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Hybrid computational systems  
in structural mechanics

hybrydowe systemy obliczeniowe 
w mechanice konstrukcji

A b s t r a c t

The first problem discussed in the paper is related to the reliability of structures. The simulation of the ultimate 
load of a steel girder is analized by means of a hybrid computational system FEM & ANN & p-EMP. The system 
consists of three components, with a low fusion grade. FEM is applied for ‘off line’ computing of the patterns 
for ANN training and testing. The trained ANN is then used for very fast generation of MC trials for the hybrid 
Monte Carlo method (HMC). The second problem corresponds to the identification of a neural material model 
(NMM) in elasto-plastic plane stress problems. The autoprogressive method (APM) was applied in a formulated 
hybrid system FEM/NMM/p-EMP with a very high fusion grade of components. The ‘on line’ interaction of all 
the components is applied at each load incremental step. In the third part of the paper the standing seminar on the 
application of ANNs in civil engineering, inspired by the ideas of the famous Professor Życzkowski’s Seminar on 
applied mechanics, is briefly described.

Keywords: hybrid computational systems, finite element method (FEM), artificial neural network (ANN), neural 
material model (NMM), pseudo-empirical data (p-EMP), hybrid Monte Carlo method (HMC), autoprogressive 
method (APM), standing seminar

S t r e s z c z e n i e

Pierwszy problem, analizowany w tym artykule, dotyczy analizy niezawodności konstrukcji. Nośność graniczna 
dźwigara stalowego jest symulowana za pomocą hybrydowego systemu obliczeniowego FEM & p-EMP. FEM jest 
stosowana do obliczania wzorców  uczących i testujących  ANN. Nauczona sieć służy do szybkiego generowania 
pseudolosowych próbek w symulacjach hybrydowej metody Monte Carlo (HMC). Drugi problem odnosi się do 
identyfikacji neuronowego modelu materiału ekwiwalentnego (NMM) w wybranych problemach płaskiego stanu 
naprężeń. Zastosowano system hybrydowy FEM/NMM/p-EMP charakteryzujący się bardzo wysokim stopniem 
integracji użytych komponentów. Do identyfikacji NMM zastosowano metodę autoprogresywną (AMP), która 
opiera się na interakcji ‘on line’ wszystkich komponentów na każdym przyroście obciążenia. Trzecia część pracy 
jest poświecona stałemu seminarium nt. stosowania ANNs w inżynierii lądowej, inspirowanego przez słynne Se-
minarium Profesora Życzkowskiego z zakresu mechaniki stosowanej.

Słowa kluczowe: hybrydowy system obliczeniowy, metoda elementów skończonych (FEM), sztuczna sieć neuronowa 
(ANN), neuronowy model materiału (NMM), dane pseudopomiarowe (p-EMP), hybrydowa metoda Monte Carlo 
(HMC), metoda autoprogresywna (APM), stałe seminarium
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1. Introduction

Computer aided methods are a firm basis for the analysis of complex problems of 
structural mechanics. From among many new computational methods, the hybrid systems are 
worth emphasising. The main idea is to fuse components of different but compatible features, 
joining direct and inverse analysis, and the most important aim is to increase the efficiency of 
computer aided analysis. That is why the hybrid systems have been extensively developing 
in a research group under supervision of Z. Waszczyszyn, cf. [1].

Because of lack of time and scope of the paper, we have decided to focus on the analysis 
of only two problems which show potential possibilities of hybrid analysis. In what follows 
we discuss fusing of hard and soft methods components, i.e. FEM (Finite Element Method) 
and ANNs (Artificial Neural Networks). This selection seems to be reasonable since FEM is 
the best one in the direct (forward) analysis and ANNs are very efficient in simulation and 
identification analysis of data.

We present the extreme categories of integration grades, i.e. I) low fusion grade 
FEM&ANN&p-EMP, II) very high fusion grade FEM/ANN/EMP, where EMP corresponds 
to empirical or pseudo-empirical data. In I) only ‘off-line’ mode of computation is performed, 
vs. II), where ‘on-line’ computation mode is applied.

In order to illustrate extraordinary efficiency of the category I approach, the reliability 
analysis of a steel girder is presented. This example was taken from J. Kaliszuk’s PhD. 
dissertation, defended ‘cum lauda’ [2]. The other example is related to the identification of 
NMM (Neural Material Model) for plane stress boundary value problems. It is taken from 
a chapter of E. Pabisek’s postdoctoral dissertation [3], also defended ‘cum lauda’.

Both examples have in fact a much wider context. The first example refers to 
the development of the Hybrid Monte Carlo (HMC) method, suggested by M. Papadrakakis 
et al. [4]. The other example concerns the creative modifications of the Auto-Progressive 
Method (APM), suggested in paper [5] by J. Ghaboussi. 

At the end of the paper a short description of the activity of the Standing Seminar of 
ANNs Applications in Civil Engineering is briefly described, as an example of Professor 
Michał Życzkowski’s inspiration.

2. HMC in reliability analysis of a steel girder

Monte Carlo methods are commonly applied in the reliability analysis of structures. The 
main problem of MC methods lies in simulation of trials. In case of engineering structures 
the trials are computed by means of FEM. The reliability is usually related to the structure 
ultimate load, which should take into account with a great amount of various parameters. 
Stationary type structural problems are defined with respect to the reliability of structures, 
measured by the probability of reliability

	 pr ≡ Q = Prob {G (R, S ) > 0} ≡ Prob {R > S}= f
G
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X) 

d
>
∫

0
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where G (X) − limit state function; R − resistance of structure; S − actions (loads) applied to 
the structure, X = XR + XS − random state variables.
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The MC simulations correspond to computation of the integral in (1). Following the law 
of large numbers the Classical Monte Carlo estimator of the reliability probability is
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where: NMC − number of MC trials.
Now, let us evaluate the reliability of a girder shown in Fig. 1. It is made of steel with 

yield point Re = 235 MPa and elasticity modulus E = 205 GPa. The girder is subjected to the 
action of uniform load S = P and the resistance of the structure corresponds to the ultimate 
load R =λult P*, where P* = 200 kN/m is the reference load, see [6].

Fig. 1. Steel girder of I cross-section

Rys. 1. Dwuteowy dźwigar stalowy

Initial imperfections of the web plate are modeled as three smooth surfaces of the form

	 w y z A y B z Lk k y z1 1 1 1,( ) = ( ) ( )cos cos ,π π 	 (3)

where: Ak − amplitudes of imperfections; By = Lz = 97.6 cm − ranges of imperfections.
It was assumed that the imperfections can randomly appear in three equidistant areas By 

× Lz. The amplitudes Ak are random variables of Normal probability density function (Npdf) 
with parameters: µAk = 0 mm and σAk = Ault/2 = 3.5 mm, where Ault = 7 mm is the admissible 
value according to the Polish standard [7].

According to the hybrid approach, the training and testing patterns were computed by 
FEM. The nonlinear module of the COSMOS/M system [8] was applied. An elastic-plastic 
material with the yield surface was adopted assuming isotropic linear strain-hardening with 
HMH with Ep = 0.0001 E, where Ep is plastic stiffness.  All parts of the girder (web, flanges 
and stiffeners) were covered by regular rectangular meshes of FEs of the type SHELL4T with 
24 DOF. The total number of FEs was 1616. After preliminary computations the displacement 
control was used assuming 60 steps ∆v0 = 0.01 mm to compute the displacement v0 ∈ [0, 60] mm 
of the web centre, measured along the y axis. 

The training patterns were computed for the input data placed regularly in the 3D-cube 
of coordinates Ak ∈ [−3σAk, 3σAk]. Assuming 5 points on the Ak axes, the number of training 
patterns equals L = 35 = 125. The set of T = 100 testing patterns was randomly selected as 
100 points in the 3D-cube of variables Ak, assuming Npdf with the same parameters as for 
the training patterns.
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In Fig. 2 the equilibrium path λ(v0) ∈ [1.180, 1.393], computed for input data A1 = − 0.525 
cm, A2 = 1.05 cm, A3 = 1.05 cm, is shown. The ultimate state of the girder corresponds to 
the load parameter λG = λG

min = 1.180. This state is related to the overall instability of the girder 
caused by buckling of the upper flange and web plate. In case of a perfect girder, i.e. for  
A1 = A2 = A3 = 0, the ultimate load parameter is λG

perf = 1.248, and for the initial imperfections 
A1 = −1.05 cm, A2 = 0.525 cm, A3 = − 1.05 cm the ultimate load corresponds to λG = λG

max = 
1.393. The average CPU time to compute one pattern was about 300 sec.

       
Fig. 2: a) Equilibrium path, b) displacements of girder at load factor λG = 1.180

Rys. 2: a) Ścieżka równowagi, b) przemieszczenie dźwigara dla parametru obciążenia λG = 1.180

At the second stage of the hybrid approach FEM&ANN the standard, feed-forward, two 
layered ANN was formulated. The following input vector and scalar output were applied

	 X = { } =A A A y1 2 3, , , ,ultλ 	 (4)

to formulate the sets of training and testing patterns

	 L  = {(X, t)p | p = 1, ..., L},   T = {(X, t)p | p = 1, ..., T},	 (5)

where: tp − target output computed by FEM; L = 125, T = 100 − numbers of training and 
testing patterns, respectively. 

The MATLAB Neural Network Toolbox [9] was explored. The Standard Neural Network 
(SNN) of structure SNN: 3−H−1 with sigmoidal hidden neurons and linear output was 
designed using the cross-validation procedure, see [10]. The Levenberg-Marquardt learning 
method was used and after extensive cross-validation the number of hidden neurons Hopt = 8 
was evaluated. 

The accuracy of the designed network was evaluated by relative errors

	 avr epV
V

ep epV ep
pp

V

= =
=
∑1

1
, max max ,	 (6)

where ep = (1 – yp / tp)⋅100%  − relative error for the p-th pattern; V = L, T − the numbers 
of training and testing patterns. Another estimation is given by statistical parameters, i.e. 
by standard error StεV and correlation parameter rV, cf. [10]. In case of the trained network 
SNN: 3-8-1 the errors are: avr epL ≈ avr epT = 0.77%, max epL ≈ max epT = 3.90%, StεL ≈ 
StεT = 0.0136, rL = 0.959, rT = 0.790. 

The designed network SNN: 3-8-1 was used for the simulation of MC trials. First of all, it 
was checked that for computing of 108 MC trials (such a great number of MC trial corresponds 
to the 3σ bar normal distribution with the approximation error less than 1%). The network 
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consumed 416 sec. of CPU time for the simulation of 108 trials. This time is comparable with 
300 sec. needed for the computation of one pattern by the FEM system COSMOS/M. Next, the 
network was used for the computation of discrete points at the reliability curves ( )Q P , where 
Q  is the probability of reliability (1) and P  = S is the load applied to the girder. In the definition 
of the reliability curve there are two cases corresponding to the assumption of the action variables: 
1) Case 1: load P  is a random value and Npdf has parameters = µj PjP , 0.1 jPj Pσ = . 2) Case 2: 
Pj is a deterministic real value. In Fig. 3 two curves corresponding to both cases are shown. It is 
worth mentioning that in Case 1 the reliability curve ( )jQ P  is smooth, without discontinuity 
type parts that occur in Case 2 of the curve ( )jQ P

Fig. 3. Reliability curves for random loads jP  and fixed (deterministic) loads Pj

Rys. 3. Krzywa niezawodności dla obciążeń losowych jP   i deterministycznych  Pj

In Table 1 there are listed CPU times corresponding to computation of the reliability 
curve Q( )iP  for two numerical versions of CMC: 1) hybrid version FEM&SNN, 2) FEM is 
hypothetically used for the computer simulation of the same number of MC trials as in the 
hybrid version. The computations were performed by a PC with processor AMD ATHLON 
XP 2.4 1.3 GHz.

T a b l e  1

CPU time for two numerical versions of CMC (Classical Monte Carlo method)

Simulation of CMC trials by

SNN: 3-8-1 FEM system COSMOS/M

Operations
CPU
sec.

Operations
CPU
sec.

Preparation of 225 patterns by FEM 
225×300 = 19×3600 sec.

67500
Computation of

one pattern 300
Training and testing of BPNN,
≈ 20 hrs = 20×3600 sec.

72000 – –

Simulation of 108 CMC trials 416
Hypothetical computations of 

108 trials 300×108

Total CPU time 1.4×105 sec. Total CPU time 3.0×1010 sec.
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Application of the hybrid FEM&SNN method needs 1.4×105 sec. ≈ 39 hrs = 1.62 days. 
The hypothetical time of computing 108 CMC trials by the FEM system COSMOS/M equals 
about 3.0×1010 sec. ≈ 3.47×105 days. If we assumed hypothetically that we have at our 
disposal a very efficient numerical version of the MC method, in which we need only 104 
trials computed by COSMOS/M, then the total time would be 300×104 sec. This gives the 
computation about 20 times longer than for the CPU time needed for the hybrid method.

3. APM as a hybrid FEM/NNM/EMP system

The AutoProgessive Method (APM) was formulated by J. Ghaboussi and his research 
group at Univ. Illinois, USA, see [5, 11, 12]. The main idea of APM lies in the interaction 
of all the components of the hybrid system FEM/NMM/EMP at each step of a modified 
Newton-Raphson method. Such an ‘on-line’ integration is based on a two-stage incremental 
N-R algorithm sketched in Fig. 4.

Stage I corresponds to performing the load increment n for which strains and stresses  are 
computed at each Gauss integration point g in a FEs e, see Fig. 4a. Stage II is carried out for 
n
c g g e{ , }I Iε σ  correction of displacements at the each control point j. Respective strains and 
stresses, n

c g g e{ , }IIε σII computed in Stage II are shown in Fig. 4b. Using these sets of data new 
patterns are generated as sets n

c g g e{ , }IIε σI , see Fig. 4c. At step n the newly generated patterns 
are included into the training set and the network NMM is retrained.

Fig. 4. Scheme of the modified Newton-Raphson method in APM: a) stage I − load increment, 
b) stage II − displacements correction, c) formulation of updated patterns

Rys. 4. Schemat zmodyfikowanej metody Newtona-Raphsona w APM: a) etap I – przyrost obciążenia, 
b) etap II – korekcja przemieszczeń, c) formułowanie uaktualnionych wzorców

A crucial point of APM is the identification of the Neural Material Model (NMM) of an 
equivalent material in the sense of the homogenization theory. The consistent incremental 
matrix KT of a hypo orthotropic material can be computed in an explicit form applying partial 
derivatives, see [3, 11]
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where: n − number of load increment, c − number of global iteration cycle, εs, σr for s, r = 1, 
2, 3 − inputs and outputs of the network NMM. It was proved that the neural networks with 
two hidden layers should be applied to obtain satisfactory accuracy of the computed values 
of partial derivatives in (7). The values of derivatives depend on the given values of inputs 
and outputs and on the NMM parameters. 

This means that the trained NMM is not ‘a black box’, but in fact it consists of a relationship 
of stress to strain and can be used for computing the material constitutive matrix.

The identification takes into account fulfilling of compatibility equations, cf. Fig. 4b

	 n j n j
m

n jd u u ed= − ≤( ) adm  	 (8)

where: j − number of control points, ,m
n j n ju u  − displacements measured and computed for 

the n load increment. The admissible small values of the displacement differences admed in 
(8) are reached after the whole loading process is repeated during a finite number of iteration 
cycles. In the continuation procedure, the incremental FE model is updated due to application 
of NMM as a numerical material procedure.

Selection of patterns for the training of NMM and cycle of loading c = 1 are crucial 
numerical problems of APM, cf. [3, 5]. The NMM identification is carried out for a selected 
load program. It was proved that the material network NMM can be generalized also for other 
load programs after retraining on NMM by means of other measurement data, see [3, 12].

Two boundary value problems, selected from [3, 13], are discussed below as examples of 
APM applications.

Example 1: Tension perforated strip

The strip shown in Fig. 5 was investigated by Zienkiewicz et al. in 1969 in paper [14], and 
then it has been used by many authors as a bench-mark test for verification of their results. In 
paper [15] by Waszczyszyn and Pabisek, the hybrid program of low degree of fusion FEM/
ANN was also discussed. 

Because of double symmetry only a quarter of the strip was analyzed. This part of strip 
was covered by a mesh composed of 72 eight-node isoparametric FEs. The elastic-plastic 
material with the HMH yield surface and isotropic linear strain hardening was assumed  
adopting mechanical parameters shown in Fig. 5b. The equilibrium path λ(uA) was computed 
by means of the ANKA FE code [16]. This loading path was assumed to be pseudo-empirical 
curves, shown in Fig. 6. 
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Fig. 5a) Geometry and load data, b) mechanical characteristics for elastoplasic material with isotropic 
linear strain-hardening

Rys. 5a) geometria i obciążenie, b) mechaniczne charakterystyki dla materiału sprężysto-plastycznego 
z liniowym, odkształceniowym wzmocnieniem

The network SSN:3-15-15-3 was formulated. Application of the APM led to only two 
cycles for identification of the material model NMM, see Figs 6. The identification proved to 
be quite accurate, as shown in Fig. 6b, where another equilibrium path λ(vB) was applied for 
the verification of the identified material model. 

Fig. 6. Pseudo-empirical loading curves λ(uA) and equilibrium points evolution during the training of 
NMM: 3-15-15-3

Rys. 6. Pseudo empirtczne krzywe λ(uA) i punkty równowagi podczas uczenia sieci NMM: 3-15-15-3

In Fig. 7a, the distribution of effective stresses σe (x,y) is shown for the load parameter 
λ = 2.0. These stresses were computed by means of an FEM procedure assuming a perfect 
elasto-plastic material of parameters shown in Fig. 6b. The effective stress distribution 
was then computed by means of identified material model NMM, cf. Fig. 8b. Quite good 
approximation of stress distributions is shown in Figs. 7a and 7b.
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Fig. 7. Distribution of reduced stresses σe (x, y) for load parameter λ = 2.0, computed for: a) FEM 
using elastic-plastic material and b) material identified by NMM and hybrid system FEM/NNM/EMP

Rys. 7. Rozkład naprężeń zredukowanych σe (x, y) dla parametru obciążenia λ = 2.0, obliczone dla: 
a) FEM przyjmując materiał sprężysto-plastyczny, b) materiał identyfikowany przez NMM i system 

hybrydowy FEM/NNM/EMP

Example 2. Notched beam

This boundary value problem, shown in Fig. 8a, was called in [14] “a notched beam”. It is 
a symmetric, simple supported strip, with a notch around point B and loaded by concentrated 
forces applied to points A. 

The “beam” was analyzed by the same FE program and types of FEs as in Example 1. 
A half of the beam area was covered by 89 eight-node isoparametric FEs. Because of much 
more complicated stress distribution, the neural model NMM: 3-15-15-3, trained on the 
tension strip model, was retrained. Besides the plane tension stress distribution the network 
was also subjected to compression. The obtained NMMret was verified on Example 1 and 
then the retrain neural model was applied to the FEM/NMMret . The graphics shown in Fig. 
8b point out that the hybrid approximation gives quite good fitting of the predicted points to 
the pseudo-empirical loading curves λ(vA) and λ(vB).
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a)	 b)

Fig. 8: a) Strip made of the same material as the tension strip, b) pseudo-empirical curves λ(vA) and 
λ(vB) computed by FEM program and loading points computed by hybrid FEM/NMMret

Rys. 8: a) Tarcza wykonana z tego nowego materiału jak tarcza na rys. 5, b) pseudoempiryczne 
krzywe  λ(vA) i λ(vB) obliczone przez program FEM i punkty obciążenia obliczone przez system 

hybrydowy FEM/NMMret

4. Instead of the end: Standing Seminar on ANNs Applications in Civil Engineering

Two first authors of this paper were closely collaborating with Professor Michał Życzkowski. 
Prof. Z. Waszczyszyn was his PhD student No.4, and in his remembrances [17] he mentioned 
how strongly he was fascinated by the famous Życzkowki Seminar. Many years after that, 
about 1995, prof. Z. Waszczyszyn decided to focus his research interest on the computational 
methods of artificial intelligence and, especially, on ANNs. Collecting his research group at 
the Institute of Computer Methods in Civil Engineering, prof. Z. Waszczyszyn decided to 
arrange a permanent seminar, having in mind the famous Życzkowski Seminar. The Standing 
Seminar on Applications of ANNs in Civil Engineering (called in short Seminar) started in 
October of the winter semester 1997/98 and has been continued until now. In this Seminar 
prof. Z. Waszczyszyn’s activity was strongly supported by a Professor Życzkowski’s student, 
now Assoc. prof. E. Pabisek. We were firmly encouraged by Professor Życzkowski’s advice 
how to  start with the Seminar. 

The main idea of the Seminar was to develop a new research tool, like ANNs, and apply it 
in many fields of civil engineering. A very important point was to have a discussion ‘forum’, 
similar to that arranged by our Master Professor Życzkowski. The Seminar has been rapidly 
developed. After a short time about 30 participants started with ANNs learning and tried to 
use them in the analysis of various civil and structural engineering problems.

The participants have been collected from 7 Polish technical universities from Cracow, 
Rzeszów, Zielona Góra, Wrocław, Łódź and Białystok. The topics were taken from the PhD 
theses and postdoctoral dissertations, as well as from various applications of ANNs in the 
analysis of problems at the participants’ universities. In such a way several small interinstitute 
and inter-university teams have started, based on financial support of projects and grants 
submitted from various research places. Ten years of activity were discussed briefly in paper 
[1].

The most important event seems to be related to the Professor Subsidy of the Polish Science 
Foundation awarded to Z. Waszczyszyn in 2001. In the frame of this Subsidy, he could offer 
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five scholarships to young participants of the Seminar. Another fruitful activity is connected 
with arrangement of special courses and schools devoted to the development of ANNs 
applications. From among these activities, coordination of two CISM (Centre International 
des Sciences Mécaniques) Advanced Schools by Z. Waszczyszyn, delivering lectures and 
participation of the Seminar members in three CISM Schools are worth mentioning. Till 
now 4 postdoctoral dissertations and 14 PhD theses have been written, based on 14 scientific 
projects and grants. The publishing activity covers 7 scientific monographs, 23 chapters in 
books, keynote lectures and state-of-the-art papers. Publishing over 40 papers and delivering 
about 80 presentations at the international conferences also deserve a mention.

We think that we have made some small efforts to be closer to Professor Życzkowski’s 
ideas of service to science, to the truth and to people. Thus, we hope that we can dedicate the 
discussed Seminar to Professor Życzkowski since it has tried to follow his inspirations and 
ideas.
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