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Comparison of results of stress cycle counting by the direct 
spectral method and the fu-cebon method for bi-modal type 
stress processes 

Porównanie rezultatów zliczania cykli naprężeń metodą 
spektralną bezpośrednią i metodą fu-cebona dla przebiegów 

o charakterze dwumodalnym 

Abstract
This article compares the results of a high cycle fatigue analysis obtained through the application of the two 
methods dedicated to analysis of response of the structure of the bi-modal type – the direct spectral method 
and the  Fu-Cebon one. the  compared parameter is the  lifetime for an assumed material S–N curve and 
stress spectrum defined in an article by Fu & Cebon. 
Keywords: fatigue analysis, stress cycle counting, spectral method, bi-modal process

Streszczenie 
W artykule dokonano porównania rezultatów wysokocyklowych analiz zmęczeniowych wykonanych 
przy zastosowaniu dwu metod dedykowanych dla przypadków odpowiedzi struktury o charakterze 
dwumodalnym: metody spektralnej bezpośredniej i metody Fu-Cebona. Porównywaną wielkością był czas 
życia konstrukcji przy założonej postaci krzywej S–N materiału i zmienności naprężeń o charakterystyce 
wykorzystywanej w artykule Fu i Cebona. 
Słowa kluczowe: analiza zmęczeniowa, zliczanie cykli naprężeń, metoda spektralna, przebiegi dwumodalne 
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1.  Introduction

In some cases the  spectrum of  vibrations of  engineering structures have the  bi-modal 
type. The example is the suspension system analysed by T.-T.Fu & D. Cebon [5]. 

Structural vibrations are the reason of changing deformation of material in time. the process 
is described by variable in time strain tensor components. The variation of strains accounts 
for material damage in a relatively large number of cycles for the elastic type of deformations. 
Changing in time strain tensor components are correlate with variable in time stress tensor 
components. In the paper, the high-cycle fatigue analysis based on the stress formulation is 
considered. 

In the case of nonstationary or multimodal vibrations, the problem of cycle identification 
and cycle counting is crucial when conducting fatigue analysis. In literature, the  following 
attempts at solving the  problem are discussed: direct method (harmonic process, quasi-
harmonic process) [4]; bi-modal dedicated methods [1, 2, 5, 14]; stress cycle counting 
method (e.g. the ‘rain-flow’ method) [4, 6, 11]; spectral methods (using the power spectral 
density function) [12, 13]; kurtosis analysis [15]. The  most commonly used method is 
the ‘rain-flow’ method. 

In their previous papers, the  authors proposed the  original method of  stress cycle 
counting dedicated for the bi-modal type spectrum of stress – this is known as the spectral 
direct method [7–10]. T.-T. Fu & D. Cebon proposed in their article [5] a method of fatigue 
analysis that was also dedicated to the bi-modal process. The method proposed by T.-T.Fu 
& D. Cebon is based on using of the power spectra density description of the process and 
leads to determination of the probability density of the stress ranges. The method proposed 
by M. Kozień & D. Smolarski is a  type of  the time-domain method and is an alternative 
method of conducting fatigue analysis in cases of bi-modal stress history.

The aim of this paper is to compare results obtained by application of the two alternative 
but not being against methods: the spectral direct one and the Fu-Cebon one. The compared 
parameter is the  lifetime of  element for assumed material S–N curve and stress spectrum 
defined in article of T.-T.Fu & D. Cebon [5].

2.  Basis of the spectral method

The determined bi-modal stress history can be theoretically defined with the following 
analytical form: 

		  σ ω ϕ ω ϕ( ) sin( ) sin( )t A t A t= + + +1 1 1 2 2 2 	 (1)

where:
A1, A2 – stress amplitudes of the harmonic components,
w1, w2 – angular frequencies of the harmonic components,
j1, j2 – phases of the harmonic components.
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With such a formulation, the component frequencies f1 and f2 and corresponding periods 
T1 and T2 can be obtained using equations (2) and (3). 
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The basic assumptions and manner of  application of  the  direct spectral method for 
bi-modal waveforms can be described as follows:

▶▶ For a given time-domain stress waveform, a spectrum is obtained. Let us assume that 
from this spectrum, the two frequencies f1 and f2 (f1 < f2) can be distinguished. They are 
characterized by periods T1 and T2, and amplitudes A1 and A2, respectively. The phase 
shift is not required and is therefore omitted in this method (j1 = j2 = 0). However, 
the  proposed algorithm allows for the  phase shift to be included in the  calculation  
(j1 ≠ 0 or j2 ≠ 0) if necessary. The waveforms are analysed under the assumption that 
at the initial time, both of the harmonic components are of maximal (positive) value, 
which means that the stress value at time t = 0 is equal to A1 + A2.

▶▶ Period T1 is the base period for the stress signal.
▶▶ Based on the values of periods T1 and T2, the so-called block of stress is determined. 

The block length (time range) TB depends on the ratio T1/T2. It is the smallest integer 
number of period T1, for which the ratio TB/T2 is an integer. In practical applications, 
this condition is nearly satisfied hence, assuming the value of TB, is an arbitrary decision. 
The value of TB depends on the precision of the determination of T1 and T2 , usually by 
identification of frequencies f1 and f2.

▶▶ The primary stress cycle, which is the  only cycle present within the  block, has 
a stress amplitude of A1+ A2 and, if not stated otherwise (e.g. constant value present 
in FTT, static assembly stress or thermal stress), the effective mean stress is zero. This 
assumption is the  basis for calculating the  equivalent completely reversed uniaxial 
stress, e.g. Morrow’s type (4) [4].

▶▶ The amplitudes of  secondary stress cycles vary depending on the  value of  A2 and 
the leading waveform of frequency f1. Some of the identified cycles are not taken into 
account if they do not have a  full stress-cycle form. For the high difference between 
frequencies f1 and f2, the amplitudes of the secondary cycles are approximately equal 
to A2. The acquired data forms the basis of the calculation of the equivalent completely 
reversed uniaxial stress (4) [4]. 

▶▶ The obtained data which describes the  identified stress cycles for a  given waveform 
forms the basis of the fatigue analysis using the chosen stress cumulation hypothesis, 
e.g. Palmgreen-Miner’s (5) [4]. 
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In the analysis, the  following parameters are used: effective mean stress (Sines stress) [4]; 
effective stress amplitude (according to the  von Mises equivalent stress) [4]; equivalent 
completely reversed uniaxial stress (Morrow stress) (3) [4].
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 		  T B TB= ⋅ 	 (6)
where:
σm – effective mean stress,
σa – effective stress amplitude,
σEQV – equivalent completely reversed uniaxial stress,
σu– ultimate stress,
N – total number of cycles identified in a block,
Ni – number of cycles with amplitude σi identified in a block, 
(Nf)i – number of cycles to damage for stress with amplitude σi (S–N curve); 
B – number of blocks;
TB – time length of block;
T – estimated lifetime.

3.  Estimation of values of amplitudes based on PSD function

The PSD function is calculated on the basis of a given signal x(t) defined in the time domain. 
The two-sided PSD function Sx(t) is defined as a Fourier transform of  the autocorrelation 
function (7) and (8). 

 		  R x t x t dtx ( ) ( ) ( )τ τ= +
−∞
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∫ 	 (7)

 		  S f R e dx x
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Because Sx(t) is an even function of frequency (9), the commonly used the single-sided 
(or one-sided) power spectral density Gx(f) (10) is defined and used.
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Sometimes, the following problem arises: what are the averaged values of the signal when 
only the PSD function is known? The root mean square xRMS value for a specific frequency 
range f ∈ [f1, f2] can be calculated from its single-sided PSD function in the form (11) [3]. 
The  amplitude of  the  signal, which is understood as the  peak value xPEAK of  the  harmonic 
signal, can be found based on formula (12).

		  x G f dfRMS x
f

f

= ∫ ( )
1

2

	 (11)

	  	 x xPEAK RMS= 2 	 (12)

4.  Comparison of life time determined by the direct spectral and the Fu-Cebon 
methods

4.1.  Analysed case

Let us consider after T.-T.Fu & D. Cebon’s [5] fatigue analysis of the trailing arm of the car 
suspension system – this form is shown in Fig. 1.

Fig. 1.	 A car suspension system [5]
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The dominant stress component has the spectrum of the bi-modal type in steady-state case 
of  its vibration, therefore the  analysis takes a  uniaxial form from the  point of  view of  stress. 
The stress spectrum is defined as the single-sided power spectral density function shown in Fig. 2.

Fig. 2.	 One-sided power spectral density function of stress [5]

Based on the form of the one-sided power spectral density function of stress, it is possible 
to determine the  probability function of  the  stress amplitudes using different methods 
presented in literature, e.g. pure bi-modal, Sakai, rain-flow, Rayleigh, Dirlik, Fu-Cebon [5]. 
With the application of  the Fu-Cebon [5] method, the probability function of peak stress 
(stress amplitudes) can be visualised in the form shown in Fig. 3.

Fig. 3.	 Probability density function of peak stress [5]

Comparison was done for material the  fatigue properties of  which are described in 
the Wohler S–N curve in the form (13), where m = 8, and fatigue limit for 2.0·106 cycles is 
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100 MPa, hence a = 2.0 · 1022, where Nf is number of cycles for high-cycle fatigue damage and 
σ is stress amplitude for the completely reversed stress cycle. the ultimate stress σu is 400 MPa. 

 		  N Af
m= −σ 	 (13)

4.2.  Estimation of lifetime based on the Fu-Cebon method 

The bi-modal idealised stress history considered by T.-T.Fu & D. Cebon [5] has the form (1) 
with assumption that φ1 = φ2 = 0. Moreover, it is assumed that the components are reasonably 
widely spaced in frequency, i.e. ω1/ω2 > 4. By applying the rain-flow counting method, the two 
distinct amplitude cycles are identified. the first with an amplitude σ1 = A1 + A2 and n1= ω1T/2π 
cycles in T seconds and the second with an amplitude σ2 = A2 and n2 – n1 = (ω1 – ω1)T/2π cycles. 
According to the Palmgren-Miner hypothesis, the total damage D is equal (14).
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where:
N1 and N2 – the cycles to failure at stresses σ1 and σ2, which follow the material S–N curve. 

It is then assumed that the  two components of equation (1) are narrow processes and 
their distributions of  peaks P1(σ) and P2(σ) follow Rayleigh distributions. After suitable 
manipulations, the fatigue life estimated by this approach is [5]:

		    
T

C
P

d
P

db b

=
+ −

∞∞

∫∫
2

1
1

1 1 2
2

100

π

ω
σ

σ
σ ω ω

σ
σ

σ
( )

( )
( )

/ /
	 (15)

where:
C = a and 1/b = –m for the material S–N curve equation (13).

Estimation of  lifetime TFC is done based on probability density function of  peak stress 
determined with application of  the  Fu-Cebon formula (Fig.  3). The  value of  lifetime for 
a given material (the S–N curve) can be estimated from the Dirlik formula (16), where M+ 
is the expected number of peaks in unit of time and p(σ) is the probability density functions 
of the stress ranges [12].

 		   
T

M
p

N
d

FC

f

=
+ +∞

∫
1

0

( )
( )

( )
∆
∆

∆
σ
σ

σ 	 (16)

For the analysed case the obtained lifetime is TFC = 3.27 · 109 cycles.
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4.3.  Estimation of lifetime based on the direct spectral method

The power spectra density function of stresses (Fig. 2), show two components in frequency 
domain: f1 = 2  Hz and f2

 = 15  Hz. The  periods corresponding with this frequencies are 
respectively T1 = 0.5 sec (the basic period), T2 = 0.0(6) sec (the secondary period). Therefore, 
the ratio is T1/T2 = 7.5 – this means that one stress block has total length (time duration) 
equal to TB = 2T1 = 1s, T2 = 1 sec. The values of amplitudes A1 and A2 were identified based on 
the stress PSD function (Fig. 2) with the application of formulas (11) and (12). The values 
of integral existing in (11), were calculated as areas of triangles with length 0.3125 Hz and 
heights respectively: 3.22 · 1015 Pa2/Hz for f1 = 2 Hz and 1.26 · 1014 Pa2/Hz for f2 = 15 Hz. 
This means that the very narrow frequency range connected with discretisation of the PSD 
function in the frequency domain was taken into account. the values of the identified stress 
amplitudes are approximately equal to: A1 = 32 MPa, A2 = 6 MPa. 

Stress cycle identification for a given block depends on the assumed values of the phase 
angles φ1 and φ2. For uniaxial stress, there is no reason for different values of  angles; 
however, due to the method of cycle identification in the spectral direct method, the values 
of  quantitative parameters describing the  secondary cycles depend upon the  chosen 
value of phase angles φ1 = φ2. The two cases were analysed: φ1 = φ2 = 0 and φ1 = φ2 = π/2. 
Reconstructed stress function in time domain, which were basis for cycle identification, 
is shown in Fig. 4 for one block. Hence, the amplitudes of  the main cycle (32 MPa) and 
the secondary cycles (6 MPa) and then application of the direct spectral method algorithm 
leads to identification the given in Table 1 and Table 2 groups of cycles for one block with 
length 1 sec. 

Fig. 4.	 Reconstructed variation of stress as functions of  time: for φ1
 = φ2 = 0 (left), for φ1 = φ2 = π/2 

(right)

Even though there are differences in the  time form of  reconstructed stress functions, 
the number of identified stress cycles, especially secondary cycles, were the same in all cases 
(the one main cycle and the seventeen secondary cycles). After application of the Palmgren-
Miner rule of  stress cycle cumulation for a  given material, the  estimated lifetime was  
TDS = 4.6 · 109 cycles for both cases. This result is not far from that which was previously 
obtained after application of the Fu-Cebon method – TFC = 3.27 · 109 cycles.
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Table 1.	 Identified cycles of one block for the case φ1 = φ2 = 0
NO. σMAX [MPa] σMIN [MPa] σm [MPa]  σa [MPa] σEQV [MPa] NUMBER TYPE

1 38.0 –38.0 0 38.0 38.0 1 main

2 14.1 11.7 12.9 1.2 1.2 1 secondary

3 34.0 25.8 29.9 4.1 4.2 1 secondary

4 36.6 25.8 31.2 5.4 5.5 1 secondary

5 20.3 17.1 18.7 1.6 1.6 1 secondary

6 –5.7 –7.5 0 0.9 0.9 1 secondary

7 –24.3 –30.4 0 3.1 3.1 1 secondary

8 –24.3 –37.8 0 6.8 6.8 1 secondary

9 –21.3 –25.8 0 2.3 2.3 1 secondary

10 0.9 –0.9 0 0.9 0.9 1 secondary

11 25.8 21.3 23.6 2.3 2.3 1 secondary

12 37.8 24.3 31.1 6.8 6.9 1 secondary

13 30.4 24.3 27.4 3.1 3.1 1 secondary

14 7,5 5.7 6.7 1.0 1.0 1 secondary

15 –17.0 –20.3 0 1.7 1.7 1 secondary

16 –25.8 –36.5 0 5.4 5.4 1 secondary

17 –25.8 –34.1 0 4.2 4.2 1 secondary

18 –11.8 –14.1 0 1.2 1.2 1 secondary

Table 2.	 Identified cycles of one block for the case φ1 = φ2 = π/2
NO. σMAX [MPa] σMIN [MPa]  σm [MPa] σa [MPa] σEQV [MPa] NUMBER TYPE

1 38.0 –38.0 0 38.0 38.0 1 main

2 38.0 23.0 30.5 7.5 7.6 1 secondary

3 28.2 22.9 25.6 2.7 2.7 2 secondary

4 4.2 2.4 3.3 0.9 0.9 2 secondary

5 –19.3 –23.0 0 1.9 1.9 2 secondary

6 –25.3 –37.3 0 6.0 6.0 2 secondary

7 –25.3 –32.4 0 3.6 3.6 2 secondary

8 –8.8 –10.9 0 1.1 1.1 2 secondary

9 17.2 14.5 15.9 1.4 1.4 2 secondary

10 35.4 26.0 30.7 4.7 4.8 2 secondary
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4.4.  Detailed conclusions of comparison

The analysis makes it possible to formulate the following detailed conclusions:
▶▶ Application of the spectral direct method gives lower errors if the spectral characteristics 

of the stress variation in time are given in form of the amplitude-frequency characteristics 
then the power spectra density function, because there is no need to transform from 
frequency-domain to time-domain. This is observation in the  case of  the  spectral 
method, but not in comparison with the Fu-Cebon method. 

▶▶ When leakage exists for spectral functions of  stress (amplitude-frequency function 
or PSD one) around modal frequencies – this is often observed for realistic cases – 
the final results of cycle identification by the spectra direct method strongly depend 
on the  chosen limits of  integration in formula (8). For the  discussed analysis, 
the  integrations were performed for a  very narrow frequency range. If the  range is 
wider, the analysis would by much conservative. 

▶▶ If the  spectral characteristics of  the  stress variation in time are given only in 
the  form of  amplitude-frequency function or the  power spectra density function, 
the reconstruction of the function is not unique due to a lack of information about values 
of the phase angles φ1 and φ2. For detailed reconstruction, the values of the angles must 
be known; however, if there is no information about these values, the method can be 
applied. If there is no other reasons, usually it is assumed that φ1 = φ2 = 0. For a uniaxial 
stress case, the condition φ1 = φ2 is always valid. 

5.  Conclusions

The fundamental conclusion resulting from the  analysis is that the  lifetime estimation 
of  the  analysed case is almost the  same when identified using each method. This can be 
interpreted as verification of the possibility of using the spectral direct method for the fatigue 
analysis of the bi-modal process.

Moreover, the analyses make it possible to formulate the following conclusions:
▶▶ The bi-modal process exists in practical engineering applications.
▶▶ The methods based on the  integration of the probability density of  the stress ranges 

may not take the sum of modes into account.
▶▶ The results of analyses used spectral direct method applied to bi-modal type processes 

defined by power spectral density function strongly depend on the arbitrary chosen 
range of integration of the PSD for identified frequencies.

▶▶ The Fu-Cebon method based on the analysis of  the PSD function can be applied in 
a natural way for the results experimentally obtained when the characteristics take into 
account random description. The spectral direct method can be applied in a natural 
way for the results of the dynamical response of a structure obtained from computer 
simulation based on the assumption of deterministic analysis.
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