the steady state 
form of the Korteweg-de Vries equation of fifth order is:

	
U r U r U r U r

r

( ) ( )( ) ( ) ( ) ( )

sin( )[ ( )

4 2 2

2 2

1
2

2
10 2 200 100

= + −

+ + +

λ

λ
π π λ π −− λ πsin( )],10 r

	

	 U U U U r( ) ( ) ( ) ( ) , .( ) ( )0 1 0 1 0 0 12 2= = = = < < 	

The analytical solution is U(r) = λsin(10πr). The maximum absolute errors obtained 
for λ = 4 are given in Table 6 for various values of n.

5.  Conclusion and remarks 

A compact, three point finite difference scheme using geometric mesh has been designed 
to obtain accurate numerical solutions of fourth order two point regular and singular 
boundary value problems for nonlinear ordinary differential equations. The theoretical order 
of accuracy is 5 (or 6 in the limit of uniform meshes).The scheme is shown theoretically to 
be convergent when the grid ratio τ is ( ) / . .3 1 2 1 5− < <τ

Computational tests confirm that the scheme converges and is applicable both to singular 
and non singular differential equations. Numerical solutions obtained using geometric 
meshes prove more accurate than those corresponding to uniform meshes, when local layers 
are present. The scheme can be effectively combined with the Newton-method and Thomas 
algorithm for solving block-tridiagonal linear algebraic systems arising in the calculations.

The authors would like to thank Indian National Science Academy and Polish Academy of Sciences 
for the support of this research work which was funded by the grant: Intl/PAS/2014/2608 received by 
the first author.
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T a b l e  1
Expressions for the coefficients alm, blm, l, m = 1(1)6 in Eqs. (2.9) and (2.10)

a11
3 5 12 16 1= − + +τ τ σ τ( ) / [ ( )] b11

43 16 1= − +τ ρ τ/ [ ( )]

a12
22 5 10 4 16= + + +( )( ) / ( )τ τ τ σ b12

22 3 2 4 16= + + +( )( ) / ( )τ τ τ ρ

a13
22 3 14 4 16 1= + + + +( )( ) / [ ( )]τ τ τ σ τ b13

22 5 6 4 16 1= + + + +( )( ) / [ ( )]τ τ τ ρ τ

a14
32 4 3 96 1= + + +( )( ) / [ ( )]τ τ τ σ τ b14

4 22 96 1= + +τ τ ρ τ( ) / [ ( )]

a15 0= b15
2 22 2 3 96= − + + +τ τ τ τ ρ( )( ) / ( )

a16
2 22 6 6 96 1= − + + + +τ τ τ τ σ τ( )( ) / [ ( )] b16

2 22 2 4 3 96 1= − + + + +τ τ τ τ ρ τ( )( ) / [ ( )]

a21
22 1 4 14 3 16 1= + + + +( )( ) / [ ( )]τ τ τ σ τ b21

22 1 4 6 5 16 1= + + + +( )( ) / [ ( )]τ τ τ ρ τ

a22
22 1 4 10 5 16= + + +( )( ) / ( )τ τ τ στ b22

22 1 4 2 3 16= + + +( )( ) / ( )τ τ τ ρτ

a23 12 5 16 1= − + +( ) / [ ( ) ]τ σ τ τ b23 3 16 1= − +/ [ ( ) ]ρ τ τ

a24
22 1 6 6 1 96 1= − + + + +( )( ) / [ ( )]τ τ τ σ τ b24

22 1 3 4 2 96 1= − + + + +( )( ) / [ ( )]τ τ τ ρ τ

a25 0= b25
22 1 3 2 1 96= + + +( )( ) / ( )τ τ τ ρτ

a26 3 4 2 1 96 1= + + +( )( ) / [ ( )]τ τ σ τ b26
22 1 96 1= + +( ) / [ ( ) ]τ ρ τ τ

a hk31
22 1= + +( ) / [ ( )]τ τ σ τ b hk31

2 2 1= − + +τ τ ρ τ( ) / [ ( )]

a hk32
21= − +( ) / ( )τ στ b hk32

21 1= − +( )( ) / ( )τ τ ρτ

a hk33
3 22 6 4 1 1= + + + +( ) / [ ( ) ]τ τ τ σ τ τ b hk33 2 1 1= + +( ) / [ ( ) ]τ ρ τ τ

a hk34
21 6= − +( ) / ( )τ τ σ b hk34

2 21 6= −τ τ ρ( ) / ( )

a35 0= b hk35
22 1 6= + +τ τ τ ρ( )( ) / ( )

a hk36 3 1 6= + +τ τ τ σ( )( ) / ( ) b hk36 1 1 2 6= + +τ τ τ ρ( )( ) / ( )

a hk41
3 24 6 2 1= − + + + +( ) / [ ( )]τ τ τ σ τ b hk41

2 2 1= − + +τ τ ρ τ( ) / [ ( )]

a hk42
31= +( ) / ( )τ στ b hk42

21 1= − +( )( ) / ( )τ τ ρτ

a hk43 2 1 1= − + +( ) / [ ( ) ]τ σ τ τ b hk43 2 1 1= + +( ) / [ ( ) ]τ ρ τ τ

a hk44 1 3 1 6= − + +( )( ) / ( )τ τ σ b hk44 2 1 6= − + +( )( ) / ( )τ τ ρ

a45 0= b hk45
22 1 1 6= − + +( )( ) / ( )τ τ ρτ

a hk46 1 6= +( ) / ( )τ σ b hk46
21 6= −( ) / ( )τ ρ
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a hk51
2 2 1= +τ σ τ/ [ ( )] b hk51

2 2 2 1= + +τ τ ρ τ( ) / [ ( )]

a hk52
23 6 2 2= − + +( ) / ( )τ τ στ b hk52

3 24 2 2 2= − + + +( ) / ( )τ τ τ ρτ

a hk53
2 4 2 2 1 2 1= + + + +( )( ) / [ ( ) ]τ τ τ σ τ τ b hk53

3 23 6 4 2 2 1= + + + +( ) / [ ( ) ]τ τ τ ρ τ τ

a hk54
2 21 24 1= − − +( ) / [ ( )]τ τ τ σ τ b hk54

2 2 1 2 24 1= − − + +τ τ τ τ ρ τ( )( ) / [ ( )]

a55 0= b hk55
3 24 6 1 24= − + + +τ τ τ τ ρ( ) / ( )

a hk k k k k k56
2 25 5 24 1= − + + +( ) / [ ( )]τ τ τ σ τ b hk56

3 22 5 3 1 24 1= − + + − +τ τ τ τ ρ τ( ) / [ ( )]

a hk61
22 4 1 2 2 1= − + + + +( )( ) / [ ( )]τ τ τ σ τ b hk61

3 22 4 6 3 2 1= − + + + +( ) / [ ( )]τ τ τ ρ τ

a hk62
22 6 3 2= + +( ) / ( )τ τ σ b hk62

3 22 2 4 1 2= + + +( ) / ( )τ τ τ ρτ

a hk63 1 2 1= − +/ [ ( )]σ τ b hk63 1 2 2 1= − + +( ) / [ ( ) ]τ ρ τ τ

a hk64
25 5 1 24 1= + + +( ) / [ ( )]τ τ σ τ b hk64

3 23 5 2 24 1= − − − − +( ) / [ ( )]τ τ τ ρ τ

a65 0= b hk65
3 26 4 1 2= + + +( ) / ( )τ τ τ ρ

a hk66
2 1 24 1= + − +( ) / [ ( )]τ τ σ τ b hk66

2 1 1 2 24 1= + − + +( )( ) / [ ( ) ]τ τ τ ρ τ τ

T a b l e  2
Expressions for the coefficients ti, i = 0(1)3, zj j = 1(1)6 in Eqs. (2.27) and (2.28)

t0
5 4 3 21 27 133 155 10 62 18 60 2= − + + + − − − +( )( ) / [ ( )]τ τ τ τ τ τ δσ τ

t1
6 5 4 3 23 60 302 555 422 140 18 60 2 1= − + + + + + + + +( ) / [ ( )( ) ]τ τ τ τ τ τ σ τ τ δ

t2
6 5 4 3 227 190 508 735 628 270 42 60 2 1= + + + + + + + +τ τ τ τ τ τ τ δσ τ τ( ) / [ ( )( )]]

t3
6 5 4 3 212 65 103 90 103 65 12 120 2= − + + + + + + +τ τ τ τ τ τ τ δσ τ( ) / [ ( )]

z1
6 5 4 3 2 26 15 28 15 6 6 1= + − − − + + +( ) / [ ( ) ]τ τ τ τ τ τ δρ τ

z2
6 5 4 3 2 26 15 28 15 6 6 1= − + − − − + + +τ τ τ τ τ τ τ δρ τ( ) / [ ( ) ]

z3
7 6 5 4 3 227 70 20 52 83 100 25 3 30 1 2 1= − + + − + + + − + +( ) / [ ( )(τ τ τ τ τ τ τ δρ τ τ)) ]2

z4
7 6 5 4 3 23 25 100 83 52 20 70 27 30 2 1= − − − − + − − − + +τ τ τ τ τ τ τ τ δρ τ τ( ) / [ ( )( )) ]2

z5
6 5 4 3 248 157 133 21 83 107 33 15 2 1= − + + − + + + + +( ) / [ ( )( )]τ τ τ τ τ τ δρ τ τ

z6
6 5 4 3 233 107 83 21 133 157 48 15 1 2 1= + + − + + + + +τ τ τ τ τ τ τ δρ τ τ( ) / [ ( )( )]
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T a b l e  3
Solution errors obtained for example 1*

n λ εu
( )¥ ε

u( )
( )

2
¥ Θ0 Θ2 τ εu

( )¥ ε
u( )
( )

2
¥

8 1e08 2.40e-11 2.40e-11 --- --- 0.9980 4.52e-12 4.52e-12
16 1e08 5.32e-13 5.32e-13 5.5 5.5 0.9991 6.00e-14 5.98e-14
32 1e08 1.58e-14 1.58e-14 5.1 5.1 0.9997 9.70e-16 9.71e-16

T a b l e  4
Solution errors obtained for example 2*

n λ εu
( )¥ ε

u( )
( )

2
¥ Θ0 Θ2 τ εu

( )¥ ε
u( )
( )

2
¥

8 0 1.97e-07 8.09e-08 --- --- 0.985 1.90e-08 3.12e-08
16 0 4.34e-09 1.78e-09 5.5 5.5 0.991 8.82e-10 9.61e-10
32 0 8.12e-11 3.34e-11 5.7 5.7 0.996 8.52e-12 1.17e-11
8 1 7.56e-05 1.45e-03 --- --- 1.160 1.67e-05 2.75e-04
16 1 7.80e-06 3.81e-04 3.3 2.0 1.110 3.46e-07 5.25e-05
32 1 7.50e-07 8.86e-05 3.4 2.1 1.040 6.70e-08 1.84e-05
8 2 5.64e-05 5.23e-04 --- --- 0.910 1.22e-05 8.53e-04

16 2 3.94e-06 3.75e-05 3.8 3.9 0.960 1.21e-06 1.68e-05
32 2 2.65e-07 2.49e-06 3.9 3.8 0.790 8.67e-08 1.98e-06

T a b l e  5
Solution errors obtained for example 3*

n λ εu
( )¥ ε

u( )
( )

2
¥ Θ0 Θ2 τ εu

( )¥ ε
u( )
( )

2
¥

8 1e03 1.53e-09 8.31e-08 --- --- 0.96 1.05e-10 2.72e-08
16 1e03 2.77e-11 1.51e-09 5.8 5.9 0.98 2.29e-12 3.79e-10
32 1e03 4.69e-13 2.53e-11 5.9 5.9 0.99 4.42e-14 5.84e-12

T a b l e  6
Solution errors obtained for example 4*

n λ εu
( )¥ ε

u( )
( )

2
¥ Θ0 Θ2 τ εu

( )¥ ε
u( )
( )

2
¥

8 4 2.40e-10 3.90e-09 --- --- 0.995 2.99e-11 4.66e-09
16 4 5.32e-12 8.57e-11 5.5 5.5 0.997 6.49e-13 1.05e-10
32 4 1.06e-13 1.60e-12 5.7 5.8 0998 2.55e-14 2.07e-12

*  Column 3‒6 refer to uniform meshes, column 7‒9 refer to geometric meshes.
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1.  Introduction

In [1] Bröcker proved that for any family of semialgebraic sets Ay and any convergent 
sequence yv of parameters the Hausdorff limit of Ayν  exists and is semialgebraic. In [3] 
a short geometric proof of the generalization of Bröcker’s result to the case of sets definable 
in an o-minimal structure was given.

The aim of this paper is to present an elementary proof of the following one-parameter 
case of this result 

Theorem 1. Let A n⊂ ×   be a definable subset in an o-minimal structure on  

( , , ) + ⋅  such that for any y c c∈ ( , ), ,0 0>  the fibre A x y x Ay
n: { : ( , ) }= ∈ ∈  is a bounded 

Lipschitz cell with constant L independent of y. Then the Hausdorff limit lim
y yA
→0

 exists and is  

definable.
For the convenience of the reader we present in Section 2 results on Hausdorff distance 

and o-minimal structure that we use in the proof of the main result. 

2.  Preliminaries

2.1.  Hausdorff distance.

Let (X, d) be a complete metric space, denote by (X) the space of all non-empty compact 
subsets in X.

Definition 1. For any two sets Y Y X1 2, ( )∈  we define Hausdorff distance as

	 d Y Y d x y d x yH x Y y Y y Y x Y
( , ) max{max min ( , ),max min ( , )}1 2

1 2 2 1

=
∈ ∈ ∈ ∈

	

Remark 1. Hausdorff distance of two sets is the infimum of positive numbers ε > 0 such 
that each of them is contained in the ε-envelope of the other, i.e.
	 d Y Y Y B Y Y B YH ( , ) inf{ ; ( , ) and ( , )}1 2 2 1 1 20= ⊆ ⊆ε ε ε> 	

where
	 B Z B zz Z( , ) ( , )ε ε= ∈ 	

for any Z X∈( ) and .ε> 0

Remark 2. Observe that the function d X X: ( ) ( ) × → +  defined by the following 
formula

	  d Y Y d x Y x Y Y Y X( , ) : max{ ( , ) : }, , ( )1 2 2 1 1 2= ∈ ∈for  C 	

where

	 d x Y d x y y Y x X Y X( , ) : min{ ( , ) : }, , ( )= ∈ ∈ ∈for  C 	
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cannot be used to define a metric on (X) as in general the function d  is not symmetric, 
we have only the following

	 d Y Y d Y Y d Y Y YY XH ( , ) max{ ( , ), ( , )} ( ).1 2 1 2 2 1 1 2= ∈  for  	

Example 2. Let Y1 = (0,15) and Y2:=[8,112] × {0}, then

	  d Y Y d Y Y( , ) ( , ).1 2 2 117 113= = = 	

By definition, in this example we have dH(Y1, Y2)=113.
We end this section with the following characterization of convergence in Hausdorff 

metric.
Theorem 3. Let X be a compact metric space, A A Xv, ( ), , , ,∈ = ν 1 2 3 . Then the 

sequence Av converges to A in Hausdorff metric ( )A Aν  →  iff the following two conditions 
hold

1)  ( , , ) ,x A x x x A
k k kν ν ν ν ν ν∈  → ⇒ ∈0 1 2 3 0< < <

2)  x A x A such that x x0 0∈ ⇒ ∃ ∈  →ν ν ν .

Proof. First we shall prove that conditions 1) and 2) are necessary for the convergence 
in Hausdorff metric.

Assume that A Aν  → ,  since X is a compact set we can find a sequence x A
k kν ν∈  

(with ν ν ν1 2 3< < <)  such that x x
kν  → 0  for some poin x0 ∈ X. We want to show that 

x0 ∈ A. Since the set A is compact and x A
k kν ν∈  there exists y A

kν ∈  such that

	 d x y d x A d A A
k k k kH( , ) ( , ) ( , )ν ν ν ν= → £ 0 	

Therefore d x y
k k

( , ) .ν ν  → 0  We shall show that d x A( , ) .0 0=  Observe that

	 d x A d x y
k

( , ) ( , )0 0£ ν 	

As y A
kν ∈  and consequently

	 d x y d x x d x y
k k k kv( , ) ( , ) ( , ).0 0ν ν ν£ + 	

Therefore d x A x A A( , ) .0 00= ∈ =and

Assume that A Aν  →  and x0 ∈ A. To prove that condition 2) is necessary fix a point 

xν ∈ Aν for v = 1, 2,… such that d x x d x A( , ) ( , ).0 0ν ν=   Then

	 0 00 0 0£ £ £d x x d x A d x A d A AH( , ) ( , ) ( , ) ( , )ν ν ν ν=  →  	

implies d(x0, xν) → 0.



76

Now, we shall prove the opposite implication. Assume to the contrary that conditions 
1) and 2) hold while the sequence (Aν) does not converge to A. Then there exists ε > 0 such 
that dH(Aν, A) > ε for infinitely many ν. Consequently at least one of the inequalities

	  d A A d A A( , ) ( , )ν νε ε> >or 	

holds for infinitely many ν.

In the first case there exist ν ν ν1 2< < and x A
k

∈  such that d x A
k

( , ) ,ν ε>  since X is 

compact replacing x
kν

 by a subsequence we can also assume that x
kν

 converges to a point 

x0 ∈ X. From condition 1) we get x0 ∈ A which contradicts d x A
k

( , ) .ν ε>

In the second case for infinitely many v there exists yν ∈  A such that d y A( , ) ,ν ν ε>  

by compactness of A there exists a sequence ν ν1 2< <  such that d y A
k k

( , )ν ν ε>  and 

y x
kν  → 0  for some x0 ∈ A. By condition 2) there exists x A

k kvν ∈  such that x x
kν  → 0.  

In this situation we have

	 ε ν ν ν ν ν ν< ≤ ≤d y A d y x d y x d x x
k k k k k k

( , ) ( , ) ( , ) ( , )0 0 0+  → 	

which is a contradiction.


Remark 3. The above theorem does not hold without the assumption that X is a compact 
space.

Example 4. Let X be any non-compact complete space, fix x0 ∈ X, let xv ∈ X be a sequence 
that does not contain any convergent subsequence. Put A:= {x0}, Aν = {x0, xν}. Then conditions 
1) and 2) hold true but the sequence Aν does not converge in Hausdoff metric.

2.2.  o-minimal structures.

We shall collect here the basic definitions and properties of o-minimal structures that 
are crucial for our further considerations. For a detailed exposition of o-minimal structures 
we refer the reader to [2].

Definition 2. A structure  on  consists of a collection n of subsets of n, for each 
n ∈ , such that
1.  n is a boolean algebra of subsets of n,
2.  n contains the diagonals d x x x x x x i j nn

n
i i( , {( , ) : } ,0 1 1 ∈ = for ≤ < ≤

3.  if A ∈ n+1, then A ×  and  × A belong to n+1,
4.  if A  ∈  n+1, then π(A)  ∈  n, where π: n+1 → n is the projection on  the first n  

coordinates.
We say that a set A ⊂ n is definable if and only if A ∈ n. A function f: A → m with 

A ⊂ n is called definable if and only if its graph is definable.
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Definition 3. A structure  on  is o-minimal if and only if
1.  {( , ) : } { } ,x y x y a a< ∈ ∈ ∈ 2 1and for each 
2. each set in  is a finite union of intervals ( , ), ,a b a b− +∞ ≤ < ≤ ∞  and points {a}.

A structure on ( , , ) + ⋅  is a structure on  containing the graphs of both addition and 
multiplication.

The main technical tool used in the studies of geometry of sets definable in o-minimal 
structures is the cell decomposition. The notions of a cell and that of a cell decomposition are 
defined inductively.

Definition 4. The cells in 1 exactly are points and open intervals.
A definable set C ⊂ n, where n > 1, is a cell if its image π(C) ⊂ n‒1 by the projection 

π : ( , , , ) ( , , ) n
n n n

nx x x x x∋  → ∈− −
−

1 1 1 1
1

   is a cell and C is one of the following two 
types:
either
	 C f x x C x f xn n= = ′ ∈ × = ′Γ( ) {( , ) ( ) : ( )}π  	

(and then C is called a graph)
or
	 C g g x x C g x x g xn n= = ′ ∈ × ′ ′( , ) : {( , ) ( ) : ( ) ( )}1 2 1 2π  < < 	

(and then C is called a band),

where f: π(C) →  is a continuous definable function (resp. g g C1 2, : ( )π →   are functions 
such that g1 < g2 on π(C) and, for each i ∈ {1, 2}, gi is either a continuous definable function 
gi: π(C) →  or gi is identically equal to ‒¥, or else gi is identically equal to +¥).

A cell C is called a k-cell (where k ∈  È {¥}), if π(C) is a k-cell and f (resp. gi, i = 1, 2 
if finite) is a k-function. Notice that every k-cell is a k-submanifold of n.

Definition 5. A cell decomposition of 1 is a finite collection of open intervals and points 
of the following form:
	 {( , ), ( , ), , ( , ),{ }, ,{ }},− +¥ ¥a a a a a ak k1 1 2 1  	

where a a ak1 2< < <  are real numbers.
A cell decomposition of n

 (n > 1) is a finite partition  of n into cells such that the set 
of all projections {π(C): C∈} is a cell decomposition of n‒1, where π: n → n‒1 is the 
projection on the first n ‒ 1 coordinates as in Definition 4.

Theorem 5. Let (X, d) be a compact metric space, fn: X →  be a sequence of Lipschitz 
continuous functions with a common Lipschitz constant M > 0. Then the sequence (  fn) 
converges uniformly to a function f0 if and only if their graphs converge to the graph of f0 
in Hausdorff metric.

Moreover,
 
f f

n n0 =
→
lim

¥
 is a Lipschitz function with the Lipschitz constant M.
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Proof. Let us notice that if f fn  0  then f0 is a Lipschitz function with constant M.

	 f x f y f x f y M d x y M d x y
n n n n0 0( ) ( ) lim ( ) ( ) lim ( , ) ( , ).− = − ⋅ = ⋅

→ →∞ ∞
≤ 	

We will prove that

	 d graph f graph f f f M d graph f graph fH n n H n( , ) ( ) ( , ).0 0 01£ £− + ⋅ 	

First we shall show the first of the inequalities:

	 d graph f graph f f fH n n( , ) .0 0£ − 	

	 d graph f graph f d graph f graph f d graph f graH n n n( , ) max{ ( , ), ( ,0 0=   pph f0 )} 	
As the inequality is symmetric with respect to f0 and fn, we may assume that 

 d graph f graph f d graph f graph fn n( , ) ( , )}0 0³  and then 

	

d graph f graph f d graph f graph f

x X d x f
H n n( , ) ( , )

max{ : (( , (
0 0

0

= =

= ∈



 xx graph f
x X d x f x x f x
x X f

n

n

)), )}
max{ : (( , ( )), ( , ( ))}
max{ :

£

£ ∈ =

= ∈
0

0 (( ) ( ) }x f x f fn n− = −0

	

Now we shall show that

	 f f M d graph f graph fn H n− + ⋅0 01£ ( ) ( , ) 	

Fix x ∈ X and let y ∈ X such that

	
d graph f graph f d x f x y f y

d x y f x f
H n n( , ) (( , ( )), ( , ( ))

( , ) ( )
0 0

0

³  =

= + − nn ny d x f x graph f( ) (( , ( )), )³ 

0

	

Consequently

	

f x f x f x f y f y f x
M d x y d graph h f

n n n n

H

( ) ( ) ( ) ( ) ( ) ( )
( , ) ( ,

− − + −

⋅ +
0 0

0

£ £

£ ggraph f
M d graph f graph f d graph f graph f
M

n

H n H n

)
( , ) ( , )

(

£

£ ⋅ + =

= +
0 0

1)) ( , )⋅d graph f graph fH n0

	

and taking the limits we conclude the proof.


3.  Proof of the main result

Let us start with some technical results on extending Lipschitz functions
Lemma 6. Let F n: ( , )0 1 × →   be a bounded definable map such that for any  

y ∈ (0, 1) the restriction F x F y xy
n: ( , ) ∋  → ∈  satisfies the Lipschitz condition with 
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a constant  independent of y. Then for any a ∈ n the limit lim ( , )
( , ) ( , )y x a

F y x
→ 0

 exists and 

defines a definable extension of F to a function F n: [ , ) .0 1 × → 

Proof. For any a ∈ n the function ( , ) ( , )0 1 ∋  →y F y a  is definable, so there exists 

the limit F a F y a
y

( , ) : lim ( , ).0
0

=
→

 Now, F y x F a F y x F y a F y a( , ) ( , ) ( , ) ( , ) ( , )− − + − 0 £
 

 F a L x a F y a F a( , ) ( , ) ( , ) ,0 0£ − + −  hence the limit in question exists. Since, the graph 

of F  is the closure of graph (F), the function F  is definable.


Lemma 7 (Banach–McShane–Whitney extension theorem, [6]). Let f  :  S →  be 
L-lipschitz function on the subset S in a metric space X. Then the formula
	 F x f x L d x x x S( ) : sup{ ( ) ( , ) : }= ′ − ⋅ ′ ′∈ 	

For x ∈ X defines the extension of the function f such that F: X →  is L-lipschitz.
Now, we are in a position to give the proof of our main result
Proof of Theorem 1. Induction with respect to n. For n = 0 it is obvious. Let A1 be the 

projection of A onto  × n‒1, by the inductive hypothesis the limit A A
y y0 0 1: lim ( )=

→
 exists 

and is definable. Without loss of generality we may assume that dim(A1)y and dim(Ay) is 
constant for y ∈ (0, c), so all cells Ay are of the same type (a graph or a band).

If all fibres are graphs, there exists a definable function F: A1 →  such that A = graph (F), 
for any y ∈ (0, c), the function Fy is Lipschitz with a constant L independent of y. Using 
lemmas 6 and 7 we can extend this function to a definable function F c n: [ , ) ,0 × →   set 
 F x F x0 0( ) : ( , ),=  for x ∈ n.

Let C graph F A: ( ),= 

0 0  we shall show lim .
y yA C

↔
=

0
 Let yv ∈ (0, c) be a sequence such 

that y x A x xyν ν νν
 → ∈  →0 0, ,let  be a convergent sequence, we shall prove that 

x ∈ C. Let x x x x x xn nν ν
ν= ′ = ′( , ) ( , ).and 0 0

0
 We have ( , ) ( ) , .y x A x Ayν ν ν

′ ∈ ′ ∈1 0 0so  By the 

definition F x F y x x xn n0 0
0( ) lim ( , ) lim ,′ = ′ = =→ →ν ν ν ν

ν
¥ ¥  hence x ∈ C.

Now, let x  ∈  C and yv ∈ (0, c) be a sequence such that yν  → 0.  Since ′ ∈x A0 0 ,  
x F xn

0
0 0= ′ ( )  there is ′ ∈x A yν ν

( )1  such that ′  → ′x xν 0.  Put x F y xn n
ν

ν= ′( , ),  we get x Ayν ν
∈  

and x F y x F x F x xn n
ν

ν ν= ′  → ′ = ′ =( , ) ( , ) ( ) . 0 0 0 0
0  Consequently we have x xν  → 0  which 

proves lim .
y yA C

→
=

0

If  is a band for y ∈ (0, c) proceeding in a similar way, we have A = (G,H), where 
G H A, : 1  →   and define  G H0 0, .  We shall show that
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	 C x x A G x x H xn
n:{ : , ( ) ( )}∈ ′∈ ′ ′ 0 0 0

 £ £ 	

is the Hausdorff limit of Ay as y y c → ∈0 0, ( , ).

Let yν  ∈  (0,  c) be a sequence such that y x A x xyν ν νν
 → ∈  →0 0, , .let  Let 

x x x x x xn
v

nν ν= ′ = ′( , ) ( , ).and 0 0
0  We have ( , ) ( ) , .y x A x Ayν ν ν

′ ∈ ′ ∈1 0 0so  By the definition 

 G x G y x G x G y xv0 0 0 0( ) lim ( , ), ( ) lim ( , )′ = ′ ′ = ′→ →¥ ¥ν ν ν ν ν  so

	  G x x H xn0 0
0

0 0( ) ( )′ ′£ £ 	

and hence x0 ∈ C.
Now, fix x0 ∈ C and yν ∈ (0, c) such that yν  → 0.  We have ′ ∈x A0 0  and G x0 0( )′ £  

x H xn
0

0 0£  ( ).′  There exists ′ ∈x A yν ν
( )1  such that ′  → ′x xν 0.

If  G x H x0 0( ) ( )′ = ′  put x G y x H y xn
v = ′ ′1

2
( ( , ), ( , )).ν ν ν ν  If  G x H x0 0( ) ( )′ ′<  put 

x
x G x

H x G x
H y x G y x Gn

nν
ν ν ν ν=

− ′
′ − ′

′ − +
0

0 0

0 0 0 0



 

( )
( ( ) ( ))

( ( , ) ( , )) (yy xν ν, ).

Then x A x xyν νν
∈  →and 0.



R e f e r e n c e s

[1]	 Bröcker L., Families of semialgebraic sets and limits, [in:] Real algebraic (Rennes, 1991), volume 
1524 of Lecture Notes in Math., 145-162, Springer 1992.

[2]	 van den Dries L., Tame topology and o-minimal structures, Mathematical Society Lectures Notes, 
248, Cambridge University Press, London 1998.

[3]	 Kocel-Cynk B., Pawłucki W., Valette A., A short geometric proof that Hausdorff limits are 
definable in any o-minimal structure, Adv. Geom., 14, no. 1, 2014, 49-58.

[4]	 Lion J.-M., Speissegger P., A geometric proof of the definability of Hausdorff limits, Selecta 
Math. (N.S.), 10, no. 3, 2004, 377-390.

[5]	 Łojasiewicz S., Ensembles semi-analytiques, IHES, 1965.
[6]	 McShane E.J., Extension of range of functions, Bull. Amer. Math. Soc., 40, 1934, 837-842.



*  Piotr Kot (pkot@pk.edu.pl), Institute of Mathematics, Faculty of Physic, Mathematics and Computer 
Sciences, Cracow University of Technology.

TECHNICAL TRANSACTIONS
FUNDAMENTAL SCIENCES

1-NP/2016

CZASOPISMO TECHNICZNE
NAUKI PODSTAWOWE

PIOTR KOT*

PEAK SET ON THE UNIT DISC

ZBIÓR SZCZYTOWY DLA DYSKU JEDNOSTKOWEGO

A b s t r a c t

Abstract: We show that any compact subset K in the boundary of the unit disc D with a zero 
measure is a peak set for A(D).

Keywords: 

S t r e s z c z e n i e

Pokażemy, że dowolny podzbiór zwarty K miary zero w brzegu dysku jednostkowego jest 
zbiorem szczytowym dla A(D).

Słowa  kluczowe: 
DOI: 10.4467/2353737XCT.16.141.5752



82

1.  Schwarz integral

The goal of this paper is to consider some properties of one-dimensional holomorphic 
functions in the unit disc. We focus our attention on such boundary properties of these 
functions which imply their uniqueness. In this aspect Luzin-Privalov theorem [4‒6] seems 
to be crucial. This theorem refers to a meromorphic function f (z) of the complex variable z 
in a simply-connected domain D with rectifiable boundary Γ. If f (z) takes angular boundary 
values zero on a set E ⊂ Γ of positive Lebesgue measure on Γ, then f (z) =0 in D. There is 
no function meromorphic in D that has infinite angular boundary values on a set E ⊂ Γ 
of positive measure.

We are going to construct some examples of a holomorphic non-constant function f 
for a given E set of measure zero with f = 1 on E.

It will turn out that this E set is a peak set for a proper algebra of holomorphic functions.
We say that a compact set K is a peak set for A(D) if there exists f ∈ A(D) such that 

f K f K<1 1on and onD \ .=  Stensönes Henriksen has proved [2] that every strictly 
pseudoconvex domain with C¥ boundary in Cd has a peak set with a Hausdorff dimension 
2d ‒ 1.

In this paper we give an alternative, even stronger construction for the unit disc. In the 
context of the Luzin-Privalov theorem we give the optimal construction for algebra A(D).

Main tool in our construction is the Schwarz kernel.
Let us consider a natural measure σ on boundary of the unit circle ∂D. For a given u 

which satisfies a Hölder condition we use Schwarz integral (see [7, 8]):

	 Su z
i

u t t z
t z

dt
t

( ) : ( ) .=
+
−∂∫

1
2π D

	

We can easily observe that Su ∈ O(D).
Then the Schwarz integral formula Su defining an analytic function, the boundary values 

of whose real part coincide with u. Additionally, the real part of Su is a continuous harmonic 
function on D  (see [1, The Basic Lemma].

There exists a harmonic function v on D so that Su = u + iv.
However when applying the above integral formula, a very important and more difficult 

problem arises concerning the existence and the expression of the boundary values of the 
imaginary part v and of the complete function Su by the given boundary values of the real 
part u. Still, in some cases we have complete information about v.

If a given function u satisfies a Hölder condition, then the corresponding values 
of imaginary part v on ∂D are expressed by the Hilbert formula (see [3, 1, pp. 45-49]):

	 v u t t dt( ) ( ) cot .φ
π

ϕπ
= −

−





∫

1
2 20

2
	

The above formula is a singular integral and exists in the Cauchy principal-value sense.
Moreover, if u satisfies a Hölder condition then the values of v exist on all φ ∈ ∂D 

and satisfy the same Hölder condition as u. Now we can recover Su using v in the following 
way:
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	 Su z v t t z
t z

dt
t

c( ) : ( ) .=
+
−

+
∂∫

1
2 1π D

	

But now the imaginary part of Su is continuous on D,  so Su ∈ A(D) if u satisfies 
a Hölder condition.

2.  Peak sets

Lemma 1. Assume that K, D are distinct compact sets in ∂D. Then there exists a function 
u ∈ C¥(∂D) so that u = 0 on D, u = 1 on K and 0 £ u £ 1 on ∂D.

Proof. There exist open arcs I e a t bi
it

i i:{ : }2π < <
 

such that K Iii

n
⊂

=1

 and 

I Di ∩ = ∅.  In fact we can assume that I I i ji j∩ = ∅ for ¹ .  Now there exist functions 

u Ci : [ , ] ( )∂ → ∈ ∂D D0 1 ¥  so that ui = 1 on Ii, and ui = 0 on D but with distinct supports. It is 

enough to define u ukk

n
=

=∑ 1
.

Theorem 2. Let K be a compact subset of ∂D measure zero (σ(K) = 0). There exists 

a function f ∈ A(D) such that f K f K<1 1on and onD \ .=

Proof. Let us choose ε > 0 and define

	 D z z w
w Kε ε: { : inf }= ∈ ∂ −

∈
D ³ 	

There exists uε ∈ C¥(∂D) such that 0 £ uε £ 1, uε(z) = 0 if z ∈ Dε and uε(z) = 1 if z ∈ K. 
In particular Suε ∈ A(D) and 0 £ R Suε £ 1.

Let us choose z K∈D \  and define δ ε
ε

( , ) : inf .\z z ww D= −∈∂D  We can estimate

	 Su z t z
t z

dt
t

D t z
t z

D
D t Uε

ε

επ
σ

π
σ

ε

( )
( \ )

max
( \

\ ( )
£ £ £

1
2 2

+
−

∂ +
−

∂
∂ ∈∫ D

D D εε

δ ε
)

( , )
.

z
	

Let us consider the following compact set:

	 T z z wn w K
n n:{ : inf }∈ − +

∈

− −D ³ 2 2 2 	

There exists εn
n∈ −( , )0 2 2  such that σ ε( \ ) .∂ −D D

n

n< 2 2  Now let g Su An n
: ( ).= ∈ε D

Obviously R Rg K gn n=1 0 1on and £ £ .
Moreover if z ∈ Tn then 

	 g z
D

zn
n

n

n n n
nn( )

( \ )
( , )

.£ £
σ

δ ε
ε∂

+ −
=

−

− − −
−D 2

2 2 2
2

2

2 2 	

Now we are able to define g gnn N
: .= +

∈∑1
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Since T Knn N
=

∈
D \



 we can observe that g O C K∈ ∩( ) ( \ ).D D  As 0 1£ £Rgn  and 

Rgn = 1 on K we have lim ( ) .z w ng z w K→ = ∈R ¥ for

Now we choose f
g

f O C K: exp . ( ) ( \ ).= −








 ∈ ∩
1 Obviously D D

Since R R R1 02 2g
g
g

g
g

K= = > on Ω \  we may easily observe that 0 1< <f  on Ω \ .K
 

Additionally due to lim
( )z w g z→ =
1 0  for w ∈ K we have f = 1 on K and f ∈ A(Ω).

Example 3. There exists K ⊂ ∂D, a compact set with Hausdorff dimension equal one 
which is also a peak set for A(D).

Let us consider a sequence of closed distinct intervals In
n n: [ , ].= − − −2 22 1 2  There exists 

Cantor set Cn ⊂ In with Hausdorf dimension equal n
n +1

.  Now we define a compact set

	 K e t Cit
n

n

: { } { : }= ∪ ∈
=

1 2

1

π
¥



	

in ∂D with Hausdorff dimension one and due to Theorem 2 we conclude that K is a peak set 
for A(D).
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1.  Introduction

In recent years, several researchers have studied various modifications of the Baskakov- 
-Durrmeyer operators. The approximation properties of these operators in many different 
spaces were considered, for example, in [4, 8, 10, 11, 18, 19].

A large amount of literature is available on approximation of function of one variable, but 
the corresponding problem for bivariate functions has received less attention. The bivariate 
Bernstein operator was first introduced by Dhingas [3] and it was also considered by Lorentz 
[9] and Stancu [14]. Recently, some positive linear operators for function of two variables 
and their approximation properties were investigated in a series of research articles (e.g. 
[2, 5, 6, 7, 12, 13, 15, 17, 20, 21].

In this paper, we will introduce the Baskakov-Durrmeyer type operators in the space 
of continuous functions of two variables. This is an extension of the paper [10] for a bivariate 
case.

Let    0
2

0 0= [0, ) =+
+

+ +×¥ and .  We denote by C( )2+  the space of all real-valued 

functions continuous on +
2  and by CB ( )2

+  ‒ the space of functions continuous and 

bounded on +
2 .  The norm on CB ( )2

+  is defined by

	 f f x yC
x yB ( )

( , )
2

2
= ( , ) .





+
+∈

sup 	

Let

	 W x e
k
i
n a x

k xn k
a

ax
x

i

k

i
k i

k

n k,
1

=0

( ) = ( )
!(1 )

,
−

+ −
+∑









+
	

where a n n n n n i ii∈ = = + + −+� …0 0 1 1 1 1, ( ) , ( ) ( ) ( ), .³

We consider the class of operators Mn m
a b

,
, , ,α β  given by the formula

	
M f x y mn W x W y

kn m
a b

k l
n k
a

m l
b

,
, , ,

, =0
, ,( ; , ) = ( ) ( ) 1

( 1)
1

(
α β

α β

¥

∑ + + +Γ Γ ll

e ns e mz f s z dsdzns k mz l

+

× ∫ ∫ − + − +

1)

( ) ( ) ( , )
0 0

¥ ¥ α β

	

for ( , ) 2x y ∈ + ,  where m n a b, 10∈ ∈ −+
, , , , . α β>  It is clear that the operator Mn m

a b
,
, , ,α β

 
is  linear and positive on +

2 .  In this paper we study some approximation properties of 

Mn m
a b

,
, , ,α β  in the space of continuous functions of two variables on a compact set. We find 

the order of this approximation using full and partial modulus of continuity.
Observe that if f s z f s f z( , ) = ( ) ( )1 2 ,  then

	 M f x y M f x M f yn m
a b

n
a

m
b

,
, , , ,

1
,

2( ; , ) = ( ; ) ( ; ),α β α β 	 (1.1)
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where
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a

k
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α
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1
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,
0

1( ; ) = ( ) 1
( 1)

( ) ( ) .
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Γ
	

Some properties of the operator Mn
aα, ,  in particular, an estimation of the rate of 

convergence, were studied in [10].
Let ( , ) 2x y ∈ +  and

	 e s z s z s z s x z y i j s zi j i j
x y
i j i j, ,( , ) = ( , ) = ( ) ( ) , = 0 1,2,4, , , , ( , ),φ − − ∈∈ +

2 . 	

Now, we give some lemmas which will be useful in the future proofs of the main results. 
The following lemmas are simple consequences of the above definitions and the results 
obtained in [10, Lemma 2.2, Lemma 2.3].

Lemma 1. Let m n a b x y, 10
2∈ ∈ − ∈+
+, , , , . ( , ) α β> For  we get
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a b
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+

	 (1.3)
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,
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+

	 (1.4)
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	 (1.5)
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m
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,
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2
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2

2

2
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	 (1.6)

Lemma 2. Let m n a b x y, 10
2∈ ∈ − ∈+
+, , , , . ( , ) α β> For  we get

	 M x y
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ax
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x y,
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+
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+
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a x
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Theorem 1. For each f CB∈ +( )2
 ,  we have

	 M f fn m
a b

C C
B B

,
, , ,

( ) ( )( ) 2 2
α β





+ +
£ 	

for all n m, ∈.

Proof. Using the definition Mn m
a b

,
, , ,α β ,  we obtain
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= =
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which gives the result.		  

Theorem 2 [22]. Let I1 and I2 be compact intervals of the real line. Let n m, ∈  and 

T C I I C I In m, : ( ) ( )1 2 1 2× → ×  be linear positive operators. If

	
n m

n m
i j i jT e e i j

,

, ,( ) = , , { 0,0 1 0 0 1 }
→

∈
¥

lim ( ) ( ), ( , ), ( , ), 	

and

	
n m

n mT e e e e
,

2,0 0,2 2,0 0,2( ) =
→

+ +
¥

lim ,, 	

uniformly on I1 × I2, then the sequence (Tn,m  f ) converges to f uniformly on I1 × I2,  for any 
f C I I∈ ×( 1 2 ).

Let A, B > 0. Throughout the rest of this paper we will denote  AB A B2 = [0, ] [0, ]× .

Theorem 3. Let ( , ) 2x y AB∈  are fixed. If  f C AB∈ ( )2
 ,  then 

	
n m

n m
a bM f x y f x y

,
,
, , , ( ; , ) = ( , )

→¥
lim .α β 	



89

Moreover, this convergence is uniform on  AB
2 .

Proof. Using (1.2)‒(1.6), we have

	
n m

n m
a b i j i jM e x y e x y i j

,
,
, , , , ,( ; , ) = ( , ), , { 0,0 1 0

→
∈

¥
lim ( ) ( ), ( , )α β ,, ( , )0 1 } 	

and
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a bM e e x y e x y e x y

,
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, , , 2,0 0,2 2,0 0,2( ; , ) = ( , ) ( , )

→
+ +

¥
lim α β 	

uniformly on  AB
2 .  Applying Theorem 2, the proof of the theorem is completed.	 

2.  Local approximation results

In this section we will investigate the degree of approximation for functions of two 

variables by operators Mn m
a b

,
, , ,α β  in terms of the modulus of continuity on a compact set.

Let f C AB∈ ( ) 02
 and δ> .  The full continuity modulus of the function  f  is defined 

as (see [1], [16])
	 ω δ

δ

( ; ) = ( , ) ( , )

( )2 ( )2 2
( , ),( , ) 2

f f s z f x y

s x z y
s z x y AB

− + −

∈
−
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and its partial continuity moduli are given by
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s x
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£
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sup 	

	 ω δ

δ

(2)

| |
0

( ; ) = ( , ) ( , ) .f f s z f s y
z y
s A

−

−

£
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It is known that δ ω δ ω δ ω δ δ δ→0 1 2 1 2( ; ) = 0 ( ; ) ( ; ) 0lim ,f f f≤ < ≤for  and for any  

λ ω λδ λ ω δ> ≤0 ( ; ) (1 ) ( ; ), .f f+  The same properties are satisfied by partial continuity 
moduli. The details of the modulus of continuity for the bivariate case can be found in [1].

Theorem 4. Let f C For x yAB AB∈ ∈( ) ( , )2 2
 . ,  we have

	 M f x y f x y fn m
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,
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Proof. Let δ  >  0. If ( ) ( )2 2s x z y− + − £ δ,  then f s z f x y f( , ) ( , ) ( ; ).− £ω δ  If 

( ) ( )2 2s x z y− + − > δ,  then

	 ( ) ( ) ( ) ( )
1.

2 2

2

2 2s x z y s x z y− + − − + −

δ δ
> > 	

Therefore, we obtain
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The operator Mn m
a b

,
, , ,α β  is positive and linear, so
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From Lemma 2 we obtain
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which ends the proof.		  

Theorem 5. If  f C AB∈ ( )2
 ,  then for all ( , ) 2x y AB∈ ,  we have
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Proof. Let f C AB∈ ( )2
 .  Observe that
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Using the properties of the modulus of continuity and (1.5), we have
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where δn n
= 1 .  Similarly, we obtain
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Hence, the proof is completed. 		  
Now, we consider the mixed modulus of smoothness and the modulus of smoothness 

(see [16]). Let δj > 0, j = 1, 2.
The mixed modulus of smoothness is defined as
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and the modulus of smoothness of the first and the second order are given by
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respectively.
Theorem 6. Let f C AB∈ ( )2

  and
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There exists a positive constant C such that, for all ( , ) 2x y AB∈ ,  we have
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Using the definition of Hn m
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and similarly, we get
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where C1, C2, C3 are positive constants. Hence
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for some C > 0 and the theorem is proved.		  
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where C > 0, ( , ) 2x y AB∈ .
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Proof. Let f C AB∈ ( )2
  and δj > 0, j = 1, 2. We shall use the Steklov function of second 

order defined by
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Similarly, we get
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From the above and by Theorem 6, we obtain
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where C is a positive constant. This completes the proof. 	 
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1.  Introduction

Let � …0 0= [0, ) 1 2 0+ = = ∪¥ , { , }, { }    and for every fixed m ∈  let

	 m
m kn n n n k m= = ( , , ) : 11{ },∈ for ≤ ≤n 	

	 +
+∈m

m kx x x x k m= = ( , , ) : 11 0{ }.for ≤ ≤x 	

Analogously we define m. We denote λ λ λ λ= ( , , , )∈ ∈m mn. For Nλ n  we write 

n→ ∞n  if and only if n k mk → + =¥ for 1 2, .  Moreover, for a fixed x y m, ,∈ +�x y  we will 
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and bounded on +
m .
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where a n n n n n i ii∈ = = + + −+� …0 0 1 1 1 1, ( ) , ( ) ( ) ( ), .³
For a real-valued function f defined on the interval [0, ¥), the generalized Baskakov- 

-Durrmeyer type operators is defined by (see [11])
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In the present paper, inspired by operator (1.1), we introduce the following class of 
operators Mn

aα,  given by the formula
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m k∈ ∈ ∈ = − =+ + …, , , ( , , ), , , , .where forN R α α α α1 1 1 2>n a α  It is 

obvious that the operator Mn
aα,

 is linear and positive on +
m .  Basic facts on positive linear 

operators, their generalizations and applications, can be found in [3], [4].
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where
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Some properties of the operator defined by (1.1) in particular, an estimation of the rate 
of convergence, were studied in [11].

Lemma 1 [11]. Let ϕ αr rt t t r x a( ) = 0 1 00 0, , . For , ,∈ ∈ −+R N ≥ > ≥and  we have
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Using the definition of Mn
aα, ,M a

n
α  it is easy to prove the next theorem.

Theorem 1. Let f CB
m∈ +( ) .  Then

	 M f fn
a
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B

m B
m
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( ) ( )� �

+ +
≤M a

n
α 	

for all n m∈� .n
This paper is devoted to a study aimed at obtaining approximation results by using 

the modulus of continuity and the Voronovskaya asymptotic formula for the Baskakov- 
-Durrmeyer type operators defined by (1.2) in the space of uniformly continuous and 
bounded functions of several variables. Approximation properties of various positive linear 
operators for functions of one, two and several variables have been investigated in many 
papers (for example [2], [5], [7], [8], [9], [10], [12], [13]).

2.  Rate of convergence

In this section we shall prove two theorems on the degree of approximation of functions 
belonging to the class C MB

m
n
a( )�+ by α, .M a

n
α

 We shall apply the method used in [6].
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We denote
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Applying the Cauchy-Schwarz inequality we obtain
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From the above, using the linearity of Mn
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In the next theorem we will use the modulus of continuity of f CB
m∈ +( )  given by
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which implies f CB
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j = 1, …, m, we obtain the assertion.		  

From Theorem 3, using the properties of modulus of continuity for uniformly continous 
function (see [1], [4]), we can derive the following corollaries.

Corollary 1. If f CB
m∈ +( ) ,  then

	 lim ,
n n

aM f x f x
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α ( ; ) = ( )
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for every x m∈ +� .  Moreover, this convergence is uniform on every compact set I m⊂ +� .
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3.  The Voronovskaya type theorem

Let n n n m= ( , , )∈ .n  In this part, we will consider the operator Mn
aα, .Mn
aα

 In order 
to state  the Voronovskaya type theorem we need the following result, which is a simple 
consequence of Lemma 1.
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for j = 1, 2,  …, m.
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Proof. Let x be a fixed point in +
m .  By Taylor’s formula we get
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where the function ψx is uniformly continuous and bounded in R+
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m
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From linearity of Mn
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 satisfies the assumption of Corollary 1. Hence
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Using (3.1) we obtain
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From (3.2), (3.3) and Lemma 2 we get the assertion. 	 

Corollary 3. Let x m∈ +� .x  If  f  satisfies the assumption of Theorem 4, then

	 M f x f x O
n

as nn
aα, .( ; ) ( ) = 1

− 





 → ∞M x xn

aα 	



105

R e f e r e n c e s

[1]	 Anastassiou G.A., Gal S.G., Approximation theory: moduli of continuity and global smoothness 
preservation, Birkhauser, Boston 2000.

[2]	 Atakut Ç., Büyükyazıcı İ., Serenbay S., Approximation properties of Baskakov-Balazs type 
operators for functions of two variables, “Miskolc Math. Notes” 16.2/2015, 667–678.

[3]	 DeVore R.A., Lorentz G.G., Constructive Approximation, Springer–Verlag, Berlin 1993.
[4]	 Ditzian Z., Totik V., Moduli of Smoothness, Springer–Verlag, New York 1987.
[5]	 Erençin A., Durrmeyer type modification of generalized Baskakov operators, “Appl. Math. 

Comput.” 218/2011, 4384–4390.
[6]	 Firlej B., Rempulska L., Approximation of functions of several variables by some operators 

of the Szasz-Mirakjan type, “Fasc. Math.” 27/1997, 15–27.
[7]	 Gurdek M., Rempulska L., Skorupka M., The Baskakov operators for functions of two variables, 

“Collect. Math.” 50.3/1999, 289–302.
[8]	 İzgi A., Order of approximation of functions of two variables by new type gamma operators, 

“General Mathematics” 17.1/2009, 23–32.
[9]	 Kajla A., Ispir N., Agraval P.N., Goyal M., Q-Bernstein-Schurer-Durrmeyer type operators for 

functions of one and two variables, “Appl. Math. Comput.” 275/2016, 372–385.
[10]	 Krech G., Wachnicki E., Direct estimate for some operators of Durrmeyer type in exponential 

weighted space, “Demonstratio Math.” 47.2/2014, 336–349.
[11]	 Malejki R., Wachnicki E., On the Baskakov-Durrmeyer type operators, “Comment. Math.” 

54.1/2014, 39–49. 
[12]	 Miheşan V., Uniform approximation with positive linear operators generalized Baskakov 

method, “Automat. Comput. Appl. Math.” 7.1/1998, 34–37.
[13]	 Wafi, A., Khatoon S., On the order of approximation of functions by generalized Baskakov 

operators, “Indian J. Pure Appl. Math.” 35.3/2004, 347–358.





TECHNICAL TRANSACTIONS
FUNDAMENTAL SCIENCES

1-NP/2016

CZASOPISMO TECHNICZNE
NAUKI PODSTAWOWE

KAMIL KULAR∗

ON BASIC PROPERTIES OF δ -PRIME
AND δ -SEMIPRIME RINGS

O PODSTAWOWYCH WŁASNOŚCIACH PIERŚCIENI
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A b s t r a c t

We provide a self-contained discussion of the notions of δ -primeness and δ -semiprimeness for asso-
ciative rings, possibly without identity. Some of the facts and properties presented in the article seem
less known and quite difficult to find in standard reference sources.

Keywords: associative ring, derivation, δ -ideal, δ -prime ring, δ -semiprime ring, δ -prime radical,
δ -nilpotent element.

AMS Mathematics Subject Classification (2010): 16W25, 16N60.

S t r e s z c z e n i e

Praca jest ,,samowystarczalnym” omówieniem pojȩć δ -pierwszości i δ -półpierwszości, rozważanych
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1. Preliminaries and introduction

Throughout the article, R is an associative ring and δ : R −→ R is a derivation. We do not
assume that R has an identity.

Definition 1.1. A map δ : R−→ R is said to be a derivation, if it is additive and satisfies the
Leibniz rule

∀a,b ∈ R : δ (ab) = δ (a)b+aδ (b).

Notice that the zero map is a derivation of the ring R. We define

δ n =

⎧⎨
⎩

idR, if n = 0,
δ ◦ . . .◦δ︸ ︷︷ ︸

n

, if n ∈ N\{0}.

The center of the ring R will be denoted by Z(R), i.e.,

Z(R) = {a ∈ R : ab = ba for all b ∈ R}.

Let us remark that Z(R) is a subring of R. For any elements a,b∈R we define [a,b] = ab−ba.
By “ideal of the ring R” we always mean a left, right, or two-sided ideal.

Prime rings and, more generally, semiprime rings are fundamental objects of study in
noncommutative algebra. For a long time the research has also been focused on various ex-
tensions of these classes of rings. Taking into account the analogues of prime and semiprime
rings defined by means of ideals that are invariant with respect to either a single derivation
or a family of derivations, yields important examples of such extensions. The analogues are
referred to as δ -(semi)prime rings and Δ-(semi)prime rings, respectively. They still attract
interest of algebraists.

The article does not bring new results. Our first purpose is to collect and systematize
basic facts about δ -prime rings and δ -semiprime rings. Some of these facts seem a bit less
known. The second purpose is to provide complete and self-contained proofs for all the pre-
sented theorems (the proofs are very often omitted in reference sources). The proofs we pro-
vide are mostly modifications of corresponding “nondifferential” proofs given in the classical
monographs [4, 6, 7]. Two features of the article seem worth emphasizing: all the proofs are
valid for rings without identity and a brief introduction to δ -nilpotent elements is included.

The article is organized as follows. In Section 2 we collect some useful facts and ex-
amples concerning δ -ideals. In Section 3 we discuss various characterizations of δ -prime
rings and δ -prime ideals. Section 4 is devoted to strongly nilpotent elements and δ -nilpotent
elements. Finally, in Section 5 we deal with characterizations of δ -semiprime rings.

2. δ -ideals

We begin with a few standard definitions.

Definition 2.1. A set S ⊆ R is called δ -stable, if δ (S)⊆ S. An ideal I of the ring R is said to
be a δ -ideal, if it is δ -stable.
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Definition 2.2. The two-sided ideal of R generated by the set {[a,b] : a,b ∈ R} is called the
commutator ideal. This ideal is denoted by C(R).

Definition 2.3. For a set S⊆ R we define

• the left annihilator ann�(S) = {a ∈ R : ab = 0 for all b ∈ S},
• the right annihilator annr(S) = {a ∈ R : ba = 0 for all b ∈ S}.

Notice that if δ is the zero derivation, then every ideal of the ring R is a δ -ideal. More-
over, ann�(S) is a left ideal of R, annr(S) is a right ideal of R, and R is commutative if and
only if C(R) = {0}.

Before we turn to more interesting observations, let us state an obvious but useful for-
mula.

Lemma 2.4. If a,b ∈ R, then δ ([a,b]) = [δ (a),b]+ [a,δ (b)].

Take now a closer look at C(R), Z(R) and annihilators.

Proposition 2.5. The commutator ideal C(R) is a δ -ideal and the center Z(R) is a δ -stable
set. Moreover, if S⊆ R is a δ -stable set, then ann�(S) and annr(S) are δ -ideals.

Proof. Let us first define A = {[a,b] : a,b ∈ R}, B = {x[a,b] : a,b,x ∈ R}, C = {[a,b]y :
a,b,y ∈ R}, and D = {x[a,b]y : a,b,x,y ∈ R}. Then C(R) coincides with the totality of finite
sums of elements belonging to the set A∪B∪C∪D. Pick arbitrary a,b,x,y ∈ R. By Lemma
2.4, we have

δ ([a,b]) = [δ (a),b]+ [a,δ (b)] ∈ C(R),

δ (x[a,b]) = δ (x)[a,b]+ x[δ (a),b]+ x[a,δ (b)] ∈ C(R),

δ ([a,b]y) = [δ (a),b]y+[a,δ (b)]y+[a,b]δ (y) ∈ C(R),

δ (x[a,b]y) = δ (x)[a,b]y+ x[δ (a),b]y+ x[a,δ (b)]y+ x[a,b]δ (y) ∈ C(R).

The δ -stability of C(R) follows.
Now, pick an arbitrary a ∈ Z(R) and an arbitrary b ∈ R. Then [a,b] = 0 = [a,δ (b)], and

hence
0 = δ ([a,b]) = [δ (a),b]+ [a,δ (b)] = [δ (a),b].

Consequently, δ (a) ∈ Z(R). The δ -stability of Z(R) follows.
Suppose, finally, that S ⊆ R is a δ -stable set. Pick an arbitrary a ∈ ann�(S) and an arbi-

trary b ∈ S. Then ab = 0 and δ (b) ∈ S. Consequently,

0 = δ (ab) = δ (a)b+aδ (b) = δ (a)b.

This yields δ (a) ∈ ann�(S). The δ -stability of annr(S) can be proved analogously.

The intersection of any family of two-sided δ -ideals of the ring R is also a two-sided
δ -ideal. Obviously, the statement remains true, if we replace the word “two-sided” by “left”
or “right”. We are thus enabled to consider δ -ideals generated by subsets of R.

Let us define 〈S〉δ , 〈S〉δ� and 〈S〉δr to be the two-sided, the left and the right δ -ideal of the
ring R generated by a set S⊆ R (respectively). We will write as usual 〈a〉δ instead of 〈{a}〉δ ,
and analogously for the left and the right δ -ideal generated by the singleton {a}.
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Proposition 2.6. Let a ∈ R. Define A =
{

kδ n(a) : k ∈ Z, n ∈ N∪{0}}, B =
{

xδ n(a) : x ∈
R, n ∈ N∪{0}}, C =

{
δ n(a)y : y ∈ R, n ∈ N∪{0}}, and D =

{
xδ n(a)y : x,y ∈ R, n ∈ N∪

{0}}. Then
(i) 〈a〉δ coincides with the totality of finite sums of elements belonging

to the set A∪B∪C∪D,
(ii) 〈a〉δ� coincides with the totality of finite sums of elements belonging

to the set A∪B,
(iii) 〈a〉δr coincides with the totality of finite sums of elements belonging

to the set A∪C.

Proof. Denote by T the totality of finite sums of elements belonging to A∪B∪C∪D. No-
tice that T is an additive subgroup of the ring R. Moreover, T is a two-sided ideal and
a = δ 0(a) ∈ T . A reasoning similar to the proof of the δ -stability of C(R) shows that T
is δ -stable. We therefore get 〈a〉δ ⊆ T . On the other hand, if I ⊆ R is a two-sided δ -ideal
and a ∈ I, then clearly T ⊆ I. The converse inclusion follows. Properties (ii) and (iii) can be
proved analogously.

It seems worth noting that in the above proposition

B =
∞⋃

n=0

Rδ n(a), C =
∞⋃

n=0

δ n(a)R, D =
∞⋃

n=0

Rδ n(a)R.

We conclude the section with some remarks on products and sums of δ -ideals. Let k ∈
N \ {0} and S1, . . . ,Sk ⊆ R. If either all the sets are two-sided ideals or all the sets are left
ideals or all the sets are right ideals, then we define S1 · . . . · Sk to be the additive subgroup
of the ring R generated by the “elementwise product” {a1 · . . . ·ak : a1 ∈ S1, . . . ,ak ∈ Sk} (the
usual product of ideals). Otherwise, we define S1 · . . . ·Sk to be just the elementwise product.

If all the sets S1, . . . ,Sk are two-sided δ -ideals, then S1 · . . . ·Sk is also a two-sided δ -ideal.
Obviously, we can replace the word “two-sided” by “left” or “right”. Hence any power of a
δ -ideal is also a δ -ideal.

Notice, finally, that if I,J ⊆ R are two-sided δ -ideals, then I+J = {a+b : a ∈ I, b ∈ J}
is also a two-sided δ -ideal. (We can replace “two-sided” by “left” or “right”).

3. δ -prime rings and δ -prime ideals

We start with the following quite standard definition.

Definition 3.1. The ring R is said to be δ -prime if it is nonzero and for any two-sided δ -ideals
I,J ⊆ R such that IJ = {0}, we have either I = {0} or J = {0}.

Notice that if δ is the zero derivation, then the δ -primeness is the same thing as the
usual primeness of R (see, for instance, [6, Ch. 3]). Moreover, the ring R is prime if and only
if it is d-prime for each derivation d : R −→ R. Let us now state and prove a fundamental
characterization of δ -prime rings (cf. [1, Lemma 2]).
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Theorem 3.2. Suppose that R is a nonzero ring. The following conditions are equivalent:
(i) R is δ -prime,
(ii) for any elements a,b ∈ R, if ∀n ∈ N∪{0} : aRδ n(b) = {0}, then

either a = 0 or b = 0,
(iii) for any elements a,b ∈ R, if ∀n ∈ N∪{0} : δ n(a)Rb = {0}, then

either a = 0 or b = 0,
(iv) for any elements a,b ∈ R, if 〈a〉δ 〈b〉δ = {0}, then either a = 0

or b = 0,
(v) for any right δ -ideals I,J ⊆ R, if IJ = {0}, then either I = {0}

or J = {0},
(vi) for any left δ -ideals I,J ⊆ R, if IJ = {0}, then either I = {0}

or J = {0},
(vii) for an arbitrary nonzero right δ -ideal I ⊆ R we have

annr(I) = {0},
(viii) for an arbitrary nonzero left δ -ideal I ⊆ R we have ann�(I) = {0}.

Proof. Assume that R is δ -prime. Let a,b ∈ R be such that

∀n ∈ N∪{0} : aRδ n(b) = {0}. (1)

Define I to be the totality of finite sums of elements of the set
{

c1δ m(a)c2 : c1,c2 ∈ R, m ∈
N ∪ {0}}. Furthermore, define J to be the totality of finite sums of elements of the set{

h1δ n(b)h2 : h1,h2 ∈ R, n ∈ N∪{0}}. Then I and J are two-sided δ -ideals of the ring R.
Next, we will prove by induction on m that

∀m,n ∈ N∪{0} : δ m(a)Rδ n(b) = {0}.

If m = 0, then the assertion coincides with (1). Pick therefore some k ∈ N∪{0} and suppose
that

∀n ∈ N∪{0} : δ k(a)Rδ n(b) = {0}.
If c ∈ R and n ∈ N∪{0}, then the induction hypothesis yields

0 = δ (δ k(a)cδ n(b)) = δ k+1(a)cδ n(b)+δ k(a)δ (c)δ n(b)+δ k(a)cδ n+1(b) =

= δ k+1(a)cδ n(b).

In this way, we have proved that δ k+1(a)Rδ n(b) = {0} for all n ∈ N∪{0}. The induction
step is complete.

Pick arbitrary m,n ∈ N∪{0}. Since δ m(a)Rδ n(b) = {0}, we get

(Rδ m(a)R)(Rδ n(b)R)⊆ R(δ m(a)Rδ n(b))R = {0}

(the products above are elementwise products of sets). Consequently, IJ = {0}. The δ -
primeness therefore implies that either I = {0} or J = {0}. It is easy to verify that (〈a〉δ )3 ⊆ I
and (〈b〉δ )3 ⊆ J (see Proposition 2.6). Thus we have either (〈a〉δ )3 = {0} or (〈b〉δ )3 = {0}.
Since the square of a two-sided δ -ideal is also a two-sided δ -ideal, the δ -primeness yields
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that either 〈a〉δ = {0} or 〈b〉δ = {0}. This means, finally, that either a = 0 or b = 0. Condition
(ii) follows. The implication (i) =⇒ (iii) can be proved analogously.

Assume that condition (ii) is satisfied. Let a,b ∈ R be such that 〈a〉δ 〈b〉δ = {0}. Ob-
serve that for an arbitrary n ∈ N∪{0}, we have aRδ n(b)⊆ 〈a〉δ 〈b〉δ . Hence (ii) implies that
either a = 0 or b = 0. Condition (iv) follows. The implication (iii) =⇒ (iv) can be proved
analogously.

Assume now that condition (iv) is satisfied. Let I,J ⊆ R be right δ -ideals such that
IJ = {0}. Suppose that I �= {0} and pick some a ∈ I \{0}. Let b ∈ J. It is quite easy to verify
that

〈a〉δ 〈b〉δ ⊆ IJ+RIJ = {0}.

Condition (iv) therefore yields b = 0. In this way, we have proved that J = {0}. Condition (v)
follows. The implication (iv) =⇒ (vi) can be proved analogously.

It is clear that any of conditions (v) and (vi) implies the δ -primeness of the ring R. We
have thus proved that conditions (i)–(vi) are pairwise equivalent.

Assume that condition (vi) is satisfied. Let I ⊆ R be a nonzero left δ -ideal. Since ann�(I)
is a left δ -ideal and ann�(I)I = {0}, condition (vi) yields that ann�(I) = {0}. Condition (viii)
follows. The implication (v) =⇒ (vii) can be proved analogously.

Assume, finally, that condition (viii) is satisfied. Let I,J ⊆ R be two-sided δ -ideals such
that IJ = {0}. Suppose that J �= {0}. Since I ⊆ ann�(J), condition (viii) implies that I ⊆
ann�(J) = {0}. The δ -primeness of the ring R follows. The implication (vii) =⇒ (i) can be
proved analogously. The proof of the theorem is complete.

Let us remark that if R is a ring with identity, then the totality I of finite sums of elements
of the set

{
c1δ m(a)c2 : c1,c2 ∈ R, m ∈ N∪{0}}, considered in the above proof, is the same

thing as 〈a〉δ . But in the case where R is a ring without identity, it may happen that a /∈ I.
Recall that if I is a two-sided δ -ideal of the ring R, then

δI : R/I � a+ I 
−→ δ (a)+ I ∈ R/I

is a well-defined derivation.

Definition 3.3. A two-sided δ -ideal P⊆ R is said to be δ -prime, if R/P is a δP-prime ring.

Obviously, each δ -prime ideal is a proper ideal. It is worth noting that the ring R is δ -
prime if and only if {0} is a δ -prime ideal of R. The corollary below follows quite directly
from Theorem 3.2.

Corollary 3.4. Let P be a proper two-sided δ -ideal of the ring R. The following conditions
are equivalent:
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(i) P is δ -prime,
(ii) for arbitrary two-sided δ -ideals I,J ⊆ R, if IJ ⊆ P, then

either I ⊆ P or J ⊆ P,
(iii) for any elements a,b ∈ R, if ∀n ∈ N∪{0} : aRδ n(b)⊆ P, then

either a ∈ P or b ∈ P,
(iv) for any elements a,b ∈ R, if ∀n ∈ N∪{0} : δ n(a)Rb⊆ P, then

either a ∈ P or b ∈ P,
(v) for any elements a,b ∈ R, if 〈a〉δ 〈b〉δ ⊆ P, then either a ∈ P

or b ∈ P,
(vi) for arbitrary right δ -ideals I,J ⊆ R, if IJ ⊆ P, then either I ⊆ P

or J ⊆ P,
(vii) for arbitrary left δ -ideals I,J ⊆ R, if IJ ⊆ P, then either I ⊆ P

or J ⊆ P.

Again, if δ is the zero derivation, then the notion of a δ -prime ideal coincides with the
well-known general (“noncommutative”) notion of a prime ideal. We are ready to discuss an
example of a δ -prime ring which is not prime (the example is taken from [5]).

Example 3.5. Let F be a field of characteristic p �= 0. Consider the principal ideal P of the
polynomial ring F[x] generated by xp. Since R = F[x]/P is a commutative ring and x+P is a
nonzero nilpotent element of R, the ring R is not prime. (Let us recall here that a commutative
ring with identity is prime if and only if it is an integral domain). Using condition (iii) of
Corollary 3.4, we can prove quite easily that P is a δ -prime ideal for the natural derivation
δ : F[x] � f 
−→ f ′ ∈ F[x]. Thus R is δP-prime.

In the sequel we will deal with the following generalization of the prime radical. This
generalization has been introduced by Burkov (see [2]).

Definition 3.6. The intersection Nδ (R) of the family of all δ -prime ideals of the ring R is
called the δ -prime radical of R.

Notice that Nδ (R) = R whenever R has no δ -prime ideals.

4. δ -nilpotent elements

Consider the family

D =

{
n

∑
j=0

c jδ j : n ∈ N∪{0}, c0, . . . ,cn ∈ R

}

of “differential operators on the ring R”.

Remark 4.1. If D ∈D and I is a left δ -ideal of R, then D(I)⊆ I.

The definition below is taken from [2].
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Definition 4.2. An element a ∈ R is said to be δ -nilpotent, if for any sequence {Dk}∞
k=0 of

elements of D almost all members of the sequence {ak}∞
k=0 defined by{

a0 = a,
ak+1 = akDk(ak)

are equal to 0.

Let us also recall the well-known concept of a strongly nilpotent element.

Definition 4.3. An element a ∈ R is said to be strongly nilpotent, if almost all members of
any sequence {ak}∞

k=0 in the ring R such that a0 = a and

∀k ∈ N∪{0} : ak+1 ∈ akRak

are equal to 0.

Observe that an element a ∈ R is strongly nilpotent if and only if for an arbitrary se-
quence {xk}∞

k=0 of elements of R, almost all members of the sequence {ak}∞
k=0 defined by{

a0 = a,
ak+1 = akxkak

are equal to 0.
It is clear that in the definitions of a δ -nilpotent element and a strongly nilpotent element

(as well as in the equivalent definition of a δ -nilpotent element given in the sequel of this
section), the words “almost all members of the sequence {ak}∞

k=0 are equal to 0” can be
replaced by “the sequence {ak}∞

k=0 contains a member equal to 0”. Let us now take a look at
some simple but important properties.

Proposition 4.4. For an element a ∈ R the following hold true:
(i) if a is δ -nilpotent, then it is strongly nilpotent,
(ii) if a is strongly nilpotent, then it is nilpotent in the usual sense,
(iii) if a is nilpotent in the usual sense, a ∈ Z(R) and δ (a) = 0, then

a is δ -nilpotent,
(iv) if a is nilpotent in the usual sense and a ∈ Z(R), then a is

strongly nilpotent,
(v) if δ is the zero derivation and a is strongly nilpotent, then a is

δ -nilpotent.

Proof. Assume that a is δ -nilpotent. Pick an arbitrary sequence {xk}∞
k=0 in the ring R. Since

∀k ∈ N∪{0}∀b ∈ R :
{

bxkb = bxkδ 0(b),
xkδ 0 ∈D ,

the δ -nilpotency implies that almost all members of the sequence {ak}∞
k=0 defined by{

a0 = a,
ak+1 = akxkak
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are equal to 0. Therefore, a is strongly nilpotent.
If a is a strongly nilpotent element, then almost all members of the sequence {ak}∞

k=0 of
powers of a defined by {

a0 = a,
ak+1 = akaak

are equal to 0 and hence a is nilpotent in the usual sense.
Let us turn to property (iii). It is easy to see that if δ (z) = 0 for some z ∈ R, then

∀ t ∈ N\{0}∀ j ∈ N∪{0}∀b ∈ R :
{

δ (zt) = 0,
δ j(ztb) = ztδ j(b). (2)

Assume that a is nilpotent in the usual sense, a ∈ Z(R) and δ (a) = 0. Let {Dk}∞
k=0, where

Dk =
nk

∑
j=0

c jkδ j

for some nk ∈N∪{0} and some c0k, . . . ,cnkk ∈ R, be a sequence of elements of the family D .
Consider the sequence {ak}∞

k=0 defined by{
a0 = a,
ak+1 = akDk(ak).

We will show by induction that ak ∈ a2k
R for an arbitrary k ∈ N \{0}. First, since δ (a) = 0

and a ∈ Z(R), we have

a1 = aD0(a) = a
n0

∑
j=0

c j0δ j(a) = a2c00.

Suppose therefore that a� = a2�b for some � ∈N\{0} and some b ∈ R. In view of (2) and the
fact that a ∈ Z(R), we obtain

a�+1 = a�D�(a�) = a2�bD�(a2�b) = a2�b
n�

∑
j=0

c j�δ j(a2�b) =

= a2�b
n�

∑
j=0

c j�a2�δ j(b) = a2�+1
b

n�

∑
j=0

c j�δ j(b).

The induction step is complete. Now, let s ∈ N\{0} be such that as = 0 (“usual nilpotency”
of a). Observe that if k ∈ N\{0} satisfies the condition 2k � s, then ak ∈ a2k

R⊆ asR = {0}.
The δ -nilpotency of a follows.

Let us turn to (iv). Assume that a is nilpotent in the usual sense and a ∈ Z(R). Suppose
additionally that δ is the zero derivation. Then property (iii) yields that a is δ -nilpotent. It
therefore follows from (i) that the element a is strongly nilpotent.

Property (v) is an immediate consequence of the fact that if δ is the zero derivation,
then D = {c · idR : c ∈ R} (and hence the definition of a δ -nilpotent element reduces to the
definition of a strongly nilpotent element).
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Notice that in the case where R is a commutative ring and δ is the zero derivation, the
usual nilpotency, the strong nilpotency and the δ -nilpotency of an element are the same thing.
Let us see an example of a strongly nilpotent element which is not δ -nilpotent.

Example 4.5. With the assumptions and notations of Example 3.5, we have (x+P)δP(x+
P) = x+P. Hence all members of the sequence {ak}∞

k=0 defined by{
a0 = x+P,
ak+1 = akδP(ak)

are nonzero. This yields that x+P is not a δP-nilpotent element of the ring R. On the other
hand, x+P is a strongly nilpotent element, because it is nilpotent in the usual sense and R is
a commutative ring.

The main theorem of the section is a modification of a result which has been first stated
in [2].

Theorem 4.6. Let a ∈ R. The following conditions are equivalent:
(i) a is δ -nilpotent,
(ii) for arbitrary sequences {ck}∞

k=0 of elements of R and {nk}∞
k=0

of non-negative integers, almost all members of the sequence
{ak}∞

k=0 defined by {
a0 = a,
ak+1 = akckδ nk(ak)

are equal to 0,
(iii) a ∈ Nδ (R).

Proof. The implication (i) =⇒ (ii) is obvious (see the definition of the family D).
Suppose that a∈R\Nδ (R). Then a /∈P for some δ -prime ideal P of the ring R. Hence by

condition (iii) of Corollary 3.4, there exist sequences {ck}∞
k=0 of elements of R and {nk}∞

k=0
of non-negative integers such that no member of the sequence {ak}∞

k=0 defined by{
a0 = a,
ak+1 = akckδ nk(ak)

belongs to P. It follows that ak �= 0 for all k∈N∪{0}. Therefore, condition (ii) is not satisfied.
This completes the proof of the implication (ii) =⇒ (iii).

Now suppose that the element a is not δ -nilpotent. Then there exists a sequence {Dk}∞
k=0

of elements of D such that all members of the sequence {ak}∞
k=0 defined by{

a0 = a,
ak+1 = akDk(ak)

are different from 0. Consider the family F of all two-sided δ -ideals I ⊆ R with the property
that I∩{ak : k ∈ N∪{0}}= /0. Notice that {0} ∈ F. The family F (partially) ordered by set
inclusion satisfies the assumption of Zorn’s lemma. Pick a maximal element P0 ∈ F. Let us
emphasize that P0 is a proper two-sided δ -ideal of the ring R.
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Let J,K ⊆ R be two-sided δ -ideals such that JK ⊆ P0. Assume that neither J nor K is
contained in P0. Since P0 ⊆ (P0 +J)∩ (P0 +K), P0 �= P0 +J and P0 �= P0 +K, the maximality
of P0 implies that P0 + J /∈ F and P0 +K /∈ F. But P0 + J and P0 +K are two-sided δ -ideals
of the ring R. Hence there are s, t ∈ N∪{0} such that as ∈ P0 + J and at ∈ P0 +K. Let us
define u = max{s, t}. If T ⊆ R is a right ideal, x ∈ T and D ∈D , then obviously xD(x) ∈ T . It
follows therefore from the definition of {ak}∞

k=0 that au ∈ (P0 + J)∩ (P0 +K). Next, observe
that if x ∈ P0 + J, y ∈ P0 +K and D ∈D , then by Remark 4.1 we have

xD(y) ∈ (P0 + J)(P0 +K)⊆ P0 + JK = P0.

Since au ∈ (P0+J)∩ (P0+K), the observation yields au+1 = auDu(au) ∈ P0. This contradicts
the fact that P0 ∈ F.

We have therefore proved that for any two-sided δ -ideals J,K ⊆ R, if JK ⊆ P0, then
either J ⊆ P0 or K ⊆ P0. In other words, P0 is a δ -prime ideal of the ring R. Since a = a0 /∈ P0,
we get a /∈ Nδ (R). The proof of the implication (iii) =⇒ (i) is complete.

It follows immediately from the above theorem that Nδ (R) coincides with the totality of
δ -nilpotent elements of the ring R. The theorem also allows us to give an equivalent definition
of a δ -nilpotent element (namely, an element a ∈ R is δ -nilpotent if and only if for arbitrary
sequences {ck}∞

k=0 of elements of R and {nk}∞
k=0 of non-negative integers, almost all members

of the sequence {ak}∞
k=0 defined by{

a0 = a,
ak+1 = akckδ nk(ak)

are equal to 0).
Recall that a set S ⊆ R is said to be nil, if every element of S is nilpotent in the usual

sense. Combining Theorem 4.6 with Proposition 4.4 yields a noteworthy corollary.

Corollary 4.7. The δ -prime radical Nδ (R) is a nil two-sided δ -ideal of the ring R.

Let us finally notice that if δ is the zero derivation, then Nδ (R) and the standard prime
radical rad(R) are the same thing. In view of Theorem 4.6 and Proposition 4.4, we thus obtain
the following classical fact.

Corollary 4.8. The prime radical rad(R) coincides with the totality of strongly nilpotent
elements of R.

5. δ -semiprime rings

We will use the following definition of a δ -semiprime ring.

Definition 5.1. The ring R is called δ -semiprime, if there exists no two-sided δ -ideal I ⊆ R
such that I �= {0} and I2 = {0}.

Obviously, each δ -prime ring is δ -semiprime. Recall that an ideal I of the ring R is said
to be nilpotent, if Ik = {0} for some k ∈ N \ {0}. We are in a position to state and prove a
fundamental characterization of δ -semiprime rings (cf. [1, Lemma 1]).
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Theorem 5.2. The following conditions are equivalent:
(i) R is a δ -semiprime ring,
(ii) for any element a ∈ R, if ∀n ∈ N∪{0} : aRδ n(a) = {0},

then a = 0,
(iii) for any element a ∈ R, if ∀n ∈ N∪{0} : δ n(a)Ra = {0},

then a = 0,
(iv) for any element a ∈ R, if (〈a〉δ )2 = {0}, then a = 0,
(v) for an arbitrary right δ -ideal I ⊆ R, if I2 = {0}, then I = {0},
(vi) for an arbitrary left δ -ideal I ⊆ R, if I2 = {0}, then I = {0},
(vii) {0} is the only nilpotent two-sided δ -ideal of the ring R,
(viii) {0} is the only nilpotent right δ -ideal of the ring R,
(ix) {0} is the only nilpotent left δ -ideal of the ring R,
(x) for any two-sided δ -ideals I,J ⊆ R, if IJ = {0}, then I∩ J = {0},
(xi) for any right δ -ideals I,J ⊆ R, if IJ = {0}, then I∩ J = {0},
(xii) for any left δ -ideals I,J ⊆ R, if IJ = {0}, then I∩ J = {0},
(xiii) R has no nonzero δ -nilpotent elements,
(xiv) Nδ (R) = {0}.

Proof. The equivalence of conditions (i)–(vi) can be proved analogously as in Theorem 3.2.
Assume that R is a δ -semiprime ring. Let I ⊆ R be a nilpotent two-sided δ -ideal. De-

fine k0 = min{k ∈ N \ {0} : Ik = {0}} (in other words, k0 is the nilpotency index of I).
Let s ∈ {0,1} be such that k0 + s is even. Then (It)2 = {0}, where t = (k0 + s)/2. The δ -
semiprimeness now implies that It = {0}. Thus k0 � t. The inequality is equivalent to k0 � s.
Therefore, k0 = 1 and hence I = {0}. Condition (vii) follows. The implications (v) =⇒ (viii)
and (vi) =⇒ (ix) can be proved analogously.

The implications (vii) =⇒ (i), (viii) =⇒ (v) and (ix) =⇒ (vi) are obvious.
Assume again that R is a δ -semiprime ring. Let I,J ⊆ R be two-sided δ -ideals such that

IJ = {0}. Since I∩J is also a two-sided δ -ideal and (I∩J)2 ⊆ IJ, the δ -semiprimeness yields
that I ∩ J = {0}. Condition (x) follows. The implications (v) =⇒ (xi) and (vi) =⇒ (xii) can
be proved analogously.

Assume that condition (x) is satisfied. Let I ⊆ R be a two-sided δ -ideal such that I2 =
{0}. Then I = I∩ I = {0}. The δ -semiprimeness of the ring R follows. The implications (xi)
=⇒ (v) and (xii) =⇒ (vi) can be proved analogously. Hence, we have proved that conditions
(i)–(xii) are pairwise equivalent.

Now assume that condition (ii) is satisfied. Let a ∈ R\{0}. Then there exist sequences
{ck}∞

k=0 of elements of the ring R and {nk}∞
k=0 of non-negative integers such that every mem-

ber of the sequence {ak}∞
k=0 defined by{

a0 = a,
ak+1 = akckδ nk(ak)

is different from 0. Consequently, the element a is not δ -nilpotent (cf. the proof of Theorem
4.6). Condition (xiii) follows.

The equivalence (xiii)⇐⇒ (xiv) follows immediately from Theorem 4.6.
Assume, finally, that Nδ (R) = {0}. Let I,J⊆R be two-sided δ -ideals such that IJ = {0}.

Moreover, let P be a δ -prime ideal of the ring R. Since IJ ⊆ P, we get either I ⊆ P or J ⊆ P.
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Hence I∩ J ⊆ P. We have therefore proved that I∩ J is contained in any δ -prime ideal of R.
This means exactly that I∩ J ⊆ Nδ (R). Condition (x) follows. The proof is complete.

As an obvious consequence of the above theorem, we obtain a quite important fact.

Corollary 5.3. Suppose that the ring R is δ -semiprime. Let I ⊆ R be a δ -ideal. Then
(i) I∩ annr(I) = {0} whenever I is a right ideal,
(ii) I∩ ann�(I) = {0} whenever I is a left ideal.

In the case where δ is the zero derivation, the definition of a δ -semiprime ring is just
the well-known definition of a semiprime ring. Clearly, the ring R is semiprime if and only if
it is d-semiprime for all derivations d : R−→ R. Notice that in fact, the ring R considered in
Examples 3.5 and 4.5 is not semiprime (a commutative ring with identity is semiprime if and
only if it has no nilpotent elements different from 0).

Though a δ -semiprime ring has no δ -nilpotent elements different from 0 and no nonzero
nilpotent δ -ideals, it can have a nonzero nil δ -ideal. For an example we refer to [3, p. 332].

Finally, let us see how another important fact about semiprime rings generalizes to δ -
semiprime rings (cf. [1, Lemma 5]).

Proposition 5.4. Suppose that R is a δ -semiprime ring. Let I ⊆ R be a two-sided δ -ideal.
Then ann�(I) = annr(I).

Proof. Define K = annr(I)I (product of right δ -ideals). We have

K2 = (annr(I)I)(annr(I)I)⊆ annr(I)(Iannr(I))I = {0}
and hence, by the δ -semiprimeness, annr(I)I = K = {0}. Therefore, annr(I)⊆ ann�(I). The
converse inclusion can be proved analogously.

The author would like to thank the anonymous referees for carefully reading the manuscript and giving a
number of constructive comments which helped him to substantially improve the text.
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of returns on shares reaches a minimum. All numerical calculations were made with MAPLE.

Keywords:  Black-Scholes model, risk-reducing derivatives, MAPLE

S t r e s z c z e n i e

W artykule rozważa się pewien pochodny instrument finansowy którego funkcja wypłaty 
jest wzorowana na funkcji wypłaty z obligacji katastroficznych. Analizuje się wpływ tego 
instrumentu na stopę zwrotu z akcji porównując portfel akcji z portfelem zawierającym do-
datkowo rozważany instrument pochodny. Stosując model Blacka-Scholesa wyprowadza się 
dokładny wzór na odchylenie standardowe stóp zwrotu z każdego z tych portfeli. Analizowane 
przykłady pokazują, że rozważany instrument pochodny redukuje zmienność stóp zwrotu z ak-
cji. Obliczenia do podanych przykładów zostały wykonane przy pomocy programu MAPLE.

Słowa  kluczowe:  model Blacka-Scholesa, instrument pochodny redukujący ryzyko, MAPLE
DOI: 10.4467/2353737XCT.16.145.5756
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1.  Introduction

The subject of this paper is a derivative, considered in [4] as a risk-reducing derivative. 
The  payment of the derivative depends on a parameter. Using Monte Carlo simulations, 
for each of the typical value of the volatility of stocks a variant of the derivative (a proper 
parameter in a payoff function) reducing the risk of a large loss by more than 10% on 
a confidence level of 95% was indicated.

In this paper we examine volatility of rate of return from stocks, when portfolio apart 
from stocks additionally includes a derivative. We obtain an analytical closed form formula 
for the volatility expressed as standard deviation of related, discounted percentage of profit 
from a portfolio. We show that the derivative reduces volatility of rate of return on stocks.

In this paper we use the Black-Scholes model with one risk-free asset and one risky 
instrument – a stock – regarded as the underlying. We consider the simplest case of the 
model which is based on the following assumptions: security trading is continuous, there are 
no riskless arbitrage opportunities, there are no transaction costs and no dividends during 
the life of a derivative, the risk-free rate of interest and the volatility of an underlying asset 
are constant. The annualized volatility of the stock, from now on called briefly volatility, 
is typically between 15% and 60% [6].

2.  Model description

Let σ > 0 be a stock price volatility and r be the risk-free interest rate. We assume the 
price of the stock follows a geometric Brownian motion

	 S S r t W t Tt t= −





 +









 ∈exp , [ , ]1

2
02σ σ 	 (1)

where S is the stock price at time 0, W = {Wt, t ∈ [0, T ]} is a standard Brownian motion under 
the risk-neutral probability P and T is the expiry date. Let EP denote the expectation operator 
under the P measure and let {t} be a filtration for Brownian motion W. Let us consider 
a financial derivative instrument dependent on parameter a > 0, with the following payoff 
function

	 f S
S if S aS

if S aST
T T

T
( )

,
.

=




≤
>0

	 (2)

The instrument provides some protection against a decline in the stock price i.e. against 
the event ST £ aS and can be considered as an obligation transferring the risk from the holder 
of the derivative to the issuer [4]. We will analyse a portfolio composed of one stock and 
one derivative with payoff function (2). We will calculate the variance of the discounted 
profit from the portfolio. According to the volatility of the stock we will indicate value of a 
in the interval [0, 2] which minimizes the variance.
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3.  Volatilities of portfolios

In Black-Scholes model, today’s arbitrage price of the derivative instrument expresses as 
the expected value of its discounted payoff function, taken with respect to the risk-neutral 
measure P [2]:

	 c E rT f SP
T= −( ( ))exp( ) 	 (3)

In [4] the following closed form formula for pricing the derivative was derived

	 c SN
lna r T

T
=

− +

























1
2

2σ

σ
	 (4)

where N denotes the cumulative probability distribution function for a standardized normal 
distribution. The formula can also be found in [2] and [5]. The today’s price of considered 
stock equals S so the discounted gain from a portfolio is
	 ( ( )) ( )S f S rT S cT T+ − − +exp( ) 	

and the related, discounted percentage of profit from the portfolio equals

	 R S f S rT S c
S c

T T=
+ − − +

⋅
+

( ( )) ( )
%.

exp( )
100 	 (5)

To calculate standard deviation of R let us first denote:
Φ	 ‒	 cumulative probability distribution function of σWT,
φ	 ‒	 probability density function of σWT,
F	 ‒	 cumulative probability distribution function of ST,
f	 ‒	 probability density function of ST,
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By it follows that ST = k exp (σWT) and consequently
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Hence
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Since
	 f S ST T S aST

( ) { }= 1 £ 	

it follows that
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By (3) we have E f S e cP
T

rT( ( )) .=  The process exp( ) ,−rT S tt ³ 0  is a martingale 
which implies

	 E S rT SP
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Hence

	 E S f rT S cP
T T( ) exp( )( )+ = + 	 (9)

and variance of R expresses as follows:
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Using (7) we calculate E S x x
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Taking into account (6) and substituting t
T
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σ

σ
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Similarly, we calculate E SP
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Finally, substituting (4), (11) and  (12) into (10) we obtain
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To examine the impact of the derivative, defined by (2), on the rate of return on 
investment in shares, we are going to compare the above variance with variance of analogous 
rate of return from a portfolio composed of a stock only. Namely, let S be the today’s price 
of considered stock. Then, the discounted gain from a portfolio is
	 S rT ST exp( )− − 	

and the related, discounted percentage of profit from the portfolio equals

	 Z S rT S
S

T=
− −

⋅
exp( )

%.100 	 (14)

Using (8) and (11) we obtain

	 D Z T2 4 210 1= −(exp( ) ).σ 	 (15)

4.  Comparison of volatility of R and Z with MAPLE

In this section we compare two portfolios, one composed of one stock with value S = 1 at 
time 0 and with one derivative with payoff (2), at price c, given by (4).

The second portfolio is  composed of one stock with value S = 0 at time 0 only. As 
in  the previous section, R and Z denote the related, discounted percentages of profit from 
the portfolios, respectively. We calculate standard deviations of R and Z using MAPLE. Let 
us consider standard deviation of R as a function of parameter a.

In the screenshot presented below, due to the requirements of MAPLE, standard deviation 
of R is denoted as σR and F denotes the cumulative probability distribution function for 
a standardized normal distribution:
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Let σmin(R) denote the minimum of σR, considered as a function of parameter a ∈ 





1
10

2,
 

and let a* be the value of the parameter for which the function takes the minimum value.
We obtain σmin(R) and a* using command of MAPLE:

	 NLPSolve (σR(a), a = 1/10..2).	
In Table 1 one can see dependence of a* and σmin(R) from σ.
For every σ appearing in the table, a* and σmin(R) take the same values, independently 

of r ∈ {1%, 2%, 3%, 4%, 5%, 6%}.

T a b l e  1
σ [%] 10 20 30 40 50 60 70 80 90

a* 1.36 1.31 1.03 1.02 1.07 1.14 1.25 1.39 1.59
σmin(R) [%] 10 17.99 20.9 24.43 31.25 40.03 50.18 61.53 74.16

Standard deviation σ(Z) of  does not depend on the risk-free interest rate r but it does 
on stock price volatility σ.

In Table 2, we present values of σ(Z) depending on stock price volatility σ. As we can see, 
the stock price volatility σ and standard deviation σ(Z) of Z are approximately equal (both 
are expressed in percentage):

T a b l e  2

σ [%] 10 20 30 40 50 60 70 80 90

σ(Z) [%] 10.025 20.202 30.688 41.655 53.294 65.828 79.518 94.68 111.71

Example
We present a sample screenshot with the calculations for the following parameters:

> X:= Random Variable (Normal(0, 1 ) ) :
> F(x) := CDF (X, x) :
> σ := 0.3 :
> T := 1 :
> σZ := 100·sqrt(exp (σ2T) ‒ 1);

30.6878288
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still assuming that σ = 0.3, T = 1. As you can see in the screenshot below, standard deviation 

of  R, considered as the function σR on interval 1
10

2, ,





 achieves minimum equal to 

20.9011… for the argument a = 1.05528…:
with(Optimization):
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



1
10

2

[20.9011145934436868, a = 1.05528207323025392]
The same can be seen in a graph of function σR:

> plot σR a a( ), ..=







1
10

2

The following graph allows us to compare the volatilities of return of the considered 
portfolios:

Fig.  1.  Dependence of standard deviation of R from parameter a

Fig.  2.  Volatilities of considered portfolios
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5.  Conclusions

As shown, σ and σ(Z) are approximately equal when σ £ 30%. If σ £ 30% then σ(Z) > σ 
and their difference increases with increasing σ.

Tables 1 and 2 allow us to compare volatilities of Z and R, expressed as standard deviations 
of Z and R. We see that for every stock price volatility observed in the financial market we 
can point to such version of considered derivative (with such a parameter a*) with payoff 
function (2) that most reduces the volatility of return on the portfolio, thus reducing the risk 
of investing in stocks.
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1.  Introduction

By a (logical) matrix we mean an algebra with a designated subset. Tautologies of 
the matrix are the terms that under every valuation take a designated value. By a valid rule, 
or simply a rule, we mean a pair X X, , { }α αwhere ∪  is a finite set of terms such that 
for every valuation assigning designated values to all members of X, the term α also takes 
a designated value. For X = ∅ the rule X ,α  is called axiomatic and is identified with α. 
The set of all tautologies of a matrix N is denoted by E(N); the set of all valid rules of N 
is denoted by R(N). We say that a matrix is finitely axiomatizable if there exists a finite set 
of rules valid in this matrix from which all its tautologies can be derived. This differs from 
the finite basis property, which is the property that there exists a finite set of rules from which 
all valid rules can be derived.

Consider the 5-element matrix
	 M = ⋅{ , , , , },{},{ , }0 1 2 3 4 2 3 	

with ⋅  given by the following table.

· 0 1 2 3 4
0 1 2 2 2 2
1 1 2 2 2 2
2 1 2 2 2 2
3 4 3 3 3 3
4 3 3 3 3 3

Although this matrix is finitely axiomatizable (Proposition 1), we will show that the 
matrix
	 M1 0 1 2 3 4 3 2 3= ⋅{ , , , , },{ , },{ , } 	

does not have a finite axiomatization for the set of its tautologies (Theorem 2).  The constant 3 
is not a definable constant of M, so M and M1 are not term equivalent. Let us observe that 
the deductive systems determined by these matrices are not algebraizable.

Proposition 1. The consequence operation of neither M nor M1 is algebraizable.
Proof. Let N be either M or M1. We will show that N is not even protoalgebraic, 

a  weaker  condition than algebraizable. Suppose that there is a finite set of binary terms 
D(x, y) such that all terms in D(x, x) are tautologies and such that y is a consequence of D(x, y) 
and x. Such a set D(x, y) must exist for a protoalgebraic deductive system, [1]. As no variable 
is a tautology of N, it follows that no term in D(x, x) is a variable, so neither is any term in 
D(x, y). Evaluating x as 3 and y as 4, we get that x and D(x, y) evaluate to 3, while y is 4. This 
contradicts the condition that y is a consequence of D(x, y) and x.	 ■

In [4] Katarzyna Idziak has shown a finite equivalential algebra with a similar property: 
the quasi-equational theory of this algebra is finitely based but adding a nondefinable 
constant to the language of the algebra results in a nonfinitely based quasi-equational theory. 
Her example and ours differ in two aspects. First, the deductive system generated by the 
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matrix M is not algebraizable, while the deductive system equivalent to any equivalential 
algebra is obviously algebraizable. The role of rules in the deductive system associated with 
this algebra is played by the quasi-identities, while the role of tautologies ‒ by identities valid 
in it. Therefore the second difference lies in the difference between finite axiomatization and 
finite basis: the example of [4] is an example that the finite basis property is fragile under 
adding new constants, while ours shows the same for the finite axiomatization property. 
Every finitely based deductive system is finitely axiomatizable, but a system that is not 
finitely based may still be finitely axiomatizable. The example given in [4] has 6 elements, 
so ours is smaller by one element.

2.  Main result

Let V x x= { , , }1 2   be a countable set of pairwise distinct variables. Let Te denote the set 

of all terms written by means of these variables in the language { , }.⋅ 3  When writing terms we 
omit the symbol of the binary operation ⋅  and assume the association to the left. The length 

of a term t is denoted by t . By θ  we mean the valuation in the algebra { , , , , },{ , }0 1 2 3 4 3⋅  
assigning 0 to every variable.

Observe that every term t ∈ Te is of the form
	 t t t tn= 0 1 , 	 (1)

where n is a nonnegative integer, all ′t si  are terms and t0 is either a variable or the constant 3. 
Immediately from the table we see that for a term of the form (1):
	 if t0 is variable, then θ( ) { , , }.t ∈ 0 1 2 	 (2)

By our next proposition the set E(M) is a consequence of one single axiom, so M is 
finitely axiomatizable.

Proposition 2. The tautologies of the matrix M all follow from the axiom x(yz).
Proof. Clearly, x(yz) is a tautology of M and no variable is. If a term of the form 

t  =  rs  is in E(M) then s cannot be a variable; for otherwise, by (2), θ( ) { , , }r ∈ 0 1 2  and 

θ θ θ θ( ) ( ) ( ) ( ) .rs r s r= = =0 1  Therefore E(M) contains only terms of the form r(su).	  ■

Theorem 3. The matrix M1 is not finitely axiomatizable.
Proof. Let E be the set of all tautologies of M1 in Te. We will call a term t left associated 

if t is a variable or is of the form t1x, where t1 is left associated and x ∈ V. For the proof by 
contradiction let R be a finite subset of R(M1) and assume that all tautologies of M1 are 
derivable from R. Then there is a number n such that the length of the conclusion of any rule 
in R is no longer than 2n. Let
	 α0 1 2 23:= x x x n 	

and consider the set F consisting of all left associated tautologies of M1 having α0 as a sub-
term. Notice that the term
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	 α0 1 1 3 3 2 1 2 1 2 1 2 1x x x x x x xxi i n n − − − − 	

belongs to F. So
	 F ¹∅. 	 (3)

Lemma 4
Assume that α α= ∈−0 1 2 1y y y Fyl l  ,  where l is a nonnegative integer and 

y y y Vl1 2, , , . ∈

Then	 l is even	 (4)
	 ∀ ⇒ ∃ =i l j i i ji y y≤ <[ ]is even 	 (5)

	 ∀ ⇒ ∃ =i k j i i ji x y≤ <2 [ ]is odd 	 (6)

	 l n£ 2 . 	 (7)

Proof of the Lemma. Use the valuation θ to see (4). For (5) assume that for some even 
i there is no j < i such that yi = yj. Let i be the smallest such. Assign 3 to yi and 0 to every 
variable other than yi. Then the value of α is 3 0 0⋅  ,  with an odd number of 0's in this 
expression. Hence α takes 4 under this valuation, a contradiction. Condition (6) is proved 
similarly and (7) follows from (6) and (5).	 ■

By (3) there exists a proof using the rules from the set R that proves some term α ∈ F. 
Consider a shortest such proof π and let α ∈ F be the term proved by this proof. Consider the 
last rule X R,β ∈  used in π. So

	 β £ 2n 	 (8)

and there is a substitution σ such that:
	 σ β α( ) = 	 (9)

and all terms σ γ γ( ) for ∈ X  occur in the proof π earlier than α. Since π is a shortest proof 
proving a formula in F, it follows that for every γ ∈ X
	 σ γ( ) \ .∈E F 	 (10)

Since α satisfies the assumptions of Lemma 4, by (7), (8) and (9) we get that
	 β = uv vm 1, 	

where u v v V m l u y y v y i mm m i i, , , , ( ) ( ) , , .1 0 1 1 1  ∈ = = =+< σ α σand for each

Obviously, u v i mi¹ , { , , }.for any ∈ 1
Let us define the valuation ϕ such that ϕ(u) = 3 if m is odd, ϕ(u) = 4 if m is even  

and ϕ θ σ( ) ( ( ))x x=  for every x V u∈ \{ }.  Notice that then for i m vi∈ ={ , , }, ( ) ,1 0 ϕ   
so ϕ(β) = 4. Since the rule X ,β  is valid in M1, there must be a term γ ∈ X such that

	 ϕ γ( ) { , , }.∈ 0 1 4 	 (11)
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By (10), θ σ γ( ( )) { , }.∈ 2 3  So

	 ϕ γ θ σ γ( ) ( ( )).¹ 	 (12)

By the definition of ϕ and by (12), the term γ contains u. Moreover, by (1), the term 
γ takes one of the following three forms: γ γ= = ∈ut t xt t x V x uk k1 1 , ,with and ¹  
or γ = 3 1t tk ,  for some k and some sequence t tk1, ,  of terms. In the last two cases, 

ϕ γ θ σ γ( ) ( ( )),=  because on positions other than the initial one, the value 3 behaves the  
same as the value 4. Similarly, if any of the terms ti would be composed, then we would  
have ϕ γ θ σ γ( ) ( ( )).=  So it follows by (12) that the only form γ may take is

	 γ = uz zk1 , 	

where z zk1, ,  are variables. But then σ(γ) is a left associated tautology of M1 with 
a subterm α0 which contradicts (10).                                             ■

The technique of the proof is similar to the one used in [2, 6, 7]. The idea of the example 
is similar to that of [5].

3.  Questions

One may ask if there is a matrix of a smaller size or a matrix with a smaller number 
of designated values that has the same property as presented here.

Question 5. Is there a non-algebraizable matrix with less than 5 elements with the 
property that its tautologies are  finitely axiomatizable while the tautologies of the same 
matrix in the language expanded by a constant are not finitely axiomatizable?

Question 6. Find such a matrix with only one designated value.
The finite basis property mentioned in the Introduction is related but different from 

the finite axiomatization property. Our example does not answer the following 
Question 7. Find a non-algebraizable finitely based matrix that expanded by a constant 

becomes non-finitely based.
An open problem, due to W. Rautenberg is whether the finite basis property of finite 

matrices is independent of the language. More precisely, given a finite finitely based matrix, 
is every matrix term-equivalent to it also finitely based? See [3]. The constant 3 added to 
the language of our matrix M is clearly not definable.

Question 8. Is there a finitely based (resp. finitely axiomatizable) matrix M = M F D, ,  
and a constant c definable in its language such that the consequence operation of the matrix 
M1 = ∪M F c D, { },  is not finitely based (not finitely axiomatizable, resp.)?

If such a matrix M exists its consequence operation is necessarily non-algebraizable.
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In memory of Stanisław Łojasiewicz [1926–2002]

1.  Introduction

A convenient interpretation of ZFC which agrees with that of [8] is our basic set-theoretic 
assumption. An evident frequent use of the axiom of countable choice (CC) makes it 
impossible to rewrite in ZF most of the results of this work (cf. [4] and [6]–[8]); however, 
some of the theorems presented below are also theorems of, for instance, ZF+UFT+CC 
(cf [6]).

In what follows, X = (X,τ) is a non-void metrizable space, B(X) is the σ-field of all Borel 
sets in X, and Bs(X ) is the collection of all separable Borel sets in X. Moreover, M is a σ-field 
of subsets of a set E, while µ is an infinite σ-finite measure on M. Let (E, X) be the 
family of all (M,B(X))-measurable functions f : E → X such that µ[f 

‒1(X \ Bf)] = 0 for some 
Bf ∈ Bs(X). Of course, a function f : E → X is (M, B(X))-measurable if and only if f ‒1(V ) ∈ M 
whenever V  ∈  τ. If one wants to try to work without CC, since second countability and 
separability are not equivalents in ZF+¬CC, it might be more preferable to define Bs(X) as 
the collection of all these Borel sets of X that are second-countable as topological subspaces 
of X. Clearly, the second definition of Bs(X) is equivalent in ZFC to our previous definition 
of 𝔅s(X) but not equivalent to it in ZF.

Every compactification of X is assumed to be Hausdorff. For a compactification αX of X, 
the collection of all bounded continuous real functions on X that are continuously extendable 
over αX is denoted by Cα(X). As usual, βX stands for the Čech-Stone compactification of 
X. The collection of all bounded continuous real functions on X is Cβ(X). A great role in the 
theory of compactifications is played by the collection (X) of all sets F ⊆ Cβ(X) such that 
the evaluation mapping eF : X → F is a homeomorphic embedding where [eF (x)](f ) = f (x) 
for  all f  ∈  F and x  ∈  X (cf. e.g.[1], [2] and [11]–[13]). If F  ∈ (X), then the closure in 
F of the set eF (X) is a compactification of X called generated by F and denoted by eFX. 
In particular, every compactification αX of X is generated by Cα(X). Since, in ZF, the sentence 
that Tikhonov cubes (called Hilbert cubes in [6]) are compact is equivalent with the ultrafilter 
theorem UFT (cf. Theorem 4.70 of [6]), it is true in ZF+UFT that, for every F ∈ (X), the 
compactification eFX of X exists. This is why some theorems on compactifications in ZFC 
are also theorems of ZF+UFT. It is still an open problem to investigate all significant details 
on compactifications in ZF+UFT and show possible differences between the theories of 
compactifications in ZFC and in ZF+UFT. Let us leave this problem for future considerations 
not described in this article and, for simplicity, let us work in ZFC to avoid troublesome 
disasters without AC. All topological and set-theoretic concepts that we use are standard and 
they can be found in [2], [3], [6]–[8] and [10]. Useful facts of measure theory are taken from 
[5] and [9].

The paper is mainly about the following concepts of metric and functional convergence 
in measure:

Definition 1. Let d be a compatible metric on X and let fn, f  be functions from (E, X) 
where n ∈ ω. We say that the sequence fn  is d-convergent in measure µ to f if, for each 
positive real number ε, the sequence
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	 µ ε({ : ( ( ), ( )) })t E d f t f tn∈ ³ 	

converges to zero in  with the usual topology. For every compatible metric ρ on X, the 
ρ-convergence in µ will be called a metric convergence in µ.

Definition 2. Suppose that ∅ ⊆¹ F C Xβ ( )  and let fn, f  be functions from (E, X) 

where n ∈ ω. We say that the sequence fn  is F-convergent in measure µ to f if, for each 
positive real number ε and for each φ ∈ F, the sequence

	 µ φ φ ε({ : ( ( )) ( ( )) })t E f t f tn∈ − ³ 	

converges to zero, i.e. if  for each φ ∈ F, the sequence φ  fn )  converges in µ to φ  f .  
For each set H ∈ (X), the H-convergence in µ will be called a functional convergence in µ.

Definition 3. Let d, ρ be compatible metrics on X and let F, H be non-void subsets 
of Cβ(X). For i, j ∈ {d, ρ, F, H}, we say that:
1.	 i-convergence in µ implies j-convergence in µ if every sequence of functions from 
(E, X) which is i-convergent in µ to a function f  ∈ (E,  X) is also j-convergent  
in µ to f;

2.	 i-convergence in µ is equivalent with j-convergence in µ if i-convergence in µ implies 
j-convergence in µ and j-convergence in µ implies i-convergence in µ.
In the sequel, the notions of d-convergence and F-convergence in µ are applied 

to a  comparison of compactifications of X. Recall that, for compactifications αX and γX 
of  X, the  inequality αX £  γX holds if and only if Cα(X)  ⊆  Cγ(X); moreover, αX and γX 
are equivalent if and only if Cα(X) = Cγ(X). We write αX = γX to say that αX is identified 
with γX, i.e. to denote that αX and γX are equivalent. One of the most interesting theorems 
of  this  paper asserts that if there exists a metrizable compactification αX of X such that  
Cα(X)-convergence in µ implies Cβ(X)-convergence in µ, then the space X is compact. 
Moreover, among other results, it is shown that if αX and γX are metrizable compactifications 
of X, then αX £ γX if and only if Cγ(X)-convergence in µ implies Cα(X)-convergence in µ. 
Ideas of simple examples relevant to convergence in µ are described.

2.  Metric convergence in measure and minimum uniform compactifications

For a compatible metric d on X, R. Grant Woods investigated in [14] the compactification 
udX generated by the collection d X

∗ ( )  of all these bounded real functions on X that 
are uniformly continuous with respect to d and the standard metric induced by the absolute 
value on . If the metric d is not totally bounded, udX is not metrizable (cf. Theorem 3.3 (b) 
of [14]). If the metric d is totally bounded, then udX is the Hausdorff metric completion of 
the metric space (X, d) (cf. Theorem 3.3 (a) of [14] and Problem 4.5.6 of [3]). If one wants 
to consider minimum uniform compactifications in ZF, one should be warned that models 
of ZF in which there are infinite Dedekind-finite dense subsets of  (cf. [6]–[8]) can be used 
to deduce the following:
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Proposition 1. If X is an infinite Dedekind-finite dense subset of the unit interval [0; 1] 
and d x y x y for x y X( , ) , ,= − ∈  then d is a totally bounded complete metric on X such that 
udX = [0; 1], while the Hausdorff metric completion of (X, d) is (up to an obvious isometry) 
(X, d). Therefore, it is unprovable in ZF that, for every totally bounded metric space (X, d), 
the minimum uniform compactification udX is the Hausdorff metric completion of (X, d).

That udX = [0; 1] for each dense in [0; 1] infinite Dedekind-finite set X in the proposition 
above can be shown in ZF by using Lemma 4.3.16 of [3]. Interesting problems on Hausdorff 
metric completions of metric spaces in ZF are described in [4]. To avoid misunderstanding, 
let us recall that ZFC is our basic assumption throughout this paper.

For every metrizable compactification αX of X, there exists a totally bounded metric 
ρ on X such that αX = uρX. To apply metric convergence in measure to minimum uniform 
compactifications, the following notion is useful:

Definition 4. Let d and ρ be compatible metrics on X. We say that d is uniformly smaller 
than ρ if the following condition holds:
	 ∀ ∃ ∀ ⇒∈ + ∈ + ∈ε δ ρ δ ε( ; ) ( ; ) , [ ( , ) ( , ) ].0 0∞ ∞ < <x y X x y d x y 	

Proposition 2. Let d and ρ be compatible metrics on X such that d is not uniformly 
smaller than ρ. Then there exist functions f f E X where nn , ( , ) ,∈ ∈ ω  such that the 

sequence fn  is ρ-convergent in µ to f but fn  is not d-convergent in µ to f.

Proof. Let us take ε ∈ (0, +¥) such that, for each δ ∈ (0, +¥), there are x, y ∈ X such 
that ρ(x, y) < δ, while d(x, y) ³ ε. Using CC, we find sequences x yn nand  of points 

of X such that lim ( , ) , ( , )n n n n nx y d x y→+ =∞ ≥ρ ε0 while  for each n ∈ ω. Let En  be 

a sequence of sets from M such that n n n nE E E E∈ = ∅ + = +ω µ µ, ( \ ) , ( )< ∞ ∞  and 
E En n+1   for all n ∈ ω. Such a sequence En  exists because the measure µ is infinite and 
σ-finite. Define fn(t) = y0 for t ∈ E \ E0 and, for each t ∈ Ei \ Ei+1, let fn(t) = yi if i £ n, while 
fn(t) = xi if i > n. Moreover, put f (t) = y0 for t ∈ E \ E1 and, for each i ∈ ω, let f (t) = yi when 
t ∈ Ei \ Ei+1. The sequence fn  ρ-converges in µ to f but it does not d-converge in µ to f.  □

The proof to Proposition 2 can serve as a scheme of examples of sequences ρ-convergent 
in µ that are not d-convergent in µ.

In much the same way as for the classical convergence in measure, one can prove 
Propositions 3–5.

Proposition 3. Let d be a compatible metric on X and let f, g ∈ (E, X). If a sequence of 
functions from (E, X) is d-convergent in µ to f and to g, then µ({ : ( ) ( )}) .t E f t g t∈ =≠ 0

Definition 5. When d is a compatible metric on X, then we say that a sequence fn  of 

functions from (E, X) converges (d, µ)-uniformly on E to a function f ∈ (E, X) if, for 
each ε ∈ (0, +¥), there exists a set A ∈ M such that µ(E \ A) < ε and the convergence of fn  
to f is uniform with respect to d on A.
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Proposition 4. When d is a compatible metric on X, then a sequence fn  of functions 

from (E, X) is d-convergent in µ to a function f ∈ (E, X) if and only if each subsequence 

of fn  contains a subsequence which converges (d,µ)-uniformly on E to f.

Proposition 5. If d is a compatible metric on X, then every sequence of functions 
from (E, X) which is d-convergent in µ to a function f ∈ (E, X) contains a subsequence 
which pointwise converges µ-almost everywhere on E to f.

In the light of Proposition 5, for every pair d, ρ of compatible metrics on X and for every 
pair f, g of functions from (E, X), it is true that if there exists a sequence fn  of functions 

from (E, X) such that fn  is both d-convergent in µ to f and ρ-convergent in µ to g, then 
f = g µ-almost everywhere on E, i.e. µ({t ∈ E : f (t) ¹ g(t)}) = 0.Therefore, if for compatible 
metrics d and ρ on X, a sequence hn  of functions from (E, X) is d-convergent in µ to 

a function h ∈ (E, X) and the same sequence hn  is not ρ-convergent in µ to h, then there 

does not exist a function in (E, X) such that hn  is ρ-convergent in µ to it.
Theorem 1. For every pair d, ρ of compatible metrics on X, the following conditions are 

equivalent:
1.  d is uniformly smaller than ρ;
2.   d X X∗ ∗⊆( ) ( );ρ

3.  u X u Xd £ ρ ;
4.  for every pair A, B of subsets of X such that d(A, B) >  0, the inequality ρ(A, B) >  0  

holds;
5.  ρ-convergence in µ implies d-convergence in µ.

Proof. It is obvious that implications (i)⇒(ii)⇒(iii) and (i)⇒(v) are true. Suppose that 
(iii) holds and consider an arbitrary pair A, B of subsets of X such that d(A, B) ¹ 0. Then 
cl clu X u Xd d

A B = ∅  by Theorem 2.5 of [14]. Since udX £  uρX, in the light of 4.2(h) of 

[10], we have cl clu X u XA B
ρ ρ

 = ∅.  This, together with Theorem 2.5 of [14], gives that 

ρ(A, B) ¹ 0. Hence (iv) follows from (iii). Now, assume that (i) is not fulfilled. Then, with CC 
in hand, we deduce that, for some ε ∈ (0, +¥), there are sequences x yn nand  of X such 

that lim ( , ) ( , )n n n n nx y d x y→+ =∞ ≥ρ ε0 and  for all n, m ∈ ω (cf. hint to 8.5.19 of [3]). If 
A = {xn : n ∈ ω} and B = {yn : n ∈ ω}, then ρ(A, B) = 0, while d(A, B) ¹ 0. Therefore, (i) is 
a consequence of (iv). That (v) implies (i) follows from Proposition 2.  □

Corollary 1. Let d and ρ be compatible metrics on X. If ρ is totally bounded and 
ρ-convergence in µ implies d-convergence in µ, then d is totally bounded.

Proof. It is clear that if d is uniformly smaller than ρ and the metric ρ is totally bounded, 
then d is also totally bounded. To complete the proof, it suffices to use the equivalence of (i) 
and (v) of Theorem 1.  □
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Theorem 2. Assume that d is a totally bounded compatible metric on X. Then d-convergence 
in µ is equivalent with d X

∗ ( ) -convergence in µ.

Proof. It is obvious that d-convergence in µ implies d X
∗ ( ) -convergence in µ. Since d 

is totally bounded, udX is a metrizable compactification of X. By, for example, Propositions 
3.4 and 3.5 of [11] or by Theorem 7 of [12], there is a countable collection F Xd⊆ ∗ ( )  
such that eFX = udX and, moreover, φ( ) [ ; ]X ⊆ 0 1  for each φ ∈ F. Let F ii= ∈{ : }φ ω  and 

define ρ φ φ
ω

( , ) ( ) ( )x y x yii i i= −
+∈∑ 1

2 1  for all x, y ∈ X. Then ρ is a totally bounded metric 

on X such that udX = uρX. Hence, in view of Theorem 1, d-convergence in µ is equivalent 
with ρ-convergence in µ. However, one can easily check that F-convergence in µ implies 
ρ-convergence in µ. In consequence, F-convergence in µ implies d-convergence in µ, which 
concludes the proof.  □

Question 1. If d is a compatible but not totally bounded metric on X, must d X
∗ ( )

-convergence in µ imply d-convergence in µ?
A familiar theorem of ZFC states that a metrizable space X is compact if and only if 

every  compatible metric on X is totally bounded. The standard proof to this theorem 
involves CC. However, one can easily prove in ZF that if X is a metrizable space such that 
every compatible metric on X is totally bounded, then X is closed in every metrizable space 
that contains X as a subspace. Indeed, let (Y, d) be a metric space and let X ⊆ Y be not closed 
in (Y, d). Choose a point x0 ∈ (clYX) \ X and, for x, y ∈ X, define

	 ρ( , ) ( , )
( , ) ( , )

x y d x y
d x x d y x

= + −
1 1

0 0
	

to get a compatible but not totally bounded metric ρ on X in ZF (cf. 4.3.E.(c) of [3]). 
Unfortunately, this does not give a satisfactory answer to the following interesting question:

Question 2. Is it consistent with ZF+¬CC that there exists a non-compact metrizable 
space X such that every compatible metric on X is totally bounded?

3.  Functional convergence in measure

It has not been explained so far why it is assumed here that, for each function f ∈ (E, X), 
there exists Bf ∈ Bs(X) such that µ[ f ‒1(X \ Bf)] = 0. In fact, this assumption was needless 
in the previous section; however, it is helpful to get the following theorem:

Theorem 3. Let us suppose that F ∈ (X), while fn  is a sequence of functions from 

(E, X) such that fn  is F-convergent in µ to functions f, g ∈ (E, X). Then the following 
conditions hold:
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1.  µ({ : ( ) ( )}) ;t E f t g t∈ =¹ 0

2.  each subsequence of fn  contains a subsequence that pointwise converges µ-almost 

everywhere on E to f;

3.  if G ∈ (X) is such that the sequence fn  is not G-convergent in µ to f, then there does 

not exist a function h ∈ (E, X) such that fn  is G-convergent in µ to h.

Proof. Using CC, we deduce that there is a sequence Bn  of separable Borel 

subsets of X and there are sets Bf, Bg ∈ Bs(X), such that the sets X B B Bf g n n0 = ∪ ∪ ∈ ω   
and E E f X X g X X f X Xn n0

1
0

1
0

1
0= ∪ ∪− −

∈
−\ [ ( \ ) ( \ ) ( \ )] ω  have the properties that 

µ( \ )E E0 0=  and all functions fn, f, g restricted to E0 transform E0 into the separable Borel 
in X set X0. It follows from Theorem 6 of [12] that there exists a countable collection H ⊆ F 
such that the restriction to X0 of the evaluation map eH is a homeomorphic embedding 
of X0  into H. Let H ii= ∈{ : }.φ ω  For each i ∈ ω, choose a positive real number ai such 

that φi ia£  and, for x, y ∈ X, define ρ
φ φ

ω
( , )

( ) ( )
.x y

x y
a

i i

i
ii

=
−

+∈∑ 2 1  Then ρ is a compatible 

metric on X0. It is not difficult to check that the sequence fn E0
 of the restrictions fn E0

 of 

functions fn to E0 is ρ-convergent in µ to f gn E E0 0
and .  Hence, in view of Proposition 3, 

µ({ : ( ) ( )}) .t E f t g t∈ =¹ 0  Now, to conclude that (ii) holds, it suffices to use Proposition 5. 
Condition (iii) follows from (ii).  □

Theorem 4. Let αX be a compactification of X and let F ∈ (X) generate αX, i.e. αX = eFX. 
Then F-convergence in µ and Cα(X)-convergence in µ are equivalent.

Proof. Since F ⊆ Cα(X), it is obvious that Cα(X)-convergence in µ implies F-convergence 

in µ. Now, assume that a sequence fn  of functions from (E, X) is F-convergent in µ 
to a  function f  ∈ (E, X). Consider an arbitrary function φ  ∈  Cα(X) and a positive real 
number ε. By Theorem 4 of [13], there exist a non-void finite set H ⊆ F and a positive real 
number δ, such that if

	 d x y x y HH ( , ) max{ ( ) ( ) : }= − ∈ψ ψ ψ 	

for x, y ∈ X, then φ φ ε( ) ( )x y− <  whenever dH(x, y) < δ. It follows from the F-convergence 

in µ of fn  to f that

	 lim ({ : ( ( ), ( )) }) .
n H nt E d f t f t

→+
∈ =

∞
≥µ δ 0 	

In addition,

	 { : [ ( )] [ ( )] } { : ( ( ), ( )) }t E f t f t t E d f t f tn H n∈ − ⊆ ∈φ φ ε δ³ ³ 	
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for all n ∈ ω. In consequence,

	 lim ({ : [ ( )] [ ( )] }) .
n nt E f t f t

→+
∈ − =

∞
≥µ φ φ ε 0 	

This means that fn  is Cα(X)-convergent in µ to f.  □
We consider the set Cβ(X) as the metric space (Cβ(X), σ) where the metric σ on Cβ(X) is 

defined as follows: σ β( , ) sup{ ( ) ( ) ; } , ( ).f g f x g x x X f g C X= − ∈ ∈for  In view of, for 
example, Theorem 7 of [12], when F ∈ (X), then the compactification eFX of X is metrizable 
if and only if F is second-countable in (Cβ(X), σ). In what follows, every subset of Cβ(X) 
is equipped with the topology inherited from the topology on Cβ(X) induced by the metric σ.

Theorem 5. Let αX and γX be compactifications of X such that αX is metrizable and  
Cα(X)-convergence in µ implies Cγ(X)-convergence in µ. Then γX is also metrizable 
and γX £ αX.

Proof. Since αX is metrizable, there exists a totally bounded compatible metric ρ on X 
such that uρX = αX. Consider any function φ ∈ Cγ(X) and let F = Cα(X) ∪ {φ}. Of course, 
F  ∈  (X). The compactification eFX is metrizable because F is second-countable. There 
is a totally bounded metric d on X such that eFX  =  udX. It follows from Theorem 2 that 
ρ-convergence in µ implies d-convergence in µ. Therefore, udX £ uρX by Theorem 1. This 
implies that F ⊆ Cα(X) and, in consequence, Cγ(X)  ⊆ Cα(X). Then γX £ αX and Cγ(X) is 
second-countable. Hence γX is metrizable.  □

Corollary 2. Let αX and γX be metrizable compactifications of X. Then αX £  γX if 
and only if Cγ(X)-convergence in µ implies Cα(X)-convergence in µ.

From Theorems 4 and 5 we immediately deduce the following:
Corollary 3. Suppose that F,  G  ∈  (X) are such that F-convergence in µ implies 

G-convergence in µ. If F is second-countable, then G is second-countable and eGX £ eFX.
Our final theorem is a nice conclusion from Theorem 5.
Theorem 6. If there exists a metrizable compactification αX of X such that Cα(X)- 

-convergence in μ implies Cβ(X)-convergence in µ, then X is compact.
Proof. Let us assume that αX is a metrizable compactification of X such that Cα(X)- 

-convergence in µ implies Cβ(X)-convergence in µ. Since αX  £  βX, it follows from 
Theorem 5 that βX is metrizable and βX = αX. If X were non-compact, βX would be non- 
-metrizable (cf. 3.6. G of [3]).  □

Corollary 4. A metrizable space X is compact if and only if there exists a totally bounded 
metric d on X such that d-convergence in µ implies Cβ(X)-convergence in µ.
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1.  Introduction

The paper concerns numerical speed of the convergence of the adaptive algorithm 
based on a grid generator with a mesh size function [6, 7]. The rate of convergence will be 
calculated by a description of the dependence between the number of degrees of freedom 
and norm of error defined as the difference between a strict solution and an approximate 
solution for a given mesh, provided that the strict solution is known. In case of an unknown 
solution some properties of the solution are known and their fulfilment can be assessed.

For the sake of the numerical solution the infinite space is approximated by a finite 
dimensional space spanned by a given set of basis functions [7, 11] of the finite element 
method [10] generated by linear shape functions [10], the approximated solution to the 
problem is equal to a linear combination of the basis functions. The coefficients of the linear 
combination are found from the nonlinear algebraic system of equations. The system is led 
out from stationarity conditions. The system of nonlinear algebraic equations is solved by 
using the Newton-Raphson method. In consecutive remeshing (this means separate finite 
element problems) steps of the adaptation algorithm the values of the mesh size function 
taken at the nodes are so modified that at the points with greatest values of an error indicator 
[2, 5] the values of mesh size function are the most diminished. Having the values of the 
mesh size function at nodes the new mesh size function is defined by the linear interpolation. 
The process is performed till the error indicator attains the assumed value. The error indicator 
is found at every node as an approximated residual by the finite difference method for the 
appropriate local formulation.

The presented numerical analysis of the convergence suggests better than linear 
dependence between number of degrees of freedom and error norm for derivatives. In further 
development it is planned to generalize the method to apply anisotropic meshes. The proposed 
method was applied to both problems, in which the solution is known and  unknown. 
The obtained results were consistent with physical interpretations [4].

The adapted mesh for an example problem, where the strict solution is known, is presented. 
It can be observed that the rapid change of the size function corresponds to the great gradient 
of the solution. Additionally, it can be said that the final t mesh depends on both the solution 
and the assumed error indicator. As an example problem the Poisson equation was taken with 
known solution and elastic-plastic problem of twisting of bars with hardening, where some 
physical properties of the solution to the problem are known.

2.  Example problem

2.1.  The Poisson equation

The boundary value problem for the Poisson equation is formulated as follows:
	 Du f x y= ( , ), ,in Ω 	 (1)

	 u = ∂0, .in Ω 	 (2)
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This equation is used for error indicator calculation:

	 e u P f x yi h i= −D ( ) ( , ) at i-th node	 (3)

where D  is the finite difference approximation of D. In this case of the Poisson equation. 
This problem is equivalent to search for the stationary point of the following functional:

	 I u u x y u x y dx y( ) ( , ) ( , )) .= +∫ 2 2 Ω
Ω

	 (4)

2.2.  The elastic-plastic twisting of bars with hardening

In this section the elastic-plastic problem of twisting of bars with hardening is formulated. 
According to [3] the problem can be led to search for the extremum of the following functional:

	 I u sg s ds u d
T

( ) ( ) ,= −



∫∫∫ 2

0
ω Ω

Ω

	 (5)

where T is the stress intensity:

	 T u
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u
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u
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=
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∂
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


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∂
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


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


 =

∂
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= −
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∂

2 2

13 13, , .τ τ 	

The function g defines the dependence between the effective stress and the effective 

strain: T g= ( )Γ Γ  (Fig. 1), where Γ = ε ε εij ij ij,  is the strain tensor and ω is the angle 
of the torsion.

After the substitution s r= ,  it is obtained:

	 I u sg s ds u d
T

( ) ( ) .= −








∫∫∫

1
2

2
0

2

ω Ω
Ω

	 (6)

Fig.  1.  The dependence between the strain and stress intensity
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In both problems the current function u varies in the Sobolev space

	  H v L v
x

L i
i

1 2 2 1 2( ) ( ), ( ), , .Ω Ω Ω= ∈
∂
∂

∈ =








	

In both problems the current function u varies in the Sobolev [3] space.
For the sake of the approximation the finite dimensional space of functions is defined:

	 V v T v is continuos v Pi
i

N

T

T

i

0

0
1= → ∈


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


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
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: , , | ,
_

R


	

where T T i Ni T= ={ : , , }1  is a set of non-intersecting triangles covering the domain. 
For the finite element approximation the approximate solution is defined as finite linear 
combination of basis functions [10] of the space V 

0. The unknown coefficients of the linear 
combination are found by solving the nonlinear system of algebraic equations, obtained 
from the stationarity condition [6].

3.  The unstructured grid generation with mesh size function in arbitrary domains

Grid generation with arbitrary mesh size function is performed using a 2-D generator 
[5, 6]. The main idea of grid generation is based upon the algorithm of the advancing front 
technique and a generalization of the Delaunay triangulation [5, 8] for wide class of 2 ‒ D 
domains. It is assumed that the domain is multiconnected with an arbitrary number of internal 
loops. The boundary of the domain may be composed of the following curves:
–	 A straight line segment,
–	 An arc of circle,
–	 A B-spline curve.

In case of the advancing front technique combined with the Delaunay triangulation 
the point insertion and triangulation can be divided into the following steps:
1.	 Point generation on the boundary,
2.	 Internal point generation by the advancing front technique,
3.	 Delaunay triangulation of the previously obtained set of points,
4.	 The Laplacian smoothing of the obtained mesh.

The algorithm for boundary point generation depends upon the type of boundary 
segment: [5].

4.  Algorithm of remeshing

The whole algorithm of the adaptation is realized in the successive generation of 
a  sequence of meshes {Tν}, where ν = 0,1,2,… with a modified mesh size function. By 
using every mesh of the sequence the approximate solution to the problem is obtained and 
then appropriate error indicators at each node are calculated. Having values of errors at 
nodes a continuous error function in the whole domain is constructed by using piecewise 
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linear interpolation at all elements. The error function is appropriately transformed to obtain 
a multiplier for mesh size function.

The proposed approach gives the possibility to solve the considered problem on well- 
-conditioned meshes and to obtain optimal graded meshes.

4.1.  Remeshing scheme

The algorithm of remeshing [4, 13] can be divided into the following steps:
1.	 Preparation of the information about the geometry and boundary conditions of the problem 

to be solved,
2.	 Arrangement of an initial mesh size function,
3.	 Mesh generation with mesh size function,
4.	 Solution to the considered on the generated mesh,
5.	 Evaluation of error indicator at each node,
6.	 Definition of the new mesh size function by using the errors found at every point of the 

computational grid,
7.	 If the error not small enough go to the point 3,
8.	 End of computations.

In the examples solved by the author it was sufficient to make from 5 to 9 steps of 
adaptation.

4.2.  Error indicators

The applied error indicators are calculated directly for every node, not in elements like 
in [6, 9].

Let ei for i = 1,…,nP be an error indicator at i-the apex of the mesh Tν ,  and 
� …P P i ni Pν = ={ , , , }1  set of nodes. We define a patch of elements for every node Pi as:

	 L k P T i ni i P= ∈ ={ , } for , ,
_

1 	 (7)

where  TP is the k-th element of the mesh.
1.	 The first proposed error indicator is biased on the discretized form of the equation (1). 

At every node partial derivatives  are found  according to the following recipe:
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∂
∂

=

∂
∂∈

∈

∑
∑

u
x
P

u
x
P area T

area T
h

i

i kk L

kk L

i

i

( )
( ) ( )

( )
. 	 (8)

where uh
k  is the restriction of the solution uh to the k-th element is a linear combination 

of shape functions of k-th element, then:
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where u Nh j
k=  is a shape function of the k-th element. Formula 9 is applied at nodal 

points. The derivatives 
∂
∂

∂
∂

=
u
x
P

u
y
P i Nh

i
h

i P( ), ( ), , ,1  found in that way are used for 

calculation
 
of second order derivatives at nodes in the similar way by using the recurrent 

formula:
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In the similar way it is possible to calculate the derivatives of arbitrary order and put 
them into formula 2 to obtain the value of the error indicator at i-th node.

2.	 In this case it is suggested to evaluate directly derivatives values of error indicator at every 
node in the following way:
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where Li is the set of elements meeting at i-th node.

4.3.  Error indicators

The modification of the mesh size function is performed at every adaptation step for the 
realization of the next one. The main idea of this part of the algorithm relies on a multiplication 
of the values of the mesh size function by an appropriately chosen function. The chosen 
function should be continuous, linear and should have the smallest value at the node where 
the value of the error indicator is maximal and the greatest where the value of the error is 
maximal. It should increase when the error decreases.

The error indicators ek  are calculated at each node of the current mesh, then the minimal 
and maximal values of the error are found:
	 α α= =

= =
min , max ,

, , , , , ,k N k k N k
NOD NOD

e e
1 2 1 2… …

� � 	 (12)

where NNOD is the number of nodes. Certainly, α β£ £� …e k Nk NODfor = 1 2, , , .

The following values are introduced:
λ	 ‒	 a value indicating the greatest mesh size reduction.
µ	 ‒	 a value indicating the greatest mesh size reduction.
The values of λ and µ usually should be greater than 0.5, which means that the mesh size 

does not change too rapidly, which would have an influence on mesh quality in the vicinity, 
where there are big errors. Usually it is assumed that λ varies  from 0.5 to 0.6 and µ from 
0.8 to 1.0.

The following affine transformation is defined:
	 l : [ , ] [ , ],α β µ λ→ 	 (13)
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which satisfies the conditions l l( ) ( ) .α λ α µ= =and  By these assumptions it can be 

observed that µ λ α β£ £l x x( ) , [ , ].∀ ∈
Provided that

	 Q l e i Ni i NOD= ∀ =( ) , , , ,� …£ λ 1 	 (14)

then we have
	 min , max .

, , , , , ,i N i i N i
NOD NOD

Q Q
= =

= =
1 2 1 2 

µ λ 	

Introducing the function r D: ,→R  as follows: r x x x Ts( ) ( ), if ,= ∈Π  where Π is an 
affine mapping of two variables satisfying the following equalities:
	 Π( ) , for , , ,P Q ii i= = 1 2 3 	 (15)

where P1, P2, P3 are the vertices of the triangle Ts of the triangulation of Ω, and appropriately 
Q1, Q2, Q3 are the values defined by the formula (14). The function r(x) is defined in the 

whole domain because the triangles { }
_
Ts s

NT
=1  cover it. The new mesh size function is defined 

as follows:
	 γ γi ix x r x+ =1( ) ( ) ( ). 	 (16)

As µ λ£ £r x( )  then µγ γ λγi i ix x x( ) ( ) ( ).£ £+1

It can be checked that: ∃ ∈x y, Ω  such that:

	 µγ γ γ λγi i i ix x x x( ) ( ) and ( ) ( ).= =+ +1 1 	 (17)

It can be shown, that γ γ γ λ µi i i+ − − −{ }1 1 1Ω Ω,max ,max max , ,£  where

	 γ γΩ Ω,max max ( ) .= { }
∈x

x 	 (18)

5.  Numerical examples

The manner of size function modification depends on the error indicator and on the 
coefficients λ, µ, which determine the details of the mesh size function modification. 
If  the  values of the coefficients λ, µ, are small then fewer adaptation steps is necessary. 
How  quickly an adapted grid will be close enough to an optimal mesh, besides of error 
indicator function, depends on the initial mesh too. For the solved problems it was assumed 
that λ = 0.6 and λ = 0.8, which caused performing greater number of adaptation steps, what 
may lead to a better solution. In the plasticity theory problems it can observed (figures 5, 6), 
that the adapted mesh densities at the border between elastic and plastic zones and the adapted 
mesh (Fig. 5) coincide with the sand heap analogy [3]. It would be rather impossible to obtain 
the effect by the methods based on mesh enrichment [1, 9].
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For the sake of numerical rate of the convergence of the proposed method for the 
problem defined in 4 the function f was defined in the way that the solution to the problem 

is the function [13]: u x y x x y y a x y( , ) ( ) ( ) arctan ,= − −
+
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
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1 1

2
ξ  where a  =  20 

and ξ = 0.8. The figure 2 presents the dependence between number of nodes and norms 
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almost cover each other.

The figure 3 presents the adaptive mesh.
It can seen that the mesh for the example problem 1 and its strict solution 5 coincide.

Fig.  2.  The convergence curves for u, ux, uy for problem 1 with respect to the norms

Fig.  3.  Strict solution for the problem 1
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Fig.  4.  Adapted mesh for the problem 1

Fig.  5.  Final mesh after 7 adaptation steps for problems 6

Fig.  6.  Adapted mesh for the problem 6
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6.  Summary

–	 New error indicators based on generalized finite difference method were introduced 
applied to the proposed adaptive remeshing.

–	 The numerical rate of the convergence was calculated by using the known strict solution.
–	 The optimal mesh size function is obtained iteratively and depends on values of error 

indicators at nodes.
–	 The generator based on Delaunay condition and advancing front technique seems very 

suitable to the class of problems where different zones of the domain are to be appointed.
–	 For further investigations the anisotropic mesh generation algorithm will be developed 

an appropriate anisotropic adaptation algorithms as well too.
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1.  Introduction

Most of the mechanisms estimating measures of similarity between text documents are 
based on vector space models and weight methods [1, 2, 3] with compilation of other methods, 
such as probability methods [4], semantic networks (e.g. WordNet) [5, 6] or genetic algorithms 
[7], etc. The traditional text identification mechanisms usually use glossary of grammatical 
variations which in some cases are difficult to implement. Most of the mechanisms are 
composed of stemming algorithms [8], such as popular: Lovins stemming algorithm [9], 
Porter stemming algorithm [10], Dawson stemming algorithm, Krovetz stemming algorithm, 
etc. [11], causing increasing of time consumed by identification algorithm during the data 
analysing process.

In our research we propose a model of effective mechanism for the calculation of similarity 
between two short texts (e.g. sentences) mainly based on Levenshtein distance algorithm 
(Lda) combined with the word coding technique. Our research indicates that the terms coding 
technique with its implementation for measure of text similarity improves the results of text 
identification significantly. The proposed technique seems to be easy for implementation 
in most programming technologies and open to most European languages.

2.  Description of the problem

The main idea of the mechanism of measuring the similarity of texts consists of:
–	 implementation of function of terms coding based on Levenshtein distance [16] (presented 

in subsection 2.2) and thesaurus (described in subsection 3.2),
–	 calculation of similarity measure between two sentences based on Levenshtein distance 

between encoded terms.

2.1.  Levenshtein distance algorithm

The concept of the Levenshtein distance algorithm (Levenshtein Distance function) may 
be depicted by the following pseudo-code:

Pseudo-code 1
input variables: char Text1[0..M-1], char Text2[0..N-1]
     declare: int d[0..M, 0..N]
     for i from 0 to M
      d[i, 0] := i
     for j from 0 to N
      d[0, j] := j
            
     for i from 1 to M
      for j from 1 to N
                
       if char of Text1 at (i – 1) = char of Text2 at (j – 1) then
                    cost := 0 else cost := 1
       end if
                    d[i, j] :=
                        Minimum(d[i - 1, j] + 1,
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                        d[i, j - 1] + 1,
                        d[i - 1, j - 1] + cost)
       end for (variable j)
      end for (variable i)
            
return d[M, N];

where:
d	 –	 Levenshtein matrix of the size N+1, M+1, formed for two terms: Text1 

and Text2,
M, N	 –	 lengths of two terms respectively,
d [i, j] ‒ (i, j)	 –	 element of Levenshtein matrix d,
min	 –	 a function to calculate minimum of three variables,
cost	 –	 variable that gets values either 0 or 1
The Levenshtein distance K is the minimum number of operations (insertion, deletion, 

substitution) required to change one term into the other

	 K d M N= ( , ) 	

2.2.  The measure of similarity between terms

Measure of similarity P is the quotient of number of Levenshtein operations (after 
calculation of Lda) by the number of all Levenshtein operations in pessimistic case. This 
means, before the calculations of Lda will be completed but with the maximum possible 
number of Levenshtein operations well known.

The similarity measures P is calculated by the formula:

	 P K
K

K N M
K M N
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where:
Kmax	 –	 the length of the longest of analysed two terms/text strings (i.e. pessimistic case 

where K is equal to the length of the longest term).

T a b l e  1
Examples of the Levenshtein distance and the measure  

of similarity between two short texts

No. Text1 Text 2 K P

1. Car Cars 1 0.75

2. University Universities 3 0.75

3. Tom is writing a letter Tom is writin letters 4 0.82

2.3.  The algorithm to measure similarity between two sentences

The algorithm for measuring of similarity between two sentences, based on Lda, is 
described by the formula (2) presented below:
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where:
I	 –	 symbol for iteration (for loop presented in the pseudo-code 1)
NS+1, MS+1	 –	 matrix sizes made from two sentences,
dS	 –	 matrix made from two sentences,
dS(iS,jS) – (iS,jS)	 –	 element of matrix dS,
Λ	 –	 function which returns the measure of similarity between two terms P, 

calculated based on Levenshtein distance algorithm (pseudo-code 1), 
few terms creates sentence,

βS	 –	 variable: 0 or 1,
aS(iS)– iS	 –	 term of sentence aS,
bS(jS) – jS	 –	 term of sentence bS
q	 –	 acceptable boundary of value of similarity measure for two texts 

(terms in this case). This value is set by the user and it depends on 
data (e.g. texts from old books, texts from newspapers).

The asymptotic computational complexity of the algorithm is O(n4). This derives from 
the construction of the algorithm which consists of four nested loops1.

The similarity measures PS between two sentences may be estimated in the rule:

	 P
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T a b l e  2
Examples of the Levenshtein distance and the measure of similarity between two sentences  

in whose terms are treated as chars

No. Sentence 1 Sentence 2 KS PS q
1. My car isn’t working My bicycle isn’t working 1 0,75 1; 0,75; 0,3
2. What did you do yesterday? What have you done? 3 0,40 1; 0,6
3. What did you do yesterday? What have you done? 3 0,60 0,5; 0,1
4. Tom is writing a letter Tom is writin letters 3 0,40 1; 0,9
5. Tom is writing a letter Tom is writin letters 3 0,80 0,85; 0,05

1	 Interesting research about parallelization of the Levenshtein distance algorithm (and Levenshtein- 
-Damerau distance algorithm) for accelerate the calculations is described in [12].
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3.  Procedure of Terms Coding based on thesaurus

On the figures and tables below concept of the coding process is described. Tables 3‒5 
include sample data to be encoded. Formulas 4‒7 describe all steps of the coding process.

3.1.  The data model

The database model of thesaurus (τ) with tables of unique terms, groups of terms and 
table of terms associations is presented below.

Example of use of the model above:

T a b l e  3 T a b l e  4 T a b l e  5
Terms Terms_association Groups

ID_terms Terms ID_terms ID_groups ID_groups Describe
1 Tom 1 1 1 names
2 Mary 2 1 2 my best friends
3 John 3 1 3 vehicles
4 car 1 2
5 auto 2 2
6 vehicle 4 4

5 5
6 6

It is easy to see that a term can belong to a few groups. The example shows that Tom 
and Mary can belong to the groups: names and my best friends. It means that Tom, Mary and 
John are the same terms (names) because they have the same meaning. Following terms: car, 
auto, vehicle are the same terms ‒ vehicle.

3.2.  The coding process

The process of common group analysis proceeds with the following steps:
1.	 Get all codes of each terms of both texts (aS, bS) from thesaurus (e.g. array of codes for 

cases where one term can has a multiple meanings).
	 Ψ Ψ( , , ) ( , ) and ( , ) ( , )a q i t b j ts S i s S jS S

τ τ→ →C Ca bS S
	 (4)

Fig.  1.  The database model of thesaurus (τ)
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where:
Ψ	 ‒	 function to get codes of terms,
τ	 ‒	 thesaurus,
tiS 	 –	 the number of term’s codes variants,

CaS 	–	 array of codes of terms of sentence aS.

2.	 Calculate number of occurrences of codes terms based on their frequency in texts 
(i.e. matching process of common meanings).

	 Γ( , ) ( )C C Ca b abS S S
→ h 	 (5)

where:
Γ	 –	 function which calculates frequency of occurrences of codes,
CabS 	 –	 array of the best codes of terms,
h	 –	 ID of the term.

3.	 Replace each term in both texts with the most frequent code
	 Φ Φ( , ) ( ) and ( , ) ( )C C NC C C NCab a a ab b bS S S S S S

→ →i jS S 	 (6)

where:
Φ	 –	 function which replaces the most frequent code,
NCbS 	–	 new sentence with encoded terms.

4.	 Function which calculates similarity KS between two sentences (short texts).
	 Ω ( , , , )NC NCa bS S

q q PSτ → 	 (7)

where:
Ω	 –	 function which calculates similarity KS measures between sentences,
qτ	 –	 acceptable border value of similarity measure for two terms – between term 

includes in text and term derives from thesaurus.

4.  Verification of proposed similarity measures mechanism

The following tests show how term coding methods improve the mechanism of similarity 
between two short texts. As a test of the proposed algorithms, 170 pars of correct and incorrect 
sentences written in various tenses were checked. 10% of interesting sentences were chosen 
and described below. Some examples based on the three popular languages of Eastern Europe 
are provided in Appendix 1.

The terms and sentences used for the tests were presented in the tables below:
1.	 synonyms (thesaurus) (Table 6)
2.	 grammatically and spelling correct sentences written in various tenses (Table 7)
3.	 grammatically and spelling incorrect sentences written based on the correct sentences 

(Table 7)
4.	 encoded texts based on the thesaurus (Table 8)
5.	 results of tests (Table 9)
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For all tests and in all cases the acceptable boundaries of similarity P are: qτ = 0.80 for 
thesaurus and q = 0.75 for similarity between terms in sentences (formula 2).

T a b l e  6
Example of the thesaurus schema with terms groups by common ID (code in text).  

Similar term from column Describe in analysing text will be replaced by ID

ID of groups Describe
(e.g. name of the group) Terms

#1 names Tom, Mary, John, Jimmy, Jane, Derek, Gina
#2 cars car, auto, automobile, taxi, vehicle
#3 numbers one, two three, four, five, six, seven, eight, nine, ten
#4 seasons spring, summer, autumn, winter
#5 fruits apple, pear, cherry, mango, kiwi, watermelon
#6 cities Warsaw, Berlin, London
#7 phones phone, telephone, iPhone, mobile phone
#8 very very, extremely
#9 shortcuts1 is not, isn’t
#10 shortcuts2 are not, aren’t
#11 shortcuts3 don’t, do not
#12 fluid milk, water
#13 my_friends Tom, Jack, Ella, Olivia

T a b l e 7
Correct and incorrect sentences for the tests

No. Correct sentences Incorrect sentences with synonyms
s1 Tom is writing a letter Dere is writin a letters
s2 We are waiting for a taxi We are waitin for car
s3 Is Mary having breakfast? Is Jane hasing brekfest?
s4 Tom is not writing a letter Jimm isn’t writin leter
s5 He isn’t looking at the stars He is not look at the start
s6 He drinks milk twice a day He is drinks water twice a day
s7 We go to work six times a week We goes to works seven times a week
s8 I always feel great in spring I alway feel great in summer
s9 Do you like apples? Does you likes pear?
s10 I don’t like milk I do not likes water
s11 Tom was writing the letter all day yesterday Jimmy writting the leter all day yestaredy
s12 They met when they were studying in Berlin They met when they were studying in Warsaw
s13 I was working in London this time last year I was work in Berlin this times last years
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s14 I have found his telephone number I have found his phone number
s15 I was shocked when I found out that Derek 

and Gina had got divorced
I was shock when I found out that John and 
Mary has gotten divorced

s16 I have been working for five hours I has been working for six hour
s17 It had been raining for days so when they 

finally left, the roads were very muddy
It has been raining for days so when they 
finaly left, the roads were extremly muddy

Table 7 shows the correct sentences with synonyms in the left column and incorrect 
sentences with synonyms in the right column. Synonyms (not all) include mistakes, like for 
example Dere instead of Derek in the first row.

T a b l e  8
Correct and incorrect sentences after terms coding (based on the thesaurus)

No. Correct sentences after terms coding Incorrect sentences with synonyms after terms 
coding method

s1 #1 is writing a letter #1 is writin a letters
s2 we are waiting for a #2 we are waitin for #2
s3 is #1 having breakfast? is #1 hasing brekfest?
s4 #1 #9 writing a letter #1 #9 writin leter
s5 he #9 looking at the stars he #9 look at the start
s6 he drinks #12 twice a day he is drinks #12 twice a day
s7 we go to work #3 times a week we goes to works #3 times a week
s8 i always feel great in #4 i alway feel great in #4
s9 do you like #5? does you likes #5?
s10 i #11 like #12 i #11 likes #12
s11 #1 was writing the letter all day yesterday #1 writting the leter all day yestaredy
s12 they met when they were studying in #6 they met when they were studying in #6
s13 i was working in #6 this time last year i was work in #6 this times last years
s14 i have found his #7 number i have found his #7 number
s15 i was shocked when i found out that #1 and 

#1 had got divorced
i was shock when i found out that #1 and #1 
has gotten divorced

s16 i have been working for #3 hours i has been working for #3 hour
s17 it had been raining for days so when they 

finally left, the roads were #8 muddy
it has been raining for days so when they finaly 
left, the roads were #8 muddy

Table 8 includes sentences from table 7 after coding by the proposed algorithm. 
The similarity of these sentences was calculated with (1)(2) and presented below.
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T a b l e  9
Values of similarity of the sentences with and without the terms coding method based 

on Levenshtein distance algorithm. Description of columns: Col. 1 – Similarity between 
correct and incorrect sentences without methods of the: similarity measure between terms; 

coding terms (based on Table 7 data); Col. 2 – Similarity between correct and incorrect 
sentences (without using method of terms coding) based on Table 7 data; Col. 3 – Similarity 

between correct and incorrect sentences (with using method of terms coding) based  
on Table 8 data; No – number of sentence

No. Col. 1 Col. 2 Col. 3
s1 0.40 0.80 1.00
s2 0.50 0.67 0.83
s3 0.25 0.75 1.00
s4 0.00 0.33 0.80
s5 0.43 0.57 0.83
s6 0.71 0.71 0.86
s7 0.62 0.75 0.88
s8 0.67 0.83 1.00
s9 0.25 0.50 0.75
s10 0.20 0.40 1.00
s11 0.38 0.62 0.75
s12 0.88 0.88 1.00
s13 0.56 0.78 0.89
s14 0.83 0.83 1.00
s15 0.64 0.71 0.86
s16 0.57 0.71 0.86
s17 0.81 0.88 0.94

The obtained results show that the method of coding terms (column no. 3) increases 
the precision of similarity estimation in some cases from 0‒20% even up to 75‒100%.

Fig.  2.  Graphical results of quality test of English sentences. For all tests in this case 
acceptable boundaries of similarity P are: q = 0.75, qτ = 0.80
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5.  Comparison quality of described method with popular methods

Results in table 10 (and in tables 11‒16 in Appendix 1) show that the similarity methods 
based on Levenshtein distance algorithm (i.e. Lda without coding terms method and 
Lda  with  coding terms method – Table 9/Col. 3) are more precise than popular methods 
like: Dice distance, Jaccard distance or Cosine distance [17]. Formulas (8‒12) refer to these 
distances.

Dice distance is described by the formula below:
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where:
ai	 –	 weight of the term in i position of the vector of text document a,
n	 –	 length of the two vectors created from two text documents a and b.
Jaccard distance is described by the formula below:
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Cosine distance is described by the formula below:
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Weights are calculated by special formulas, i.e. term frequency method (tf) or term 
frequency – inversed document frequency method (tf ‒ idf) [18].

The idf method is described by the formula below:

	 idf N
dft
t

= log 	 (11)

where:
N	 –	 the number of analysed documents,
dft	 –	 the number of documents where term t occurs.
The tf ‒ idf method is described by the formula below:

	 tf idf N
df

tft,d
t

t d− = ×log , 	 (12)

where:
tft,d	 –	 the number of times that term t occurs in document d.
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T a b l e  10
Values of similarity of the sentences using popular methods. Describe of columns (experiments): 
Col. 1 – Similarity method based on Lda without coding terms method; Col. 2 – Cosine distance 
based on term frequency weight method (tf); Col. 3 – Dice distance based on tf weight method; 
Col. 4 – Jaccard distance based on tf weight method; No. – number of sentence. Experiments 

2‒4 based on Table 8 data (i.e. method of coding synonym terms was used)

No. Col. 1 Col. 2 Col. 3 Col. 4
s1 0.80 0.40 0.08 0.25
s2 0.67 0.55 0.10 0.37
s3 0.75 0.25 0.06 0.14
s4 0.33 0.00 0.00 0.00
s5 0.57 0.46 0.07 0.30
s6 0.71 0.77 0.12 0.62
s7 0.75 0.63 0.07 0.45
s8 0.83 0.66 0.11 0.50
s9 0.50 0.25 0.62 0.14
s10 0.40 0.22 0.50 0.12
s11 0.62 0.40 0.53 0.25
s12 0.88 0.90 0.00 0.81
s13 0.78 0.56 0.06 0.38
s14 0.83 0.83 0.13 0.71
s15 0.71 0.69 0.04 0.52
s16 0.71 0.57 0.08 0.40
s17 0.88 0.81 0.05 0.68

Fig.  3.  Graphical results of similarity of the incorrect sentences using popular methods. 
Description of experiments: Exp. 1 – Similarity method based on Lda without coding 
terms method; Exp. 2 – Cosine distance based on term frequency weight method (tf); 
Exp. 3 – Dice distance based on tf weight method; Exp. 4 – Jaccard distance based on 
tf weight method; Exp. 5 ‒ Similarity between correct and incorrect sentences (with 

using method of terms coding) based on Table 8 data
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As can be seen, the described similarity methods (based on Lda) include a fully different 
algorithm compared with the popular methods (based on terms weights and vector space 
models) because of the identification of the distribution of terms. Described popular methods 
based on the number of occurrences of terms in documents only. Methods based on Lda do 
not need other documents instead of e.g. term frequency – inversed document frequency 
method to estimate weight of terms (in case of two sentences impossible to apply). Graphical 
interpretation includes all described methods is shown below (Figure 3). The best results 
includes exp. no. 5.

6.  Summary

The method of coding terms described in this paper increases the precision of calculation 
of the similarity measures based on Levenshtein distance significantly. This method is 
characterized by the speed of data analysis and simplicity of implementation. The coding 
method of terms in combination with the Levenshtein distance and the similarity measures 
can be used in: detecting plagiarism (resignation of variety of nouns and verbs based on 
standard thesaurus and stemming algorithms), finding phrases in text documents [8] (or 
web documents [13], etc.), algorithms for correcting mistakes, mechanism of identification 
and classification of content based on term weighted methods [1, 14, 15], etc.

The proposed solutions are applied and have been tested in the mechanism of topic 
analysis and descriptions of selected written works (diploma thesis) to automatic selection 
of supervisors and reviewers at the Faculty of Physics, Mathematics and Computer Science 
of the Cracow University of Technology2. The solution also was included in Anti-plagiarism 
System of Faculty of Physics, Mathematics and Computer Science3. Tests results show a high 
quality of the text mining analysis.
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Appendix 1

T a b l e  11
Example of Polish sentences. Stars define the same origin  

(i.e. method of coding synonyms was used)

No. Correct sentence Incorrect sentence
s1 Jutro będzie nowy* dzień Jutro bedzie nowiutki* dzien
s2 Gdy** chcesz opisać prawdę, elegancję 

pozostaw*** krawcom.
Kiedy** chcesz opisac prawde, elegancje 
zostaw*** krawcom.

s3 Kto się lęka**** już przegrał Kto sie boi**** juz przegral

T a b l e  12
Values of similarity of the sentences using popular methods. Description of columns 

(experiments): Col. 1 – Similarity method based on Lda without coding terms method;  
Col. 2 – Similarity method based on Lda with coding terms method; Col. 3 – Cosine distance 

based on term frequency weight method (tf); Col. 4 – Dice distance based on tf;  
Col. 5 – Jaccard distance based on tf weight method; No. – number of sentence

No. Col. 1 Col. 2 Col. 3 Col. 4 Col. 5
s1 0.75 1.00 0.25 0.06 0.14
s2 0.86 1.00 0.57 0.08 0.40
s3 0.40 0.60 0.40 0.08 0.25

Table 11 includes correct and incorrect Polish sentences. Sentences have similar meaning 
but include different terms. Column no. 2 in table 12 includes the best values of the tests.

T a b l e  13
Example of Russian sentences. Stars define the same origin  

(i.e. method of coding synonyms was used)

No. Correct sentence Incorrect sentence
s1 Завтра будет новый* день Завтра будетъ новенкий* день
s2 Если**  вы хотите сказать*** правду, 

оставьте элегантность портным
Когда** вы хатите рассказать*** 
правду,оставте элегантность портным

s3 Кто боится уже проиграл Кто баиться уже праиграл
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T a b l e  14
Values of similarity of the sentences using popular methods. Description of columns 

(experiments): Col. 1 – Similarity method based on Lda without coding terms method;  
Col. 2 – Similarity method based on Lda with coding terms method; Col. 3 – Cosine distance 

based on term frequency weight method (tf); Col. 4 – Dice distance based on tf;  
Col. 5 – Jaccard distance based on tf weight method; No. – number of sentence

No. Col. 1 Col. 2 Col. 3 Col. 4 Col. 5
s1 0.75 1.00 0.75 0.18 0.60
s2 0.75 1.00 0.75 0.09 0.60
s3 0.75 0.75 0.50 0.12 0.33

Table 13 includes correct and incorrect Russian sentences. Sentences have similar 
meaning  but include different terms. Column no. 2 in table 14 includes the best values 
of the tests.

T a b l e  15
Example of Belarusian sentences. Stars define the same origin  

(i.e. method of coding synonyms was used)

No. Correct sentence Incorrect sentence
s1 Заўтра* будзе новы дзень Заутра* будзіць новый дзень
s2 Калі вы хочаце сказаць праўду, 

пакіньце** элегантнасць для краўцоў
Калі вы хочаце сказать правду, пазастаўце** 
элегантнасць для краўцоў

s3 Хто баіцца ўжо прайграў Кто баіца ужо праіграў

T a b l e  16
Values of similarity of the sentences using popular methods. Description of columns 

(experiments): Col. 1 – Similarity method based on Lda without coding terms method;  
Col. 2 – Similarity method based on Lda with coding terms method; Col. 3 – Cosine distance 

based on term frequency weight method (tf); Col. 4 – Dice distance based on tf;  
Col. 5 – Jaccard distance based on tf weight method; No. – number of sentence

No. Col. 1 Col. 2 Col. 3 Col. 4 Col. 5
s1 0.75 0.75 0.50 0.12 0.33
s2 0.89 1.00 0.77 0.08 0.63
s3 0.50 0.50 0 0 0

Table 15 includes correct and incorrect Belarusian sentences. Sentences have similar 
meaning but include different terms. Column no. 2 in table 16 includes the best values 
of the tests.
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1.  Introduction

In experimental and applied particle physics, nuclear physics and nuclear engineering, 
a particle detector is a device used to detect, track, or identify high-energy particles. It may 
also deliver information on other attributes such as its momentum or charge.

Drift chambers are used to measure the space coordinates of the charged particle 
trajectory. This is achieved by measuring the drift time of the ionization electrons to the 
sensitive electrodes [1]. This technology is applied also in the straw drift tube chambers 
[2]. The straw type detectors differ in the number of the straws and also their position or 
orientation. The path is determined by the best fit to coordinates calculated using information 
coming from hit straws. Additionally, the measured drift time, which is proportional to 
the distance of the particle’s closest approach to that chamber’s sense wire, allows the 
coordinate to be determined with precision better than the straw radius.

The track pattern recognition in detectors has been developed since the first detector 
was built. A review can be found in [3]. The author after a brief introduction discusses 
different approaches in global and local methods of track pattern recognition including their 
strengths and shortcomings. In [4] a novel track finding algorithm, named the Drift Tube 
Hough Transform (DTHT) algorithm, is presented. The DTHT algorithm uses the possible 
explanations for a lack of particle hits as additional information, and takes into account all 
possible scenarios that may occur in the tubes.

It is quite clear that not only the accuracy of the determination of the particle track 
properties should be taken into account. One should also stress the importance of the analysis 
time especially in case of on-line processing. For this reason a unique algorithm for each 
detector is needed.

In this paper the algorithm for the 3D track recognition for a linear forward tracker 
segment is presented. It is designed for the PANDA experiment [5]. This experiment is one 
of the key experiments at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt, 
Germany. It is foreseen to study the collisions of an anti-proton beam with different 
fixed targets. 

2.  Construction of Forward Tracking Stations in PANDA experiment

The Forward Tracker (FT) in the PANDA experiment consists of three pairs of planar 
tracking stations (Fig. 1). One pair (FT1, FT2) is placed in front of the magnet gap, the 
second (FT3, FT4) is placed inside the magnet gap (dipole field) and the third pair (FT5, FT6) 
is placed behind the magnet gap, in order to track the low transverse momentum particles 
exiting the magnet yoke [6].

Each tracking station consists of four double layers of straw tubes oriented respectively 
at 0°, +5°, ‒5°, 0° (Fig. 2) with respect to the vertical direction.

Each double layer contains a different numbers of straws and has the beam pipe openings 
of different dimensions. The details of the geometry of active areas, positions along the beam 
direction and the number of straw tubes in individual tracking stations can be found in [7].
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The most important properties of the straws for the track pattern recognition are:
–	 the straw diameter ‒ 10.1 mm,
–	 the Mylar straw tube wall thickness ‒ 0.03 mm,
–	 the tungsten, sense wire diameter ‒ 0.02 mm,
–	 the gas mixture: 90%Ar + 10% CO at 2 bar.

The positions of individual sense wires in the FT straw tubes are described by straight line 
equations. The equations are given in a right-handed coordinate system with origin located 
in the nominal PANDA interaction point, Z-axis is parallel to the beam direction and Y-axis 
is oriented in the vertical direction.

Each straw has its unique ID number which can be used to access the layer and the 
tracking station numbers as well as the set of parameters describing the position of the straw 
sense wire.

Since the outer stations (FT1, FT2 marked as FT12 and FT5, FT6 marked as FT56) 
are situated outside the magnetic field it can be roughly assumed, neglecting the multiple 
scattering effects in light material, that in these areas particles will move along a straight line. 
In contrast, the charged particle trajectory in the central stations (FT3, FT4 marked as FT34) 
will be close to a helix: circle in X-Z and line in Y-Z projection.

To determine the particle track in three-dimensional space it is enough to calculate the 
track parameters in two independent two-dimensional spaces:

Fig.  1.  Forward Tracking Stations in PANDA experiment; FT1, FT2 ‒ in front of the magnet gap, 
FT3, FT4 ‒ inside the magnet gap, FT5, FT6 ‒ behind the magnet gap

Fig.  2.  One Forward Tracking Station
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–	 horizontal plane ZOX using the vertical straws,
–	 vertical plane ZOY using the inclined straws.

This paper presents the three-dimensional track recognition using the FT12 and FT56 
stations situated outside the magnetic field.

3.  Description of the method

It is clear that the same algorithm the particle track finding can be used in the FT12 
or FT56 stations since both of them are located in the regions free of the magnetic field.

In the FT12 tracking station there are four double layers of straw tubes. Half of them are 
vertical and the others are skewed. A straw located above the beam pipe opening matches 
the direction of the corresponding straw located below the opening i.e. both are described by 
the same equation.

The first step of the algorithm is to read in the forward detector geometry data which 
describe all the straw tubes arranged in 48 layers. In turn, each straw is attributed a set of 
five numbers, {ID, l, x, y, z}, where ID is the unique straw ordinal number, l is the layer 
number, x, y, z are the three coordinates which enable the determination of the equation 
describing a wire in a give area of the detector. The next step is to load input data generated 
by the PANDAROOT software. The simulator delivers events, containing for example 
particles of selected energies and selected angles with respect to the beam, which are passed 
through the detector simulation. During this operation the event number, ID-s of all hit straws 
(hits) are stored, and the drift radius r for each hit is calculated. Also, real (true) coordinates 
of  the  track are stored for each hit. This information is necessary at the later stage of the 
track  pattern recognition to verify the correctness of the obtained results. Input data are 
loaded into two arrays. One stores information considering the vertical straws, the other one 
the skewed straws.

3.1.  Track recognition in the ZOX plane using the vertical straws

To determine the particle track in the ZOX plane the layers with vertical straws are 
required. In the case of the tracking stations FT12 the processed layers are: 1, 2, 7, 8, 9, 10, 
15 and 16.

At the beginning the track candidates are searched for. Based on the list of vertical hit 
straws we choose all pairs of the straws (S1, S2), where the straw S1(z1, x1) with the drift 
radius r1 belongs to the layer 1 or 2, and S2(z2, x2) with the drift radius r2 belongs to 
the layer 15 or 16. Points (z1, x1) and (z2, x2) define the place of the intersection wires 
with the ZOX plane. Next, the straight line L: x=A*z + B passing through these points is 
constructed. In  consequence, the algorithm then looks for all hit vertical straws Si(zi, xi), 
whose distance from this line is smaller than a predetermined value d (Fig. 3):

	
A z B x

A
di i*

,
+ −

+1 2
< 	 (1)
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with d defined as:
	 d r r= +max ( , ) .1 2 0 5 cm 	 (2)

where d is measured in centimetres and the constant 0.5 cm is the inner radius of a straw  
tube.

If the number of selected straws (with S1 and S2) is greater than 6 the case is accepted 
and two circles c(S1, r1) and c(S2, r2) are used to construct four tangent lines, see Fig. 4. 
Later, for each tangent line a new straw search is performed. Again the distance between 
the selected tangent line and the straw centre is calculated.

Fig.  3.  Candidates to the track on ZOX plane

Fig.  4.  Selection of the optimal tangent
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If this distance diminished by the size of the drift radius rs fulfills the condition 
d rs− < ∆1,  assuming D1 = 0.5 cm (size of the inner radius of a straw tube), then the straw 

is accepted and added to the straw list associated with a hypothetical track and the sum

	 dd d S rs= −∑min ( , tan )gent 	 (3)

is calculated. If more than 6 straws meet this criterion then it is assumed that the tangent is 
a candidate for the track. From all selected tangent lines the one characterised by the smallest 
value of dd is accepted as the track candidate.

Initially, the algorithm was initialised only for the pairs of the straws belonging to 
layers 1 and 16 which prevented the track determination if there was no hit in one of these 
layers. To improve the algorithm performance it was assumed that the signal due to the 
particle passage was generated in at least one layer of straws belonging to the double layer 
structure. Therefore, the initial straw can belong either to layer 1 or 2, and respectively 
15 or 16. For this reason, the algorithm considers many more pairs and in cases in which all 
the layers have a hit some tracks are duplicated. This implies that an elimination procedure 
has to be carried out. Two track candidates are considered to be an “repetition event” if they 
contain the same hit straws  in at least 7 out of 8 layers or also if out of 7 hit straws no more 
than 4 straws are not exactly the same but have neighboring numbers. Eventually, out of two 
such candidates the one with more hits or with smaller value of dd is accepted.

The pseudo-code of the algorithm described above is presented in Fig. 5.

The result of track recognition on ZOX plane is a set of hits belonging to the track and 
two parameters α and β of x = α*z + β forming the track in this plane.

3.2.  Track recognition in ZOY plane using the skewed straws

To determine the particle trace in the plane ZOY the layers with skewed straws are used. 
In tracking stations FT12 the processed layers are: 3, 4, 5, 6, 11, 12, 13 and 14.

For each track found in the ZOX plane the plane Z'OY vertical to ZOX and containing the 
found track is constructed (see Fig. 6).

Then for each processed straw (described by equation y = a*(x ‒ x0) + y0) the point  
P(z, y) of intersection of the straw with the plane is calculated. Given the drift radius the 
coordinates of points P1(z, y1) and P2(z, y2) belonging to the track (4) are determined.

Fig.  5.  Reconstruction of traces in the plane XOZ in FT12
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	 y y cc y y cc cc r a1 2 1 2= + = − = +; ; 	 (4)

From the list of all points P1 and P2 (see Fig. 7) only those pairs of points (P, P') are 
selected for which point P belongs to the layer 3 or 4, and P' to the layer 13 or 14. Next for 
each accepted pair a line passing through it points is determined.

Fig.  6.  Points ‒ candidates to the track on Z’OY plane

Fig.  7.  The track candidates in the Z'OY plane
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At the next step, all points, one in each layer, whose distance to this line is the shortest, 
but no greater than value of D2 (D2 = 0.5 cm; size of the inner radius of a straw tube), are 
considered and out of all constructed lines the one with the smallest value of the sum:

	 dd d P= ∑ min ( , )line
layer

	 (5)

is selected. If there are more than 6 points in the sum then the line is the track candidate in 
the Z'OY plane. It is quite clear that the transformation of this line from the Z'OY to the 
ZOY plane is required (Fig. 8). The results of the track recognition in the ZOY plane is 
a set of hit straws belonging to the track and two parameters α and β defining the track line 
x = α*z   β in this plane.

The pseudo-code of the discussed algorithm is presented below in Fig. 9.

Fig.  8.  Transformation of the track from the Z'OY to the ZOY plane

Fig.  9.  Reconstruction of traces in the plane XOY in FT12
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4.  Results

The algorithm was tested for input data generated by the Pandaroot. The data extracted 
from the simulations were ordered in the form of rows with a fixed number of columns 
defining the order:
–	 the event number,
–	 the track number,
–	 whether it is a part of the primary  particle (equal ‒1),
–	 the layer number,
–	 the global number of the hit straw,
–	 the radius,
–	 x, y, z coordinates.

The last three numbers are the coordinates of the point crossed by the particle allowing 
to verify the obtained results with the data from the simulator.

Calculations were made for muons with energies of: 0.5 GeV, 2.55 GeV and 5.55 GeV. 
The angle of incidence of a particle was within the range (2.5°; 5.0°). The generated events 
contained one, three or five tracks. Only the tracks with at least one hit in each of the double 
layer were considered in the present analysis.

Fig. 10 shows the distribution of the simulated track position at the first layer for muons 
of 5.55 GeV energy.

In Fig. 11 and Fig. 12 the difference in X and Y coordinates at each layer of F12 
between simulated and reconstructed tracks are presented. The difference in X coordinate 
was computed using the vertical straws in the ZOX plane, the difference in Y coordinate on 
skewed straws in the ZOY plane. The difference in X coordinate is about ten times smaller 
than in Y coordinate.

The efficiency of the track recognition algorithm in the forward tracker F12 is illustrated 
in Fig. 13. It is a function of the number of found tracks in generated events. The found track 
is a track with minimum 14 hits in 16 layers.

Fig.  10.  Distribution of the simulated track position at the first layer for muons of 5.55 GeV



184

Fig.  11.  The difference in X coordinate between the simulated and reconstructed track position 
for muons of 5.55 GeV

Fig.  12.  The difference in Y coordinate between the simulated and reconstructed track position 
for muons of 5.55 GeV

Fig.  13.  Efficiency of tracks recognition in FT12 for muons of 5.55 GeV
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5.  Conclusions

In this paper, the three-dimensional track pattern recognition algorithm outside the 
magnetic field for PANDA experiment in FAIR was presented. It is based on an analytical 
solution. The algorithm uses the detector geometry, information about the particle hits 
and the drift time/radius values.

Results indicate that the obtained accuracy of the particle path determination using the 
vertical straws is much better than that which can be obtained using the skewed straws. 
The efficiency of the track finding is still above 95% for events with five tracks.

The algorithm returns a list of straws associated with a track as well as the parameters 
of the straight line allowing the three-dimensional determination of the particle path before 
the magnetic field area (in FT12), and after leaving it (in FT56). This information is necessary 
input for the determination of the particle trajectory of a particle in the magnetic dipole field.

I am indebted to Cracow PANDA Group for stimulating discussions and help and to ACK CYFRONET 
‒ Kraków for possibility of using the computing resources.
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1.  Introduction

The increasing complexity of information processes in distributed computer systems 
and  microprocessor systems increases the probability of faults and disturbances. Hence, 
there  is  the need to include them in the design process. These processes were treated as 
occurring in class of discrete event systems (DES).

The DES class is very wide, covering manufacturing systems (including flexible and 
assembly lines) [5, 6], road, railway and air transport systems [3, 19], as well as computer 
networks [15]. In addition, one can also qualify processes in the field of Human System 
Interaction, e.g. resource and task management, as well as process control technologies. 
The variety of DES systems leads to different models. The MPLS model has been adopted 
in this article, based on the algebra theory (max, +). One of the first scientists, who described 
this theory was R.A. Cuninghame-Green [12] and then it was developed by the INRIA 
team [7]. The authors of the articles showed that the behaviour of certain DES systems can 
be described using linear equations. They have also pointed at many cases of analogies 
to the problems in the systems theory, automation and control. Joint researches led to the 
publication of collective work [2]. In the following article, based on the bibliographic 
data, the theoretical basis of modelling and control in the DES systems are discussed, 
supplemented with the authors’ results from the scope of this problem.

In the area of research, in particular should be mentioned:
–	 Optimal control in the open loop. Structure described by the Cohen [9], in which a well- 

-known system model and time sequence of output signals are assumed, while the optimal 
trajectory of the input signals is calculated,

–	 Preliminary compensator [14, 18]. The time sequence of output signals is not known, but 
the reference model, which imposes the behaviour of the output relative to the input is 
assumed.

–	 Corrector with the feedback. In the control structure the system output is modified by 
the correctors in the feedback [10]. They converge the behaviour of the whole system to 
the behaviour set in the reference model.

–	 R, S, T type correction. Strategy based on the introduction of three correctors into the 
structure, has been inspired by the Åström [1]. This leads to the better results than those 
obtained with the single corrector [20].

–	 Control in the presence of disturbances [16]. System is exposed to the acting of 
uncontrolled inputs. To reduce their impact, the control in the closed-loop is taken into 
account.

–	 Robust control [17]. It is assumed that the system parameters are random, but are in the 
specific range of values. Synthesis of control is based on the feedback.
The main part of the following article concerns the design of the open control structures, 

including control under conditions of uncertainty in the data transmission aspect.
This article is organized as follows. Section 2 introduces the maxplus algebra theory and 

MPLS modelling. In section 3, based on the literature review, the authors’ results related 
to the selected problems of processes control in the DES systems have been presented. 
Also some problems in the disturbances conditions, damages and uncertainty have been 
discussed. In section 4 there is the general theory related with the open control. In section 5 
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control system synthesis has been described and the practical results for the computational 
processes and data transmission in model of IT systems have been presented.

2.  Mathematical fundamentals

This section contains selected basic concepts of max-plus algebra providing the basis to 
formulate a model MPLS. They are widely discussed in the Chapters 3 and 4 of publication 
[2]. Max-plus algebra formalism is based largely on the lattice theory and partially ordered 
sets, and residuation theory. In turn, the theoretical basis, allowing representation of MPLS 
in the categories of the state equations system is presented in Chapters 5 and 6 of [2].

2.1.  Max plus algebra [25]

In recent years, the concept of a max-plus-linear system (MPLS) has been increasingly 
frequently used in the literature. It is based on a mathematical formalism, namely max-plus 
algebra. The basic operations of max-plus algebra are maximization and addition, which 
will be represented, respectively, by ⊕ ⊗ ⊕ = ⊗ = +and and: max( , )x y x y x y x y  for 

x y def, , { }∈ = ∪ −R R Rε ε ¥
The reason for using these symbols is that there is a remarkable analogy between ⊕ 

and conventional addition, and between ⊗ and conventional multiplication: many concepts 
and properties from linear algebra (such as the Cayley-Hamilton theorem, eigenvectors 
and eigenvalues, Cramer’s rule) can be translated to max-plus algebra by replacing + with 
⊕ and × with ⊗. Hence we also call ⊕ the max-plus-algebraic addition, and ⊗ the max- 
-plus-algebraic multiplication. Note, however, that a major difference between conventional 
algebra  and max-plus algebra is that, in general, there are no inverse elements with 
respect to ⊕ in Rε. The zero element for ⊕ is ε = −def ¥  and we have a a a⊕ = = +ε ε  for 
all a ∈Rε . The structure ( , , )Rε ⊕ ⊗  is referred to as max-plus algebra. Let r ∈ R. The rth 
max-plus-algebraic power of x ∈ R is denoted by x⊗r and corresponds to rx in conventional 
algebra. If x ∈ Rε, then x⊗0 = 0 and the inverse element of x w.r.t. ⊗ is x⊗‒1 = ‒x. There is no 
inverse element for ε since ε is absorbing for ⊗. If r > 0, then ε⊗r = ε, and if r < 0, then ε⊗r 
is not defined. In this paper, we have ε⊗0 = 0 by definition.

The implicit equation x = a ⊗ x ⊕ b determines a = a* ⊗ b where the Kleene star operator:

	 a a
i

i∗

=

= ⊕
0

¥
	

The rules for the order of evaluation of max-plus algebraic operators correspond to those 
of conventional algebra. So the max-plus-algebraic power has the highest priority, and max- 
-plus-algebraic multiplication has a higher priority than max-plus-algebraic addition.

The basic max-plus-algebraic operations are extended to matrices as follows.
If A B C, ,∈ ∈× ×R Rε ε

m n m pand then:

	 ( ) max ( , )A B⊕ = ⊕ =ij ij ij ij ija b a b 	
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	 ( ) max ( )
...

A C⊗ = ⊗ = +
=

=⊕ij
k

n

ik kj k n ik kia c a c
1 1

	

for all i, j. Note the analogy with the definitions of the matrix sum and the product in 
conventional linear algebra.

The matrix εm n×  is the m×n max-plus-algebraic zero matrix: ( ) ,ε εm n i j× =  for all i, j; 
and  the matrix En is the n × n max-plus-algebraic identity matrix: (En)ii = 0 for all i and  
E(En)ij = ε i, j with i ≠ j. If the size of the max-plus-algebraic identity matrix or the max- 
-plus-algebraic zero matrix is not specified, it should be clear from the context. The max-plus- 
-algebraic matrix power of A ∈ ×Rε

n n  is defined as follows: A⊗0 = En and A A A⊗ ⊗ −= ⊗k k( )1
 

for k = 1,2, ...
The Kleene star operator can also be applied to matrices:

	 A A A A A A E∗

=

+= = ⊗ =⊕
i

i i i

0

1 0
¥

with and 	 (1)

where:
E	 ‒	 the identity matrix.
Equation (1), which has nilpotent matrix, achieves convergence (all coefficients equal ε).

2.2.  Model of the system

In article [5] Cohen showed that the nonlinear dynamic systems, whose structure and 
behaviour is based on the timed event graph (TEG) may be described using the linear 
equation system The example of a TEG with the determined holding time of 2 units in place 
P1 is given in Fig. 1 [4].

Fig.  1.  Graphical representation of a TEG

State-space descriptions in the max-plus algebra for a certain class of discrete-event-
systems become linear representations which are similar to state-space equations in the 
traditional model control theory. Generally speaking, for any TEG system, one obtains the 
following kind of equations as an MPLS [8]:

	 x A x B u( ( (k k i k i
i

M

i i) ) )= − ⊕ −
=
⊕

0

	 (2.1)

	 y C x( (k k i
i

M

i) )= −
=
⊕

0

	 (2.2)
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where x, u, and y are vectors of dimensions equal to the numbers of internal, input and 
output transitions, respectively. Ai, Bi, and Ci are matrices of the appropriate dimensions 
with entries in the max-plus algebra, and M is the maximal number of tokens in the 
initial marking. The  variables of (2) are time instances and the represented events occur 
at k-times. The coefficients of matrices A, B, C represent parameters associated with the 
places located between these transitions. The classical theory of the continuous and discrete 
systems in  the  time domain, revolutionized the integral transforms (e.g. Laplace, Fourier, 
Z-transform). Similar transformations have become useful in the theory of discrete processes. 
Each transition in the TEG model can be assigned to the appropriate of both, input or output 
vector’s components, as well as to internal state.

In the article [9] is derived model, of the system is represented by 2-dimentional (γ, δ) 
– transform noted as Mmin

max[[ , ]]γ δ  a set of formal power series for two variables γ and 

δ. A finite series of Mmin
max[[ , ]]γ δ  is a polynomial and is used to code a set of information 

concerning the transition of a TEG. The monomial γ 
kδt may be interpreted as the k-th event 

occurring at least at time t.
Using transform by Mmin

max[[ , ]]γ δ  the TEG system (2) has implicit form as

	 x Ax Bu= ⊕ 	 (3.1)
	 y Cx= 	 (3.2)

where A M B M C M∈ ∈ ∈× × ×min
max

min
max

min
max[[ , ]] , [[ , ]] , [[ , ]]γ δ γ δ γ δn n n p m nn ,

System equation (3) by Kleene star (1) transform, gives the explicit form as

	 x A Bu= ∗ 	 (4.1)
	 y Hu= 	 (4.2)

where H CA B M= ∈∗
×min

max[[ , ]]γ δ p m  is input/output transfer matrix relation
System equation (3) and matrix H is modelled as block schema (Fig. 2).

Fig.  2.  Block schema of the system (a), and its substitute (b)

3.  Control systems 

3.1.  Open control

First results concerning the open control, obtained using the (max,+) algebra are included 
in the Cohen [9] and Menguy [21] articles. Control was proposed for developing set 
a priori output trajectory, specified as open control. This control plays a key role in event 
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planning [21] and scheduling of tasks. For example these tasks can be executed by the some 
processes in a distributed computing micro-processors system. This issue will be presented 
in detail with example in sections 5 and 6.

3.2.  Feedback control from the output

Controlled structure consists with the corrector between the system’s output y and 
its input v. Output signals of events are modified by the corrector and put together with 
the input events. This problem is described in details in the work of B. Cottenceau [10] 
and in the articles [15]. Structure of control with output feedback as the block diagram is 
explained in the Fig. 3.

For this system	 u Fy v= ⊕

	 y H Fy v HFy Hv= ⊕ = ⊕( )

and using (1)	 y HF Hv G vF= =∗( )

where	 G HF H GF z= ∗( )  	 (5)

Expression (5) may be used to find F as the best control for applied desired characteristics 
and may be at least as fast as the reference Gz.

3.3.  Feedback control from the state

Structure of control with state feedback is explained in Fig. 4. In this case change of 
control structure consists of the corrector between the system’s output and input. System 
is being controlled using by signal of state system’s events, and changing by the corrector 
F analogically as in previous subsection 3.2 modified input the system. This problem is 
described in details in the work of B. Cottenceau [10] and in the article [15].

For this system	 u Fx v= ⊕
and	 x Ax Bu Ax BKx Bv= ⊕ = ⊕ ⊕

	 x A BF x Bv= ⊕ ⊕( )

and solve using (1)	 x A BF Bv= ⊕ ∗( )

Fig.  3.  Control with of the feedback from the output
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Output	 y C A BF Bv G vF= ⊕ =∗( ) 	 (6)

where	 G CA A BF A B CA B FA BF = =∗ ∗ ∗ ∗ ∗ ∗ ∗( ) ( ) 	 (7)

	 G Gy z 	 (8)

Expressions (7) may be used to find F as the best control for applied desired characteristics 
and may be at least as fast as the reference Gz (8).

3.4.  Control with the observer

The availability of state of the system in the previous point, is an important condition but 
not always possible to fulfil. There is, however, based on a known model of the system can 
calculate the analytical condition which is reconstructed state. On the basis of the analogue, 
a conventional approach Fig. 5 shows the structure of an observer [26].

Fig.  4.  Feedback control from the state

Fig.  5.  Structure of control with the observer
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Assuming the existence of matrices A, B and C the real system equation (3) in explicit 
form is

	 x A Bu= ∗ 	
and the equation of the observer is

	 ′ = ⊕ ⊗ ′∗x A Bu Fo y y( ) 	 (9)

Our goal is to calculate the matrix FO to ensure that the estimated output y′ is less than 
or equal to the measured output y.

Typically, an observer is used to estimate the conditions necessary for feedback from 
the state and it is possible now to use control as in subsection 3.3 with equation (6)

	 y C A BF Bv= ⊕ ∗( ) 	 (10)

Now expressions (9) and (10) may be used to find F and FO as the best control for applied 
desired characteristics. 

4.  Data processing with control

Let us consider a data process that allows event-driven applications to take advantage 
of multiprocessors by running the code for event handlers in parallel. To achieve high 
performance, servers must overlap computation with the I/O. Programs typically achieve 
this overlap by using threads or events. Threaded programs usually process every request 
in a separate thread; while one thread block is waiting for the I/O, another thread can 
run. Event-based programs are structured as a collection of call-back functions which are 
called by the main loop when I/O events occur. Threads provide an intuitive programming 
model, but require coordinating the access of different threads to the shared state, even on 
a uniprocessor. Event-based programs execute call-backs sequentially so the programmer 
need not worry about concurrency control; however, event-based programs have so far been 
unable to make good use of multiprocessors. Much of the effort required to make existing 
event-driven programs take advantage of multiprocessors is in specifying which events can 
be handled in parallel.

This article presents a simple problem of designing the control of a system in which 
the cost is chosen so that it provides a trade-off between minimizing the delays of the end 
time of computational process operations (the real time to complete all the tasks in a cyclic 
computational process, times of final results of one cycle) and the periodicity of the desired 
output (the time desired or needed) to complete the process.

This problem was presented with no disturbances [22] and it was solved in max-plus 
algebraic functions as dater equation. Now we introduce disturbances and this problem is 
modelled in the 2-dimensional Mmin

max[[ , ]]γ δ  domain.
Simple data processing consists of several tasks linked by the wait for I/O data (Fig. 6). 

To illustrate our approach, let us consider a process that consists of some tasks: T0i which 
runs on microprocessors: µP0i, for i =1, ..., n. Each of these tasks is executed on a dedicated 
microprocessor. In this process, the digital information flows as input/output processing data 
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and a control signal. Input data (i.e. from outer system) is processed as the first task on the 
µP01 and its output data has to be saved to memory while it waits to be processed. The other 
microprocessors operate in the same way, but their input data simultaneously constitutes the 
output result from the previous microprocessor and /or may need extra outer data too.

5.  Control in open structure

In this section, the specified project is considered to obtain open control problem. 
In the context of data processing, this problem is to give final results and at the same time 
minimizing the size of the memory. Specifically, the control problem in open loop resolved 
as follows. It is system (a TEG with p inputs and q outputs) whose transfer matrix is known 

to  transfer H CA B M= ∈∗
×min

max[[ , ]] .γ δ p m  It is desired, using inputs u M∈ min
max[[ , ]]γ δ p  

to ensure that the system outputs follow the best trajectory determined by z M∈ min
max[[ , ]] .γ δ p

In [8], it is shown that this problem has an optimal solution, that there is a greater input 

control u Mopt ∈ min
max[[ , ]]γ δ p  such that the output resulting from that input (yopt = Huopt) is 

less than or equal to the desired output z. The uopt order is optimal from the point of view 
the just-in-time criteria (yopt the output is just-in-time). Here we implement restrictions.
–	 Input reference can be updated. For example, in the context of data processing the final 

results may lead to modifications of outer processes.
–	 Deadlines for the firing of some of the input transition can’t be modified, which may 

provide input data to the actual processes.

Fig.  6.  The structure of the disturbing processes
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Formally, transformation of L u H uH p p: [[ , ]] [[ , ]] , ,min
max

min
maxM Mγ δ γ δ⇒ ⇒ ⊗  defines 

optimal control.

	 { [[ , ]] ( ) }.min
maxu M∈ γ δ p HL u zopt  	

More specifically this is the upper limit (marked uopt), which gives you the greatest 
control satisfying the condition of L u zH ( ) .opt   We can already see that this set is not empty 
since u = ε is the solution, that is L zH ( )ε   and it is inversion problem which the theory 

residuation solves this problem directly.
The optimal command uopt exists and is given by:

	 u u Mopt = ∈ ={ [[ , ]] ( ) } ( ) \min
max γ δ p H HL u z L z H z 	 (11)

The optimal control for TEG corresponds to the order by entering the markers to the 
system as late as possible.

6.  Example

In order to accomplish achieve the results, we’ll look at an example of the system 
processes. Consider the TEG model in Fig. 7. As mentioned in section 4 this model can 
represent i.e. a tasks of a process in a distributed computing system constructed of some 
micro-processors P and memory units T. In this example data results from P1, P2 and P5 
is buffered in T5, T6, T7 and then there are processed by P3 and P4. Note that processors 
P1, … P5 have different cycle times: i.e P1 can handle a task every 2 units while P2 every 4 
units of time etc. For this system, according to Mmin

max[[ , ]]γ δ  representation (3,4) we have

	 A =

ε γ ε ε ε ε ε ε ε ε
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According to (4) and, we can rewrite system transfer

	 H CA B=  =  












∗
∗

∗

δ γδ ε ε

ε δ γδ ε

10 2

12 4

( )

( )
	

We may to determine a desired output i.e.

	 z =  
⊕ ⊕ ⊕









∗ +δ γδ γ δ γδ γ δ
ε

10 22 4 30 6 10( ) ¥

	

 
By convention, the first event is the number 0 and the trajectory of this should be 

interpreted as follows: 0 task should be done no later than 10 time, and the task 1, 2 and 3 
at the latest during the 22. Then there is to be executed task 4, at 32 and then each one next 
task every 6 units of time. The final monomial γ 

9δ+¥ means that the task 8 is the last for this 
process. It also means that the task 9 and the next is not implemented (the term is infinite).

Calculation of optimal control is determined by (11)

	 u =
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ +e γδ γ δ γ δ γ δ γ δ γ δ γ δ γ δ γ δ
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Fig.  7.  TEG of the system processes
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	 y =  
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕δ γδ γ δ γ δ γ δ γ δ γ δ γ δ γ δ γ δ10 18 2 20 3 22 4 30 5 36 6 42 7 48 8 54 9 ++









¥

ε
	

Results as trajectories z1, y1 and u1 are shown in Fig. 8. We can check that the optimal 
control u well meets the specification, i.e. that the output y is less than or equal to the z

Fig.  8.  Graphical representation of z1, y1 and u1

Fig.  9.  VC++ platform of software tools for MPLS (in the implementation)
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Calculations were performed and graphically presented using own software package 
currently developed on the Visual Studio 2013 platform (Fig. 9) with software library [28] 
and plot application Gnuplot [27].

7.  Conclusions

In this article an overview of selected control structures and particular consideration 
of the control of the open MPLS has been presented. The main purpose is the synthesis of 
the control input, when we know global transfer H and reference (desired) input is updated. 
In  the next step the problem of permissible deviations of real H should be elaborated, 
and the presence of uncontrollable input transitions. The problem formulated in the article 
has the close analogy with the problems encountered in classical control theory. There is not 
only feedback control but also predictive and robust control. There may be a need for effective 
control to use decoupling in multidimensional systems with cross-coupling interaction (like 
in computer control system [24]). Other problems concern different failures – events of data 
loss and damage while transmission. The solutions obtained do not completely eliminate 
the consequences of failures (i.e. delay), but are used for maintenance of the stability 
and elimination of memory overflow [23].

It is important to follow the new solutions and development of theoretical researches, 
concerning the classical theory of the system. It is planned to evolve practical applications 
and to create new or expand existing informatic tools. Further development of this software 
is planned.
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1.  Introduction

A modern network ensures the efficient and effective information transfer between 
different types of users: individuals or corporate. For many years research was carried out 
in order to define and implement mechanisms and architectures, which would provide the 
diversifying qualities of carried out data transmission, and additionally possibility to define 
and implement transmission according to determined QoS (Quality of Service) parameters.

Service providers usually charge a fee based on the maximum bandwidth possible to 
obtain. Unfortunately, this bandwidth is rarely available mainly due to the temporary load 
of  individual nodes and links in the network. Temporal throughput is determined by the 
least efficient bond in transmission between sender and recipient. Different types of methods 
and architectures were defined, which enable the management of network traffic using 
different approaches to the concept of service type, priority and category of transmitted 
information. For  classical IP networks models of IntServ and DiffServ services were 
proposed, for multiservice network a complete ATM technology was defined, displaced by 
MPLS. Nowadays, there are novel concepts, such as Software-Defined Networking (SDN), 
in which the assumed control of the transport layer separation causes a greater network 
performance. In the case of SDN it was assumed that management is carried out centrally i.e. 
there is a central repository storing essential rules for network management, created based 
on information collected from all over the network. Centralization does not always seem to 
be a good solution due to performance issues (scalability of solution), safety of collected 
and stored information (one node collecting information).

For the implementation of decentralized network management it is possible to propose 
the use of agent system concept. The agent approach for the implementation of routing 
in  the graph was proposed in the work [1]. The recalled agent approach in the present 
article was enriched with the Pay&Require (P&R) concept, in which the separation of the 
transport layer was assumed (devices physically responsible for transport) from the control 
(the logic of the system), and additionally decentralization of the control carried out in the 
network. For  that purpose an agent technology was used, which enables the avoidance of 
the application of a central repository. One of the key aspects of this concept is the fact that 
the user pays for a particular required connection quality. An important aspect of the article 
is a reference to Software-Defined Networking, which is still a novel concept, but it seems 
that it may provide a solution widely accepted in defining the future of computer networks.

In order to analyse the proposed concepts as well as to determine whether the use 
of P&R is reasonable, an emulating environment of the proposed mechanism was carried 
out, and the study results conducted on the network model (built for the project’s purposes) 
were presented in this article.

2.  The concept of SDN decentralization

SDN (Software-Defined Networking) [2, 3, 9, 10, 11, 12, 14] is a network architecture, 
in which control layer and data transmission are separated. The separation of layers allows 
for the introduction of a certain level of abstraction that facilitates the configuration 
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process – the administrator does not need to have a specialized knowledge concerning the 
configuration of the transport layer, just knowledge of the control layer management, which 
takes care of the correctness of information provided to the transport layer. The management 
process is centralized, and the architecture is independent of the topology or the applied 
network technique. Centralized management is supposed to be among others able to obtain 
information about full network topology. Important is the assumption that the interface 
of information exchange between layers is supposed to be available on the principles of open 
standards and protocols. As a result, modification of the network by external applications 
will be possible. It consists in the fact that there are established rules concerning (e.g. packet 
management) the operation of the transport layer.

Generally, the effect of the implemented SDN concept is supposed to be: increased 
flexibility of solution, centralization of control, simplification of the construction of network 
equipment and independence from individual producer solutions.

The solution applying SDN concept significantly facilitates network management, but 
it also has some imperfections. The primary one is a large amount of data that must be 
stored in a central repository. This results in a situation that when you want to download 
some rules,  it  is necessary to search through an entire database of substantial size. Also, 
the use of storage mechanisms in the cache may not resolve the problem. The downloading 
and uploading process causes an additional load on the network, which can lead to slow 
transmission and this in turn can directly cause delays. The suggested solution seems to 
be also susceptible to failures mostly caused by the centralized repository of the rules. 
A breakdown of a connection to the repository will cause the entire network to fail.

Additionally, there is a problem of transfer security. Assuming that the control information 
is sent with the same connections as customer data, it is necessary to think about ensuring 
the security of the system operation. Let us consider the case where a customer eavesdrops 
on the control data and then their modified version is sent to the network in order to prevent 
proper operation of the network or for other reasons, causing disruption to the entire network. 
In this case, it is necessary to apply appropriate security – e.g. transmission encryption or other 
mechanisms. These types of mechanisms will cause additional delays in the transmission 
(exchange) of rules. Another problem constitutes the fact that when decisions are supposed 
to be taken with regard to individual packets the process of searching for relevant rules 

Fig.  1.  Scheme of decision making process for packets routing
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in a  central repository will last long enough so that it will not be possible to call it real-time 
processing.

All these imperfections result from applying centralized system, created according 
to the SDN concept. It seems that a decentralization of such a system would solve these 
problems. Since an agent approach is one of methods of creating decentralized systems, it is 
necessary to consider exactly this approach for the implementation of a decentralized quality 
support system for the customer (user).

3.  The concept of an agent system as SDN decentralized

To implement the concept of a decentralized SDN it is possible to use the agent 
approach, which is a known method for implementing decentralized systems. The adoption 
of the agent system concept requires defining agents appearing in the system. In the proposed 
solution the following types of agents were introduced:
–	 NAG ‒ agent in one copy on each node (router). Its task is to manage a given node 

particularly in directing packets in the right direction.
–	 SAG ‒ agent that represents the stream of information. Depending on a specific solution, 

this agent can be a packet carrying information or a packet setting the way (routing).
–	 IAG ‒ agent that represents the output interface.

The SAG agent further way choice algorithm can be carried out as follows (Fig. 1):
–	 SAG agent comes to a given node (router).
–	 IAG agent presents the offer for SAG agent in relation to a further way commencing 

on a linked interface with this IAG agent.
–	 SAG agent based on its needs chooses the most convenient offer from those offered by 

IAG agents. After choosing the recalled offer the SAG agent continues its way through 
the chosen interface. The NAG agent can help the SAG agent in decision-making regarding 
the choice of offer.
It remains to define the algorithm by which a decision is taken by the SAG agent of the 

proposed offers by the IAG agent. Of course, it depends on the form of offer and the way 
of its determination by the IAG agent.

In the presented solution the market approach to determine choice of offer was proposed. 
For this purpose the Pay&Require conception was developed.

4.  The Pay&Require concept

The main aim of the Pay&Require approach is to provide the quality of service 
(transmission) that meets client requirements. It is worth applying a market approach as 
a form of customer-supplier negotiations of services/resources.

Requests to provide quality services required by a customer can be implemented in such 
a way that the user pays for the guaranteed transmission quality i.e. the actual transmission 
parameters for a packet from the source node to the destination node. This quality is guaranteed 
by the application of an appropriate routing protocol version, which combines static and 



205

dynamic protocol, as well as agent technique. In this case, the concept of quality refers to the 
most often used parameters of the QoS network such as delay, delay fluctuation, transmission 
time or the level of packet losses. Introducing such a concept of quality makes it possible 
to determine certain rates for guaranteed quality (and not, as it is in computer networks for 
maximum possible to obtain bandwidth, which in many cases is never achieved). It can 
be assumed that all packets from a given user will be transmitted at a fixed path defined 
statically in the network layer. To obtain a situation in which there will be a separate route 
for each user is in practice usually impossible and users must share the same path. When 
there are many users in the network who require a high level of quality and packets from 
these users are transmitted in the same route, it may happen that some of the connections will 
be overloaded. A deterioration of transmission, below the level for which individual users 
paid, will be a consequence of this occurrence. Then a change of routes should be carried 
out, i.e. establishing new routes for recalled users. For that purpose a control layer was 
defined (system logic), which monitors the state of individual connections and in the case 
of deterioration in quality, it reconfigures the network by defining new routing tables. [1, 4]

The proposed solution agents (NAG) residing on routers, are concerned with monitoring 
the state of the connections and the configuration of the network layer. One router reports 
to each agent (or group of routers). Agents exchange information necessary for defining 
the process of the current form of the routing tables in order to obtain their mutual cohesion 
and send recalled updated (reconfigured) routing tables to routers which after receiving 
the  tables start to route packets according to the adopted P&R algorithm of the defining 
paths. In the end packet which do not require the quality on a high level can be directed 
by a  completely different path on which e.g. long delays appear, and the customer will 
pay less for such a path agreeing to the lower quality of the transmission. As a result, the 
quality of  service will be adapted to requirements, which are expressed by the amount 
of fees a customer (packet) is ready to incur. In consequence it is possible to state that such 
an approach also enables pricing (by SAG agents) based on market methods. At fixed prices 
the users can systematically bid individual levels of quality, and hence the path depending 
on the demand and availability of  paths at the given moment. The proposed approach 
enables the  application  of different market methods to buy quality, which will affect the 
dynamic pricing of individual paths ‒ it will enable development and make use of the supply 
and demand model of price determination.

From an agent point of view the control layer system constitutes agents, which will 
reside on routers as well as monitor and change corresponding parameters. As a result 
of  the  application of the agent approach decentralization was obtained, which causes 
reduced susceptibility to network failures (there is no central database containing rules). It is 
possible to consider two solution levels to the decentralization problem:
–	 Level 1 ‒ each agent has full knowledge of network topology. This type of approach 

means  that each agent provides to all agents across the network information about the 
networks connected to the router, on which it resides, in effect each agent has a full 
information about all routers. In order to achieve consistency of such information, it is 
necessary to exchange large amounts of data at every change in the network. However, 
in the case of failure there is no need to exchange additional information the agent can 
immediately and independently update relevant data or reconfigure the network.
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–	 Level 2 ‒ every agent has only the necessary information i.e. about networks connected 
to the given router. This approach assumes that the agent stores in its local base only this 
information that is necessary from the point of view of its function. As a result, when 
you start an agent it can start working in a relatively short time. In the case of breakdown 
or a change of network topology there may be a need to obtain additional information. 
An essential extension can be such a solution in which each agent residing on the router 
has partial information about the entire network and full information about the nearest 
neighbourhood.

5.  Implementation of a model solution

A study of the proposed agent routing concept, using the Pay&Require approach, was 
carried out by creating a solution for level 1, in which every agent has exactly the same set 
of information and knowledge about the entire network topology. It seems that this case will 
allow us to state whether an application of the proposed concept will affect the quality of data 
transmission. In individual nodes (routers) an SAG agent selects appropriate further routes 
(paths) by comparing the conditions offered by the IAG agents associated with individual 
output routers. In the studied solution each SAG agent that represents packets sent by an 
established sender has a determined level of price lpacc approval ‒ an established level 
of maximum price, and quality which is determined by Parmin and Parmax parameter defined 
as percentage deviation from quality level.

T a b l e 1
Exemplary features of links for various service levels

Rate Bandwidth [Mbit/s]

4 100

3 50

2 10

1 5

0 1

‒1 link inactive

On every router there are IAG agents ‒ each of them is connected to one interface it 
represents. Every IAGj agent presents to SAG agent the connection offer Oj = (pj, qj) 
where pj  ‒ price of the connection offered by IAGj agent, and qj ‒ quality of the offered 
connection. Next the SAG agent (if necessary with the help of the NAG agent) determines 
a set of acceptable Ofacc offers:
	 Of Of Of p q p l q Q Qpacc acc

= = ∧ ∈{ : ( , ), [ , ]}min max£ 	 (1)

where
	 Q q q Q q qmin min max max(Par ), ( )= − ∗ = + ∗Par 	
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Next the SAG agent selects the best Ofk from acceptable offers, according to the rule:
	 Of p Of p qk Of Of j j j jj

= =∈min { : ( , )}
acc

	 (2)

Summing up: the presented offers by the IAG agents determine a further connection 
(related to quality and price) and the SAG agent chooses the best quality offer out of those 
which price is within acceptable limits.

6.  Implementation of the emulation studied examples

For the purpose of the project an emulator was prepared, consisting of software 
providing  functions of control layer and routers in the transport layer. The Vyatta system 
(VyOS) was used for routing. The first activity which the control layer carries out is to 
download the initial router configuration concerning the interfaces. The downloaded 
configuration is carried out for each router individually. When the software has downloaded 
configuration of all routers an analysis of the information takes place. The analysis consists 
of searching for active connections between individual routers.

It was assumed that between routers there are point-to-point connections. Software stores 
information about all connections between the routers. Next, a bandwidth of individual 
connections is established in order to carry this out, through every single connection a file 
of fixed size is sent (e.g. 10 MB). The size of the file can be chosen arbitrarily, however, 
in the  study it was stated that 10 MB was an appropriate size. Information concerning 
transmission time and average bandwidth in bit/s was obtained in this way. Information 
of this type is stored for each link. Then based on measured bandwidth an evaluation of the 
route is appointed. A rating scale resulting from measured parameters was defined. This scale 
can be freely modified by the administrator ‒ it is possible to define any rating scale.

For the presented emulation purposes a quality scale expressed by the allotted bandwidth 
was used, presented in Table 1. A maximum bandwidth of 100 Mbit/s is caused by limitations 
of virtualizing software used for emulation. Evaluation is assigned to individual links.

The next step is to define paths. Paths lead from the source to the destination router 
through other routers. In order to outline all possible paths the following algorithm is applied:

Fig.  2.  Network example ‒ characteristics of routing algorithm
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1.	 Take the first free path of length 1 (linking only two routers). Proceed to point 2.
2.	 Outline all possible non-repeating paths (no loops - point-to-point connection can be used 

only once) for length +1. Follow step 2 for so long until there is no longer path to choose 
from ‒ you cannot proceed further because all available point-to-point links were used.

3.	 Repeat the step from 1‒2 for all point-to-point connections.
In Figure 2 a network used for the emulation was presented. Let R be a set of routers, 

R = {R1, R2, R3, R4}, let P be a set of connections between routers, P = {p1, p2, p3, p4} 
where p1 = {R1, R2}, p2 = {R2, R3}, p3={R2, R4},	 p4={R3, R4}.

PR1={{p1}}
PR1={{p1},{p1,p2},{p1,p3}}
PR1={{p1},{p1,p2},{p1,p3}}
PR1={{p1},{p1,p2},{p1,p3},{p1,p2,p4},{p1,p3,p4}}
PR1={{p1},{p1,p2},{p1,p3},{p1,p2,p4},{p1,p3,p4},{p1,p2,p4,p3},{p1,p3,p4,p2}}
Evaluations are assigned to individual paths. It is possible to consider two possible 

approaches:
–	 appoint an average evaluation of the path based on evaluations of individual point-to-point 

connections on a way from the source (the first router in a given path) to the destination 
(the last router).

–	 as the evaluation of entire path taking the lowest evaluation of a point-to-point connection 
on the way from the source to the target.
Use of the second approach seems to be preferable because a connection with the 

lowest bandwidth will reduce the bit rate on the entire route. Evaluations of paths are stored 
along  with information about the number of routers which a packet must go through in 
order to reach transmission target in a given path. This information will be used later to 
take a decision about the choice of paths in a situation where several paths have the same 
evaluation. Another step is to select a path for the customer. In the application information 
about a client ID and expected service level are stored (in accordance with a rating scale). 
At first, there is a  verification to which routers the customers are connected (network 
configuration enables transmission between individual customers). Next all possible paths 
are outlined from one customer to all remaining customers (this process is carried out for all 
customers). For accepting a given route its evaluation decides ‒ if this is what a client expects 
or higher (when there is no expected), then this route will be selected.

In the case that there is no route with the quality level for which the customer paid, 
or higher, a message will appear about the lack of routes. In the future it is necessary to 
consider  how to solve this problem (e.g. a refund, negotiating with the customer). From 
acceptable paths one is chosen ‒ the one which has a low hop count. If there is more than 
one route with the same rating then the first from the list will be chosen. When all paths will 
be chosen for all customers, it will be followed by a configuration of routing layer (routers).

Routing and forwarding in computer networks is based on information brought in the 
header  of packet, i.e. for transmission purposes. In case of classical routing the device 
compares the address of the network to which the packet is supposed (longest prefix 
matching) to be sent with addresses included in its own routing table and based on this 
information router  redirects the packet to the next router or target device. In Figure 3 
a scheme of computer network is presented, which will be used to describe the operation 
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method. In the case of the described network between PC1 and PC2 computers and a PC3 
computer there are two paths. The first path leads through R1-R2-R3, and the second leads 
through R1-R4-R3. Metrics were assigned to individual connections. It was assumed that if 
all the metrics have a lower value, the connection is better. Therefore, according to the rules 
of classical routing the transmission between PC1-PC3 and PC2-PC3 will proceed exactly 
along the same route (R1-R4-R3).

In computer networks the PBR concept was defined (Policy Based Routing). [5‒8, 13]. 
This technique allows the administrator to define complex routing rules, i.e. a decision about 
the next change can be taken not only based on destination address, but also e.g. on source 
of transmission, port number. PBR enables the definition of more than one routing table ‒ 
for each user (groups) the administrator can independently define which transmission path 
will be stored. Of course, a substantial matter is that there should be more than one path 
between the source and target ‒ then PBR makes sense. By analysing the case presented in 
Figure 3 the administrator has the possibility to configure routers, so that packets from a PC1 
computer sent to a PC3 can travel a different route (e.g. R1-R2-R3) than packets from PC2 
sent to PC3 (e.g. R1-R4-R3). Therefore, with the use of PBR it is possible to diversify the 
routes depending on the transmission source. PBR technique was used in the emulator for 
the  routing purpose. After conducting the configuration of the transport layer (the routing 
tables) the network begins to operate in accordance with customer expectations.

7.  Research results

Emulation was started by setting the network of 4 routers (Figure 2). To router R1 and R3 
‒ 4 users were connected. Users were simulated with the following requirements concerning 
quality: two users needed the best quality (=4) ‒ to router R1 and R3 one such user per router 
was connected, two users needed low quality (=2) ‒ to router R1 and R3 one such user per 
router was connected.

An aim of the emulation was to present changes in the choice of paths depending on the 
bandwidth of the individual connections. In the case of the used network a total separation 
of transfer does not appear, since between router R1 and R2 an alternative connection does 

Fig.  3.  Network example ‒ classic routing and P&R comparison
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not appear. In the emulation paths outlined between users connected to R1 (high and low 
quality) and R3 were taken into account. It was started by checking selected paths in a time 
when there is no fault in the network.

Figure 4 presents the result for the network with maximum operating parameters. 
A chosen route was marked with a thickened line in this case for both customers the same 
path  was chosen. This path has the smallest number hops, and parameters concerning 
quality are comparable with the available paths. Another stage of the emulation assumes 
a degeneration of the connection parameters between R1 and R2. This fault did not cause 
a  change in the chosen path since an alternative connection does not exist in the above 
network for R1-R2. It means that still the chosen path corresponds to the one presented 
in Figure 4. The next emulation was carried out when a bandwidth decreased between R2 
and R4. In the case of a customer requiring the best quality the path did not change ‒ this 
path has the maximum quality (Fig. 4). In turn, the path for a customer requiring low quality 
changed. A chosen path was presented in Fig. 5. It is possible to observe that a chosen 
path is longer than the one which was chosen in a previous emulation. It is due to the fact 
that the user paid for low quality and such quality he received. In the previous emulation 
there were no possibilities to provide quality at the expected level ‒ only the best quality 

Fig.  4.  The selected path for the network operating with maximum throughput

Fig.  5.  The selected path for the customer who accepts low quality in case of network with worse 
R2-R4 link parameters
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appeared and so the user also received it. This type of decision results from the characteristics 
of the algorithm of path choice.

The next emulation was a reduction in bandwidth R3-R4. In this case, this fault did not 
cause the path change of the user requiring the best quality ‒ the earlier path is still the best 
choice (Fig. 4). However, in case of the user expecting low quality the same path was chosen 
as in case of the deterioration connection parameters R2-R3 (Fig. 5). Choice of this type 
results from the fact that this path still provides the expected quality i.e. low level.

The last emulation case was a reduction in bandwidth between R2 and R3. In this case, 
for the user requiring best quality a chosen path was presented in Figure 6. Next for the 
user requiring low quality a chosen path was presented in Figure 7. Such a choice of path 
results from the fact that route R1-R2-R4-R3 guarantees quality at a high level, despite the 
fact that number of routers through which the packet must pass is higher. In turn, route R1-
R2-R3 in this case has low quality what is a result of the degeneration connection parameters 
between R2 and R3.

Figure 8 presents comparison of transmission times in the case of classical routing 
and Pay&Require. In order to determine times two measuring tools were used: ping and 

Fig.  6.  The selected path for the customer who accepts high quality in case of network with worse 
R2-R3 link parameters

Fig.  7.  The selected path for the customer who accepts low quality in case of network with worse 
R2-R3 link parameters
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transmission of a file with a fixed size of 100 MB. Ping was carried out 1000 times for each 
case, and file transfer was carried out 30 times. In order to determine the reference time 
measured when the network operated with maximum parameters and the same path was 
chosen for both customers. Results for both qualities are similar and the differences are slight.

In a further step it is necessary to state how transmission time changes in the case of 
overload network. The network was overloaded by the initiation of many simultaneous 
transmissions of large data between devices connected to R1 and R3. At the same time 
measurements of transmission time were carried out in the case of requiring high and low 
quality. It is possible to observe a big increase in transmission time ‒ in the case of ping 
the time increased almost threefold.

In turn, the average transmission time of a file with sizes of 100 MB increased almost 
twofold. Because of the above two measurements it is a point of reference for the last 
research stage.

In the last stage a measurement of times for the same overload network was carried out 
using Pay&Require. The customer requiring high transmission quality received a different 
path than the one requiring low quality. The path for low quality is the same as the one which 
packets that overload the network are sent. It is possible to observe that transmission time for 
low quality in comparison to the previous case practically did not change, however, in the case 
of the best quality a significant improvement was obtained. Transmission times significantly 
decreased. Unfortunately, the connection between R1 and R2 constitutes a section that 
affects transmission quality, since every transmission between R1-R3 must go through it. 
Therefore, it is possible to suspect that if there was an alternative for connection R1-R2, then 
transmission time for the best quality would be reduced and similarly for transmission in the 
case of the unloaded network.

The conducted research suggests that the Pay&Require concept has merit and constitutes 
an alternative to methods of providing quality and pricing in computer networks.

Fig.  8.  Comparison of the transmission time for classic routing and P&R
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8.  Conclusions

The Pay&Require concept presented in this article may constitute an alternative 
to methods providing quality and pricing in computer networks. The user pays for 
guaranteed transmission  parameters, which are practically implemented as a result of 
the choice of  appropriate path for transmission. Quality parameters of individual paths 
are systematically  monitored and, if such a need occurs, paths are modified, because 
of decentralized function of the agent system.

The presented concept refers to Software-Defined Networking technology, which 
constitutes a good starting point for a definition of a new mechanism for the separation of 
the control layer from the transport layer. There was an attempt to remove SDN imperfections 
specified in the article, such as centralization of the solution. In the case of the P&R 
mechanism a decentralization of control and agent technique was used. It was necessary to 
carry out a study aimed at the state of the legitimacy of the application of the P&R concept.

Research results show that the use of the P&R mechanism to provide specific quality 
parameters caused the desired effects, i.e. a significant improvement was obtained in relation 
to classical routing. Thus, it is possible to state that quality was provided at a level expected 
by the customer. The conclusion from the conducted study is clear, i.e. the established effects 
of the P&R mechanism application were achieved, therefore this approach is promising 
and  should be developed. It is necessary to carry out further research for more complex 
networks in order to verify the performance of the algorithm and optimization of its operation 
in different conditions.
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