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Flow simulation in hydrodynamic torque converter 

Symulacja przepływu w przekładni hydrokinetycznej

Abstract
The paper compares the theoretical non–dimensional steady–state characteristics of a  hydrodynamic 
torque converter with the experimental ones. The theoretical characteristics were calculated numerically 
based on two flow models: a  one–dimensional model created by the authors and a  three–dimensional 
model prepared by means of the ANSYS CFX software. The experimental characteristics were obtained on 
the basis of test rig investigations. 
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Streszczenie
W artykule porównano teoretyczne bezwymiarowe charakterystyki przekładni hydrokinetycznej w stanie 
ustalonym z  danymi eksperymentalnymi. Charakterystyki teoretyczne obliczono numerycznie na 
podstawie modeli przepływu: model jednowymiarowy utworzony przez autorów i trójwymiarowy model 
przygotowany za pomocą oprogramowania ANSYS CFX. Charakterystyki eksperymentalne zostały 
uzyskane na podstawie badań na stanowisku badawczym. 
Słowa kluczowe: przekładnia hydrokinetyczna, obliczenia numeryczne
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1.  Introduction

A hydrodynamic torque converter is a component of a driveline system which transfers 
the engine power to wheels of a vehicle. This torque converter increases the torque produced 
by the engine, but it can also work as a  clutch. Due to the flexible transmission of torque 
and its high vibration damping capacity, which significantly increases the durability of the 
driveline system, the hydrodynamic torque converter is widely used in cars, agricultural 
machines, road–making plants, etc.

The non–dimensional steady–state characteristics of a  hydrodynamic torque converter 
are used to calculate the overall ratio between the engine and the driven wheels and 
consequently, the motive force required to overcome the traction resistance of vehicles. They 
consist of curves presenting the torque ratio id, the efficiency η and torque coefficient λ versus 
the velocity ratio ik.

Currently, design calculations of both geometric parameters of a hydrodynamic torque 
converter and non–dimensional steady–state characteristics are based on the commonly 
used one–dimensional model of fluid flow in the working space of the converter [1–3]. The 
advantage of such a model is its simplicity, but its disadvantage is low calculation accuracy.

Efforts are also made to calculate the non–dimensional steady–state characteristics of 
a hydrodynamic torque converter by means of a three–dimensional model of fluid flow based 
on Computational Fluid Dynamics (CFD) methods. The Computational Fluid Dynamics 
is a new branch of mechanics which uses computer tools to analyze pressure distribution, 
velocity distribution and heat transfer in the flowing fluid. The results of numerical calculations 
are verified by laser anemometry measurements of the fluid flow in hydraulic device channels 
[4]. These attempts, however, are still at the model creating and improving stage [5]. 

The use of commercial CFD computer programs, developed for the calculation of three–
dimensional flows in various channels could improve the accuracy of the non–dimensional 
steady–state characteristics of a hydrodynamic torque converter.

The paper presents the results of a calculation obtained on the basis of a one–dimensional 
model of the non–dimensional steady–state characteristics of the PH 305 hydrodynamic 
torque converter [6]. These calculation results were compared with the ones obtained with 
the ANSYS CFX software [7] and verified by means of experimental investigations [8].

2.  PH 305 Hydrodynamic Torque Converter

The object of this study was a three–element one–phase hydrodynamic torque converter 
named PH 305 with an active diameter of D = 0,305 m. The hydrodynamic torque converter 
had a pump with alternately long and short blades in order to reduce the flow losses. The basic 
data of the PH 305 impellers is given in Table 1.
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Table 1.	 Basic data of PH 305

Rotor Number of blades Angle of blade β [°]
Pump 26 Input 90 output 90

Turbin 26 Input 31.7 output 155.2

Stator 13 Input 70 output 24

The HL 46 mineral oil was used as the working fluid in the PH 305 hydrodynamic torque 
converter. 

The experimental non–dimensional steady–state characteristics of the hydrodynamic 
torque converter PH 305 were performed on a specialized test rig. During the test, the input 
shaft angular velocity ω1 was kept constant. The output shaft angular velocity ω2 was changed, 
so as to obtain the target values of the velocity ratio (0 ≤ik< 1). For each recorded point the 
values of torques were measured on the input (T1) and the output (T2) shafts. During the test, 
the working fluid temperature was maintained constant. On the basis of the measured values 
of ω1 and ω2 angular velocities and T1 and T2 torques, the points coordinates of the non–
dimensional steady–state characteristics of the PH 305 hydrodynamic torque converter were 
calculated by means of the following formulas:
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and presented in Fig. 1.

Fig. 1.	 Test based non–dimensional steady–state characteristics of the PH 305 hydrodynamic torque 
converter: a – the efficiency η and the torque ratio id versus the velocity ratio ik,  

b – the torque coefficient λ versus the velocity ratio ik
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3.  Calculation models of Hydrodynamic Torque Converter

3.1.  One–dimensional model (1D)

The model, which is commonly used in the calculation of the hydrodynamic torque 
converter, is called “the average stream model”. The model assumes that the flow in the 
working space of the hydrodynamic torque converter is replaced with a single stream flow on 
the mean flow path. The parameters of the single stream are treated as the average parameters 
of all streams. This replacement allows to deriver calculation formulas on the basis of a limited 
number of parameters, without taking into consideration all dimensions of the hydrodynamic 
torque converter working space. For this purpose, the introduction of further assumptions is 
as follows [1, 2]:

▶▶ the fluid flow is constant;
▶▶ the inlet and outlet angles of the fluid flowing in the channels are the same as the blades 

angles;
▶▶ the friction flow losses in the channels depend on the relative velocity of the fluid flow;
▶▶ the impact flow losses linearly depend on the impact angles;
▶▶ the inertia of the fluid flowing in channels is added to the inertia of the pump and the 

turbine, respectively; 
▶▶ the vortex flow occurs in gaps between the pump, the turbine and the stator; 
▶▶ there are no volume losses of the fluid;
▶▶ physical properties of the fluid do not depend on the pressure but depend on the 

temperature;
In order to obtain equations for the calculation of T1 and T2 torques on the basis of ω1 and ω2 

angular velocities, the absolute flow velocity c of the average stream is projected on two planes:
▶▶ the first one passes through the axis of shaft rotation as the meridional speed cm, 
▶▶ the other one is perpendicular to the axis of shaft rotation as the peripheral velocity cu. 

Three equations are formulated in the following way: two moment–of–momentum 
equations and the power balance for the hydrodynamic torque converter. The power balance 
follows from the principle that the net power supplied by the input shaft of the hydrodynamic 
torque converter is equal to the dissipated power [1]. The dissipated power includes the disc 
impellers friction, the bearings and the seal friction. The angular velocities of the pump ω1 
and turbine and the volumetric flow rate Q are the independent variables in this equations. 
The values of T1 and T2 torques obtained from the equations solving, together with the values 
of ω1 and ω2 angular velocities are used for the calculations of point coordinates of the non–
dimensional steady–state characteristics by means of formula (1). The low accuracy of the 
average stream model results mainly from simplifying assumptions. On the other hand, the 
simplicity of the model equations is particularly useful when the calculations are repeated 
a number of times, for example during optimization. In addition, this model is helpful when 
the working space geometry of the hydrodynamic torque converter is not fully determined.
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3.2.  Three –dimensional model (3D)

In order to enhance the calculations accuracy of the non–dimensional steady–state 
characteristics of the PH 305 hydrodynamic torque converter, a  three–dimensional model 
of the fluid flow was used. This model was based on the Navier–Stokes equations describing 
three–dimensional fluid flow [9, 10]. The commercial ANSYS CFX program was applied for 
the numerical calculation of the model. The program allowed to create additional equations 
for the turbulent flow in the hydrodynamic torque converter working space based on the 
Navier–Stokes equations. The turbulence should be taken into account when internal forces 
acting on the fluid molecule are significant in comparison to viscous forces [10]. Before 
numerical calculations of the non–dimensional steady–state characteristics of the PH 305 
hydrodynamic torque converter, the ANSYS CFX option called “k–ε” was selected. The 
first parameter k described the turbulent kinetic energy and the second one ε described the 
turbulent dispersion. The Reynolds Number, defined as the ratio of inertia forces to viscous 
forces within the fluid, which determines turbulent flow was chosen as 4∙103. 

4.  Numerical Calculations

4.1.  The average stream model calculations

Before the application of the model, the parameters describing the mean path of the PH 
305 hydrodynamic torque converter were established by using the estimation methods in 
order to enhance the accuracy of the calculations. The parameter estimation was made on 
the basis of the non–dimensional steady–state characteristics of the PH 305 hydrodynamic 
torque converter obtained from the tests and presented in Fig. 1. Computational programs 
solving equations of the average stream model were written in the Turbo Pascal language. The 
results of the calculations according to the model are shown in Fig. 10.

4.2.  The CFD methods calculations

The first stage of the CFD method application was to define the working space geometry 
of the PH 305 hydrodynamic torque converter. It was done by creating the impellers solid 
models.

Due to the limited power of the computer used for the calculations by means of the 
ANSYS CFX program, the following simplifications were introduced:

▶▶ the short blades in the pump were replaced by long ones,
▶▶ the meridional cross–section was used as the basis for the solid model creation.

On the basis of the PH 305 specification it was established that the working surface of 
each impellers blade was described by a set of 398 points (199 internal and 199 external). 
The CATIA v5 software was used in order to define a data file including the coordinates of 
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these points. The impellers solid models were created on the basis of the data file by using the 
ANSYS Turbogrid Module (ANSYS CFX). The solid models are shown in Fig. 2.

In order to obtain the continuous fluid flows in the working space of the PH 305 
hydrodynamic torque converter, the relationships between the input and the output flow 
surfaces of the impellers were determined by means of the ANSYS CFX Module, Fig. 3.

Fig. 2.	 The PH 305 impellers solid models created by means of the ANSYS Turbogrid Module:  
a – pump, b – stator, c – turbine

Fig. 3.	 Relationship between the input and the output flow surfaces of the impellers: 
a – stator – pump, b – turbine – stator, c – pump – turbine
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The ANSYS CFX Pre Module was used in order to create the PH 305 working space 
by joining the impeller grid structures. However, due to the low processing power of the 
computer which was applied for the numerical calculations the model was not useful. The 
problem was solved by dividing the PH 305 working space solid model into the blade–to–
blade segments by means of the “Periodicity” option. The results of the option application 
are illustrated in Fig. 4.

The boundary conditions and the data for the calculations of the PH 305 hydrodynamic 
torque converter according to the CFD model were established as shown in Table 2.

Table 2.	 The data and the boundary conditions for the calculations of the PH 305 hydrodynamic torque 
converter

Rotor Fluid flow conditions Turbulence
Pump Speed, pressure, rotation axis 40 m/s 0.1 MPa X none

Turbine Speed, pressure, rotation axis 40 m/s 0.1 MPa X k–ε model
Stator Speed, pressure, rotation axis 40 m/s 0.1 MPa X none

Due to the computer processing power limitation, the turbulent flow model “k–ε” was 
applied for the calculations of the fluid flow in the turbine. The turbine was selected because 
of its most complicated shape and a wide range of angular velocity [11].

The calculations were performed by means of the Stationary Model, which was a  part 
of the ANSYS CFX–Pre module for the steady–state working condition of the PH 305 
hydrodynamic torque converter. In the model the time was not an independent value.  
In addition, the “General Connection” option was selected from the menu list of the module 
in order to determine the working conditions of each impeller. As a reference pressure of the 
0,1 MPa value was chosen. 

The main aim of the calculations was to obtain the non–dimensional steady–state 
characteristics of the PH 305 hydrodynamic torque converter on the basis of:

▶▶ one-dimensional average stream model,
▶▶ three–dimensional ANSYS CFX model.

Fig. 4.	 Application of the “Periodicity” option for the blade–to–blade segment  
of the PH 305 working space
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The results of the non–dimensional steady–state characteristics calculations for both 
models are compared in Fig. 5.

It follows from Figure 6  that both 1D and 3D models can be successfully used for 
calculations of the non–dimensional steady–state characteristics of the PH 305 hydrodynamic 
torque converter, because the accuracy of both models is similar.

5.  Conclusions

The accuracies of one–dimensional mathematical models and three–dimensional 
mathematical models used in the design process of the hydrodynamic torque converter for 
calculation of its non–dimensional steady–state characteristics were similar. This conclusion 
confirms the results obtained by other researchers.

The difficulties associated with the calculation of the hydrodynamic torque converter 
characteristics resulted from both:

▶▶ the complex fluid flow phenomena occurring in the short, strongly curved, and rotating 
impellers channels;

▶▶ insufficient processing power of the computer used for the calculations.

Fig. 5.	 The non–dimensional steady–state characteristics of the PH 305 hydrodynamic torque 
converter calculated on the basis of 1D and 3D models: a – torque coefficient λ versus ik,  

b – the torque ratio id versus ik
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