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Abstract
Low frequency AC conductivity has been studied in ferroelectric ceramics PZT + PFS (Pb[(Fe1/3Sb2/3)xTiyZrz]O3 
with x = 0.1 and y = 0.43, 0.44, 0.47) using Fourier transformation of charging and discharging currents. The results 
are interpreted in terms of fractal structure of the randomly generated clusters formed by sequentially correlated 
hopping paths of charge carriers.
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Streszczenie
W artykule przedstawiono przewodnictwo zmiennoprądowe ceramiki ferroelektrycznej PZT + PFS 
(Pb[(Fe1/3Sb2/3)xTiyZrz]O3, gdzie x = 0.1 i y = 0,43, 0,44, 0,47) w zakresie ultra niskich częstotliwości ob-
liczone na podstawie analizy Fouriera prądów polaryzacji i depolaryzacji dielektrycznej. Wyniki zostały 
zinterpretowane na podstawie fraktalnej struktury klasterów generowanych przez stochastyczny sekwen-
cyjny hopping nośników ładunku.
Słowa kluczowe: PZT, przewodnictwo zmiennoprądowe, fraktalna struktura przewodzących klasterów
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1. Introduction

The investigation of dielectric and electric properties in disordered solids has been the 
subject of a great deal of interest because of their many technical applications.

From the phase diagram of the PZT (Pb(Zr1-xTix)O3) ferroelectric solid solution 
follows that in this compound the phase boundary exists which divides regions with 
rhombohedral and tetragonal structures  [1, 2]. Recently Noheda et al. [3] reported that, 
within a narrow region 0.45 < x < 52, there was a bringing monoclinic phase. This region is 
called the morphotropic phase boundary (MPB). It was established that in the MPB there 
is a progression from long range to short range structural orders leading to a stochastic 
disorder [4]. In the studied complex compound PZT + PFS (Pb[(Fe1/3Sb2/3)xTiyZrz]O3 with 
x + y + z = 1, x = 0.1 and y = 0.43, 0.44, 0.47) the crystal lattice Pb sites are partially replaced 
by Sb cations while the Ti sites by Zr or Fe cations. The structural studies performed for the 
0.43 and 0.44 of Ti content samples established the existence of the MPB region [5]. The 
coexistence of rhomboedral and tetragonal phases in the MPB range as well as doping leads 
to structural disorder in the studied compound.

AC conductivity measurements are an important means to study deep defect centres. 
The alternating current (AC) conductivity of disordered solids shows a dispersive behaviour 
through the dependence of electrical conductivity σ(ω) vs. frequency ω of the form [6].

 σ ω σ σ ω( )= + ( )dc p  (1)

where σdc is the direct current (DC) conductivity and σp(ω) is the frequency dependent 
polarization conductivity. Polarization conductivity σp(ω) is created due to the relaxation 
process connected with defect centres or group of centres that develop electric dipole 
moments under the action of applied electric field. A strong frequency dispersion of 
AC conductivity follows from a broad distribution of the relaxation times [7]. The 
measurement of the step response function over several decades of time (up to 104 s) is 
usually used to investigate low frequency AC dielectric losses. The dielectric response in 
the frequency domain is described in terms of dielectric susceptibility χ(ω) or permittivity 
ε(ω) functions. The dielectric properties can be equivalently expressed in terms of 
complex conductivity.

 σ ω ωχ ω( )= − ( )i  (2)

In order to convert results from the time- into frequency domain the one-side Fourier 
transform is commonly used.

The AC conductivity σ(ω) in disordered solids depends strongly on the external field 
frequency. At high frequency range, one observes a sublinear dependence σ(ω) ∝ ωs 
with 0 < s < 1, whereas at low frequency range a supralinear dependence with the power 
exponent s > 1. The cross-over from high-to low frequency range takes place at the 
dielectric loss peak frequency ωc. 
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The AC conductivity in disordered solids has been studied in terms of hopping mechanism 
of charge carriers between localization sites. Many models based on relaxation caused by 
hopping or tunnelling of electrons, polarons or ions between equilibrium states, have been 
proposed [8–15] to explain the frequency and temperature dependencies of AC conductivity.

2. Theory

2.1. Rate equitation

In disordered solids the electron hopping process takes place between localized states that 
are statistically distributed in space and in energy. According to Miller and Abrahams [9], 
the electron transition probability wij between the localized states ri and rj depends on the 
tunnelling probability, proportional to exp(–2arij) and the energy difference between both 
sites Eij = Ei – Ej taking the following form

 w w ar E kTij ij ij= − −( )0 2exp /  (3)

In this expression k is the Boltzmann contrast, T is temperature and a is localization length 
of the wave function ψ in a site ri, i.e. ψ ∝ [–|r –ri|/a]. The transition rate is defined as the 
product of the site transition probability wij, occupation probability of the initial site Pi(t) and 
non occupation probability of the final state wij  fi(1 – fj), where f is the Fermi function. The 
transition rate fulfils the following master equation

 
dP t

dt
w P t w P ti

j ji i i ji i
( )

= ( )− ( )Σ Σ  (4)

In order to determine the conductivity we must consider the transition rate in the 
presence of an electric field. The electric field changes the occupation probability P(t) of 
localized states. In the linear approximation (Ohmic conduction) Miller and Abrahams 
have shown that rate equation can be mapped on the impedance network. According to 
this treatment, the transition rate for the hopping process in the electric field may be given 
as the product of conductance Gij and voltage Vij between sites ri and rj. The conductance 
Gij = Rij

–1, linking each pair of sites (i, j) is

 R e kT
kT

r aij ph
ij

ij
− = ( ) +











1 2 2/ exp /γ
∆

 (5)

and the capacitance values Ci, linking each sites to the external field generator E0cosωtri, are

 C e kT Ei i kT=( ) −( )2 / exp /  (6)

Here γph is the phonon frequency of about 1012 Hz and ∆ij is equal to |Ei – Ej| or |Ej| 
depending on which is greater. All energies are related to the Fermi level Ef.
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2.2. Pair approximation

At high frequency, the two-site model (pair approximation) and its modification have been 
commonly used [8, 14, 16]. According to these models,the charge hopping takes place between 
nearest neighbour sites (single hopping) and it is assumed that each individual relaxation process 
occurs in parallel and independently of all others. The exact form of σ(ω) depends on details 
of the transition rate relations describing movement of charge carrier between a pair of sites. 

In the simplest approximation only sites within kT of the Fermi level are involved in AC 
conduction. It is also assumed that pairs with relaxation time τ = 1/ω make the dominant 
contribution to σ(ω) [8]. In order to obtain expression for the σ(ω), the product of the AC 
current Jij, of the pair i, j and the density of pairs of the length rij must be summed to give

 σ ω σ( )= +dc i j ij ijn JΣ ,  (7)

Calculating this expression at any frequency ω gives for σ(ω) [17]

 σ ω σ ωω( ) = + ( )



dc fr a N E kT e kT0 3 2

2
2. /  (8)

where rω ≅ aln(vph/ω) is greater than the hopping distance. The numerical factor in Eq. (8) 
differs slightly from the value presented in [15].

At high frequencies, the main results of pair approximation have been confirmed, but at 
low frequencies discrepancies exist and a modification has been needed [17–19].

2.3. Cluster approximation

At low frequencies, during a half period of the oscillation of an external field, the carriers make 
multiple hopping and the pair approximation fails. Therefore, at low frequency range, hopping 
charge transport has been formulated in terms of random walk theory of Scher and Lax [12], 
cluster approach of Bötcher et al. [15] and equivalent random resistor network of Summerfield 
and Butcher [16]. From this treatment as well as from the computer simulation [20] it follows 
that, at very low frequencies, the quadratic law σ(ω) ~ ω2 should be fulfilled. However, the 
experimental results show that the frequency exponent s, at very low frequencies, is subquadratic 
(1 < s < 2). By application of a low frequency electric field to a disordered system, large clusters 
of charge carriers with the percolation path of the fractal structure are randomly generated 
[19, 21]. At low frequencies, the mechanism of cluster charge transport dominates and individual 
relaxation process of clusters must be considered. The conductivity σ(ω) can be expressed as the 
sum of σdc and the cluster polarization conductivity σp(ω). Since the exact calculation of cluster 
polarization current are unavailable, therefore the simple approximation has been proposed by 
Hunt [17–19]. The complexity of large cluster structures composed of many percolation paths 
has then been replaced by a collection of chains with a resistor oriented in the direction of the 
applied field. Replacement of clusters by one dimensional chains was proposed by several authors 
[22, 23]. The polarization currents JNR of chain composed of N resistors with resistivity R and N 
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capacitors with capacitance C may be expressed in the same way as in the pair approximation, if 
we replace R by NR, C by NC and with τN ∝ N2τ to get [17, 18]

 J Nl RN R N n, / / /ω π ω τ ω τ( ) = ( )( ) +( ) 2 3 12 2 2 2 2 2  (9)

The total conductivity is the sum over all contributing chains [17]

 σ ω σ( )= + ⋅dc N R N Rl nΣ , ,  (10)

wheren nN, R is the number of chains.
The statistical distribution function density of chains nN, R on a given cluster has been 

adopted from the Stauffer formula of cluster distribution in the percolation system [24]. 
According to this approach, AC conduction at low frequencies may be expressed as [19]

 σ ω σ
ω
ω

ω
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ν
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where A
T
T

=










0

1 4/

, d is the dimension of conducting system, v is critical exponent of the 

correlation length v = 0.9 [24] and T0 = [N(Ef)a3k]–1 with N(Ef) being the density of states at 
the Fermi level and ωc is the critical frequency corresponding to the onset of dispersion. It is 
evident that in the case of a 3D system, two different terms, one with linear s = 1 and the 
second with a supralinear frequency exponent 1 < s < 2, contribute to the total conductivity.

3. Method and results 

In the experiment, a step voltage V(t) = V0 applied to a dielectric sample, generates the 
charging current Jd which is composed of a transient polarization current Jp(t) and a steady 
state conduction current Jdc. Discharging current Jd, flowing after the removal of polarization 
voltage does not involve a steady state component. In the case of low polarization field (linear 
condition), Jd = –Jp(t). Details of the experimental procedure and sample characterization 
are presented in [25, 26]. The AC conductivity has been calculated by taking the Fourier 
transformation of the transient currents Jp(t). The numerical calculation of the Fourier 
transformation was based on a simple summation

 J t i n t J n tnω ω( )= −( )⋅ ( )=
∞∆ Σ ∆ ∆0 exp  (12)

The summation was carried out at various periods of time with various time intervals ∆t 
changing from ∆t = 1 s to ∆t = 1000 s. The charging and discharging currents were measured 
over a long period of time up to 105 s. The measurements at low temperatures were performed 
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down to 77 K but at higher temperatures the measurements were performed at temperatures 
which were lower than the Curie temperature. To eliminate the non-linear effects, the samples at 
low temperature were poling at field 0.2 kV/cm, and at high temperatures, at field 0.02 kV/cm. 
As an example, in Fig. 1 the time dependent decaying charging Jc(t) and discharging currents, 
Jd(t) for sample with y = 0.43 are shown in log-log scale. The charging currents Jc(t) were used 
to calculate the total AC conductivity σ(ω) which contains the DC component. The discharge 
(depolarization) current was used to calculate σ(ω). In Figs. 2, 3 and 4, the low frequency 
dependent AC conductivity for samples with y = 0.43, 0.44 and 0.47 are presented respectively. In 
table I, the frequency exponent s are listed for the same samples. The power exponents are given 
for the frequencies above and below the cross-over frequency ωc. It is evident that frequency 
exponent s depends on the sample composition and temperature. The samples with the 
morphotropic composition containing less Ti (with y = 0.43 and 0.44) have a lower s value than 
those with the non-morphotropic composition (with y = 0.47). For the frequency range ω << ωc, 
the exponents is greater than one, but only slightly in the case of samples with y = 0.43 and 0.47.

4. Discussion 

1. The experimental evidence and theoretical conclusions [27–29] show that the dielectric 
relaxation and transport properties in perovskite structures are closely related to the 
oxygen vacancies. The oxygen vacancies are created by losses of oxygen from the crystal 
lattice during sintering at high temperature according to

 O V OO O� � +1 2 2/

The oxygen vacancies are positively charged with respect to the lattice and always appear 
single ionized at low temperature V V eO O

0 + ′  or doubly ionized at high temperature 
V V eO O� ��� + ′( ) . In perovskites, the energy of the first ionization of oxygen vacancies is 

about 0.1 eV, whereas the second energy ionization is about 1.4 eV. The thermally 
liberated electrons contribute to the dielectric relaxation and conduction process. 
In Pb[(Fe1/3Sb2/3)xTiyZrz]O3, the Fe3+ ions are incorporated into the perovskite B site 
acting as acceptors [27]. At high sintering temperature, the trivalent Sb ions substitute 
the divalent Pb ions and create lead vacancies VPb.

 Sb O Sb O VPb O
x

Pb2 3 2 3� �� + + ′′

The lead vacancy ′′VPb  carries two excess negative charges. The oxygen vacancies existing 
in perovskite compound migrate around the Fe ions leading to formation of dipolar 
defects- Fe VTiZr O

′


 complexes. The orientation of these dipolar defects depends on V0 
location in the oxygen octahedron. A linear dielectric relaxation is connected not only 
with dipoles but also with potentially mobile charges (electrons, polarons or ions) The 
observed dielectric relaxation may originate from the Fe2+/Fe3+ mixed valence structure of 
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Fig. 1. Time dependence of charging Jc(t) and discharging Jd(t) currents for sample y = 0.43 measured at 
temperatures 298 K, 343 K, and 373 K. Poling field: 0.02 kV/cm

Fig. 2. The low frequency AC conductivity for sample with y = 0.43 at selected temperatures; σc(ω) –
total AC conductivity σ(ω) – polarization conductivity
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Fig. 3. The low frequency AC conductivity for sample with y = 0.44 at selected high (a) and low (b) 
temperatures
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Fig. 4. The low frequency AC conductivity for sample with y = 0.47 at selected high (a) and low (b) 
temperatures
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Pb[(Fe1/3Sb2/3)xTiyZrz]O3. The 3d electrons in Fe3+ may hop to Fe2+ ions; the same hopping 
movement may take place between Ti3+ → Ti2+ and Zr3+ → Zr2+ ions. This electron 
hopping creates time dependent dipole moments. At higher frequencies, the carrier 
hopping takes place between sites separated by lower energy, whereas at lower frequencies, 
the energy barrier with higher energy must be over-passed. This way, the AC conductivity 
at higher frequencies is greater than at lower ones. At higher temperatures, the energy 
distribution of barriers becomes more uniform and variation of AC conductivity with 
frequency becomes weaker. The dielectric relaxation can be also attributed to the motion 
of dipoles created by the defect associate Fe VTiZr O

′( )


 under the action of an external field. 
In the electric field, the defect dipole can be reoriented only slightly in the field direction 
or may perform greater movements. In the latter case, changes in position of VO  within 
the oxygen octahedron via hopping process will result in reorientation of the complex 
defect dipole. The relaxation time in this case is determined by thermally activated 
diffusive jumping of the oxygen vacancies. The long range movement of weakly bonded 
electrons gives rise to the DC conduction that can be described by the hopping mechanism. 
The transport of electrons from cathode to anode, contributing to the DC conduction, 
needs to overcome a higher potential barrier, as compared to a lower energy barrier needed 
to overcome a shorter displacement in the case AC conduction. Therefore the activation 
energy of DC conductivity is higher than the activation energy of AC conductivity.

2. The temperature dependence of the frequency exponent s(T) is consistent with results of 
multiple hopping models [13, 20, 21]. According to these models, s should decrease with 
increasing temperature, as can be seen from results presented in Table I. The exponent s 
depends also on concentration N of localization sites. The concentration N = 2.9 · 1023 m-3 
for sample with y = 0.44 is greater than concentration N = 1.5 · 1023 m-3 for sample with 
y = 0.47 [25]. Indeed, for all temperatures, the exponent s for sample with y = 0.44 is smaller 
than that for sample with y = 0.47. Moreover, the values of s are much smaller than 2, being 
at variance with the prediction of the cluster model [10] and computer simulation [20] 
yielding s = 2. It is evident from expression (11) that two different terms for low ω exist: 
one linear and the second supralinear. For three dimensional systems, d = 3 and v = 0.9 
[24] and the frequency exponent equals (d – 1 + 1/v)/2 = 1.55.
The results presented in Table I show that the frequency exponent for all samples is less 
than the theoretical value 1.55. These results may suggest that the Debye-type relaxation 
effects play an important role. In the low temperature range, concentration of charge carriers 
decreases and contribution of dipolar dielectric relaxation becomes more important.

5. Conclusions 

1. The presented results suggest that the frequency dependence of AC conductivity 
of PZT-PFS at very low frequencies σ(ω) ~ ωs may be explained in terms of fractal 
structure of the randomly generated clusters formed by sequentially correlated hopping 
paths of charge carriers (i. e. the geometry of multiple hopping).
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2. Approximation of cluster current as the one-dimension collection of chain currents leads 
to low frequency AC conductivity expression with the frequency exponent 1 < s < 2, in 
accordance with the experimental results.

Table 1. Values of frequency power exponents s for samples with y = 0.43, y = 0.44 
and y = 0.47.

y T [K] s (ω < ωc) s (ω > ωc)

y = 0.43

298 1.38 0.62

343 1.35 0.62

373 1.38 0.577

y = 0.44

298 1.37 0.62

323 1.41 0.58

373 1.47 0.577

223 1.36 0.84

173 1.31 0.43

77 1.27 0.81

y = 0.47

298 1.33 0.81

423 1.31 0.70

473 1.34 0.675

173 1.42 0.81

77 1.38 0.91

The author is grateful to Prof. J. Cisowski and Ph.D. W. Osak for suggestions and helpful 
discussion.
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