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Abstract

The paper presents an algorithm of volume meshing by using the Advancing Front Technique
(AFT) combined with the Delaunay Triangulation. The tetrahedronization starts with the surface
mesh with elements oriented towards the interior 3-D domain. The main idea is based upon AFT,
with simultaneous points insertion and tetrahedra creation. The characteristic feature of the
approach is the part of AFT in case, when a new calculated point on the current face of the front is
not accepted then the existing point in the front is found to create a new tetrahedron by using
Delaunay triangulation on the given set of points. Additionally the algorithm takes into account
a mesh size function.

Keyword grid generation grid adaptation Delaunay triangulation advancing front technigue
geometric modelling

Streszczenie

Artykut zawiera podstawowe definicje i wlasiwopodziatu Dirichleta, wielécianéw Voronoi oraz
triangularyzacji Delaunaya. W dalszeje¢a@ przedstawione astwierdzenia Delaunayactace

podstaw algorytmu triangularyzacjiatzacego metody frontowe z triangularyzadpelaunaya.
Nastpnie przedstawiony jest algorytackacy triangularyzag Delaunaya z metadpostpujacego

frontu. Artykut kaiczy punkt w wynikami numerycznymi w postaci graficzne;.

Stowa kluczowegenerowanie siatekadaptacja triangularyzacja Delaunaya metoda posgt
pujecego frontymodelowanie geometryczne
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1. Introduction

The purpose of the paper is to describe a method of grid generation for 3-D domains.
The problem has an important role in finite element applications. According to generation
methods, we have the following classification:

— structured grid generation techniques,
— unstructured grid generation techniques.

Generation of structured grids takes less computer time, but the range of geometries
is restricted. The only possibility to control the size of the meshes is to place points over the
surfaces, and then to fix the height of every tetrahedron.

In the case of unstructured volume grids, if the meshes generated over the surfaces have
the required sizes, then by using the Advancing Front Technique the placement of new
points can be controlled. Additionally, the Advancing Front Technique gives the possibility
of tetrahedronization of complex geometries [14]. Unfortunately, the algorithms of
generation of unstructured grids are much more complicated. The program’s performance
is much more time consuming. However, when the Advancing Front Technique is com-
bined with Delaunay triangulation, then very neatly looking meshes can be obtained. These
methods have been investigated by Lo, George, Frey, Borouchaki, Wang [2, 19].

The presented here approach is based mainly upon AFT with simultaneous points
insertion and triangulation [7, 8], but when different parts of the front "meet" themselves
and the point to be inserted at this time is not accepted, then on the considered triangle
of the front the tetrahedron is built by using as a lacking vertex the point from the front.
It is done by using the idea of the Delaunay triangulation.

Unstructured grid generation is connected with the creation of a mesh on the boundary
of a domain [13, 19], i.e. in this case, a closed surface or a disjoint union of surfaces being
the boundary of the domain. If the domain is topologically and geometrically complicated
the problem of surface grid generation becomes more complex.

The paper consists of 10 sections. Sections 1-4 contain definitions and theorems about
Voronoi tesselation and Delaunay triangulation. The author presents only those proofs,
which are done originally by him. The presented here theory gives the necessary knowledge
on the subject not known in the literature of this form with a strict mathematical approach.
Sections 5-9 contain the data structure and the algorithm of volume meshing. Section 10
presents numerical results. The proposed approach and performed computer code give
(in comparisons with others, for example [17, 19, 15]) the possibility of adaptation [9]
by appropriate mesh size function modification. In the computer code a mesh size function
is defined as a routine.

The new elements of the paper are:

— the method of point creation over a chosen face of the front for a new tetrahedron
insertion,

— the algorithm of choosing points of the front for the sake of a new element creation,

— taking into account a mesh size function,

— an auxiliary test for checking front-face intersection,

— anew data structure, own computer code and own numerical examples,

— the form of the theoretical approach on the Delaunay triangulation.
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2. Anintroduction to simplexes

At this point the principal information about simplex and its properties are introduced.
More advanced material can be found in the [16] paper.

It is assumed, that we have a systemnot (1) pointsPg, Py, ..., P, in the considered
n-dimensional space, which do not lie in any hyperplane.

Definition 1. A simplex S defined on the set of poRg<P, ..., P, is the set of points

S=PP.. R, ={P=Z)\iPi D A=L N >0} 1)
i=0 i=0

The number n is called its dimension.

In the case, when = 2 we have 3 point®,, P;, P, not lying on one straight line.
The simplex de.ned on this set is a triangle.

If n = 3 the simplex with its vertices placedRat P, P,, P; not lying in one hyperplane
determines a tetrahedron with vertices located at these points.

Definition 2. CoeffiecientsAo, A1, ..., A, are called barycentric coordinates of the
P=" AP.
i=0
It is easy to verify that barycentric coordinates are uniquely determined, thus the
following lemma can be proved:

Lemma 1. If the system of poin®, Py, ..., P, does not lie in one hyperplane iR", then
the system of the vectdPgP,, PoP,, ..., PoP, is linearly independent

Fig. 1. Partition of a simplex into subsimplexes
Rys. 1. Podziat sympleksu na podsystemy

Let us assume that in the considenedimensional space there is a given set of points
Po, Py, ..., Pn, which do not lie in one hyperplane. The following definition defines
subsimplexes which construct the boundary of a simplexdimensional space.

Definition 3. The following set

k k
I:ijol:?l'"l:)ik :{P:Z)\jpij :Z)\j :1’ )\j >0 (2)
j:O ]:O

is called the face (edge) of the st¥e k< n of the simplexS = PyP;P; ... P,.
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Additionally, the sePq, Py, ..., P, of points is included in faces (edges). The following
formula is true [5, 16] (figure 1):

s=J U RR-R 3)

k=0 a={igig,...ix}
where {o, i1, ..., I} is a (kK + 1) — element combination from the set {0, 1, 2,n},.,and
S means the closure of tise

Remark 1. Because all the components of the formula (3) are open sets in the topology
induced in an appropriate k-dimensional hyperplane (including vertices of the simplex),
so none of the components can be omitted, and all of them are disjoint.

For example, fon = 2 we have a simplex being a trianglgP.P, (figure 1) and its
edges are simplexeB,P,, PoP,, PiP,, and certain point®, P,;, P, are 0-dimensional
simplexes. Figure 1 illustrates the disjointness among: the triangle, its sides and its vertices.

n+1
In a general case, we ha\(e: N J =n+1(n- 1)-dimensional faces.

4 . .
J =6 |-dimensional

n+1l
For example, forn = 3 we have four faces ané 2 J=(2

4
simplexes (edges) ar{dlj 0-dimensional simplexes (vertices).

2.1. Triangulation of arbitrary system of pointsIR

Let us assume that there is a givenRBet {P,, ..., P} of points in IR" satisfying

the following condition:[0i # j for i, j = 1, 2, ...,m and not lying in one hyperplane.
The following de.nition is introduced:

Definition 4. A set of simplexes (triangleq‘)l’i}i'\iT1 in n-dimensional space is called
a triangulation of a sep, if:

. Ne—

0] Uilei —is a convex set

(i) All the vertices of the triangles belong to theBet
(i) Every pointPi,i =1, ... mis a vertex of at least onk, for 1 < k< Ny,

(iv) Oizji,j=1,2,..Ng: TiﬂTr = 0.

It can be proved that so de.ned triangulation .lIs the convex hull of tie set
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3. Dirichlet Tesselation

We assume that there is given a set of pdwts R", wherei = 1, ..,N; P; # P,
fori,j =1, 2,...N,i#]; and that these points do not lie in one hyperplane. Let us introduce
the following definition [4]:
Definition 5. The Voronoi set associated with the pdtptfori = 1, ...|N, is called the set
Vi ={xOR": [x-R[ <[x-Pj| 0 =12...N, j #i} )
where

n

IX| = Z>f OX = (%,...%,) O R" (5)

i=1

The following lemma is connected with Voronoi polygons properties and can be proved
by standard algebra tools.

Lemma?2. Let A BOR" A#B,

U={xOR": [x-A|=|x 8|} ©)

i . . A+B
then U is a hyperplane with normak= AB and pointC :TDU.
The following theorem describes the properties of Voronoi files:

Theorem 1. LetP = {P; :i = 1, ...,N} (N may be equal to infinity) be a set of pointsif,

then Voronoi files have the following properties
. - N n . _ _
0 Vi _ﬂjzljii{XD R': |x Pi"<||x Pi”}'
(i) V, are open sets,
N —

(iii) Uj—lvj = R", i.e. Voronoi sets fill the whole n-dimensional space

(iv) The boundary of Voronoi files consists of a finite number of sets obtained as the result
of an intersection of hyperplanes with halfspaces, what means that every Voronoi file
is a polygon.

(v) Voronoi polygons are disjoint

(vi) Voronoi polygons are convex sets.

Proof:
(i) The proofis a direct consequence of the de.nition number 5,
(i) The set{xOR": ||x—Pi||<||x—Pj||} fori,j =1, ..,N,j #iis an open set as an
inverse image of the interval ;- 0) through a continuous mappirf¢x)= |k — Pj|| —
— |k = PRj||. A Voronoi polygory; is a finite intersection of files of this type. Because

the intersection of finite number of open files is an open set it means that the point (ii)
is proven.
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N — N —
(iii) It is obvious thatU_ Vi o R". We will prove thatR" 0 U V. Letx [ IR" and:
i= i=

(iv)

v)

(vi)

x =R = mifx - R x ~Pyl...Jx~Py[}, for some kO, ... Np (D)

as the finite set has a minimum, [po- P || <[x - Py for O0j = 1, ...,N, j # k. Because
the closure of an intersection of finite sets equals to the intesection of their closures
and with respect to the point (i) we havetlV,, what proves (jii).

This point follows from the de.nition 5, lemma 2, formula of the point (i) and from
the following formula describing the boundary of the intersection set:

(A B=(AnaB| J(B)naA) (8)

whered(A) is the boundary oA, and A denotes the closure 6¢
On the contrary, it is assumed thatd V; n V;, for somd, j O {1, 2, ...,N}, i #], also
x O0V; andx O V,. From the first relation and the definition 5 it follows that:

Ok=1..N, k#i:|x=R[<|x =R ©

It means thafix — B <|)x - B

Because of symmetry, by interchanging i with j we analogously obtain:
||x - P; || <|)x =R The first inequality denies the second one.

From the point (i) we have:

N
V= )H;, where H, =(XOR": (Ax,n)>0 (10)
j=1

As the intersection of convex sets is a convex set, it is enough to prove, thatHhe set
is convex. Lei,y O H; fori =1, ...,.N. We will prove that\x + pyy O H;asA + p =1
andA, p= 0. From the above assumptions we have:

A(Ax,n)=0 andu(Ay,n)=0 (12)
what leads to: (A(\x),)=0 and (A(uy),n)=0 (12)

Adding the inequalities (11), (12), and from the fact that at least one of them is sharp
(A + p =1), eventually we obtainA(Ax + py), n) > 0, what means thak + py 00 V,.

4. A system of pointsin a space and the " walking sphere"

The following lemmas and theorems are connected with the infinite set of poiRS in

which are the vertices of simplexes [5] covering the whole space. In the 2-D case it will
be a family of triangles, but in the 3-D case, it is a family of tetrahedra. The assumption that
the points are the vertices of a tetrahedra is to ensure the "uniform” overspreading of points
in the whole space. It is easy to check that such a family is countable. The following lemma
can be proved:
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Lemma 3. Exactly one sphere passes through h points(in R"), which do not lie in one

hyperplane.
It is easy to prove the following lemma:

Lemma 4. The common part of two intersecting spheres lies in a uniquely determined
hyperplane

The purpose of the paper is to present the Delaunay idea [4, 17], which is called the idea
of an empty sphere, i.e. the sphere that does not have in its interior any points from the
considered set. Such a sphere walking in a space with varying radius and center touches
(n + 1) points, which determine a simplex. This idea is the foundation of triangulation
methods [6, 19].

Definition 6. The difference between the square of the distance from a sphere center and
a given point and the square of this sphere radius is called the power of the point with

respect to a sphere iR".

Remark 2. In the case of a plane the power of a point with respect to a circle is the square
of the line segment of tangential line to the circle passing throughout the point and
determined by the point and the point of tangency.

Theorem 2. (I Delaunay theorem) By the following assumptions

() Let T={T}2, be a family of simplexes filingR"i.e. R =U:°_1'Fi O #j
Ti N Tj =0

(i) An arbitrary bounded nonempty set has common points with finite number of
simplexes fronT,

(i) Let P ={ R};Z, be the set of all vertices of all symplexes from the family

(iv) Let Ky indicates the ball passing throughout+nl vertices of the simplex I R",
we have the following conclusion:
OTi, T O T Ky, does not contain vertices of ifi its interior (and vice versa), if and
only if OT;, T; O 7 that satisfy the conditionT, n T; = {(n —1)-dimensional simplex}
Ky, does not contain vertices ih its interior (and vice versa). (We say then about
mutual Delaunay position)

Proof can be found in [4].

Definition 7. The system of poin8= {S, ..., S} O P OIR" has a singular placement,

if k> n + 1, all of its points belong to a sphere IR" and the sphere does not contain
any points from the sét.

Definition 8. A set of points? OIR" is called singular, if there exists a subsystem with

singular placemens$ O P, otherwise it is called nonsingular.

Remark 3. If a system of points in thé&R" space is singular, then it can be transformed
into a nonsingular system by choosing a linear mapping "infinitesimaly" differing from



110

the identity. It means that by a "small* movement of points in a singular system it is
possible to turn this system of points into a nonsingular one.

Indeeed, if we add to a unit matrix representing an identity matrix an apriopriate matrix
(such a matrix exists) with its norm close to zero, then the system of points after this
transformation will not be singular. It follows from the fact that linear mapping does not
keep points on the sphere.

Further, we will assume that we have to deal with nonsingular systems of points.
At present, the definition of the infinite system of points "uniformly” distributed over the
space will be provided.

Let the system of point® be a nonsingular system of poiis] R", being the vertices
of simplexes, closures of which coveR". Additionaly, it is assumed that in every

bounded set there is a finite number of points frémn Taking into account these
considerations the triangulation procedure will be as follows:

a) Starting from an arbitrarily chosen poidt] P we can find poinP' [0 P, such that the
lowest ball K with a spherk containing segmer®P’ has no other points frof in its

interior. By increasing the radius of the spherso as to make poing P' 0 L we get
the next pointP” O L. We continue the procedure till the moment, when we obtain
(n + 1) points fronP on theL and none in th&

b) Let us denote bWV, a simplex defined by thosa ¢ 1) points. Such a simplex exists,
because considered points do not lie in one hyperplane. Otherwise, it would be possible
to augment the radius (keeping these points on the sphere) and ta find) (points

lying on it, but it would deny the nonsingularity of the sysfém

¢) By choosing any from then(+ 1) faces ofW, and moving the center of the sphere,
the ball passes throughout the verticesVdf and "extending it" into the exterior

of the chosen face, but keeping the vertices of the face on the sphpaiaté fromP)

till the moment of "catching" a point frof — a ball is obtained. The obtained ball does
not contain in its interior any points belongingRoIts sphere passes througdth € 1)
points from?P. The points define the simplai,. The procedure is kept going till all
points of P become the vertices of at least one of all obtained simplexes.

Definition 9. The obtained system of simplex{a‘ﬂ&lj}‘}ll is called the Delaunay
triangulation of the sep.

Theorem 3. Let7 = {T; : i =1,...,0} be the family of simplexes satisfying the conditions:
An arbitrary bounded set itR" contains a finite number of simplexes fr@m
O, TO07 iz T[T, =0, Uilei = R".
P={P;:i=1, ...,»} is the set of vertices of the fanily

o= {TiD 1i=1,...,0} is the set of Delaunay simplexes constructed on the. set
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The following theses are valid:
® =D _pn
a) Uilei =R,
b) 'TiDﬂij is an empty set or a simplex of the size smaller than n.

Proof:
; ; ® =D n
a) It is obvious than=1Ti OR"

Let us take an arbitrary point 0 R". If x is a vertex of one'l'iD then

x O U,mlfiD, otherwise there is an empty ball with a radius 0 that contain.
i=

In the next step we will augment its radius, while not changing its center, till we meet
a vertex. Keeping that vertex on the sphere we move the center of the ball, so as
the pointx leaves on the sphere till catching the next vertex on the sphere. Continuing

the procedure we obtain an empty ball with+1) points fromP lying on its sphere.

If the simplexT; denoted by { + 1) points contain, then the proof is finished.
Otherwise, we do as follows:
We find the 6 — 1)-dimensional face closestxolLet T, denotes the simplex having

the face common witf;. By the similar reasoning — ¥ O T, the proof is finished,
otherwise by using the same rule we find the simlex

The process must be stopped after a finite humber of steps, because according to
the beginning assumption, in every bounded set there is a finite number of vertices from

P andx must belong to sonig.
b) Suppose, we have two arbitrary different simplei‘é’s T2D from the set7. Let K;
and K, be the spheres passing through the vertices oﬂ'ﬁeTzD. If K; andK, are
disjoint or tangential, thef,” and T, are disjoint too.
In the case, Wherizlr]K2 #0 andK; or K, is not tangent, by applying lemma 4
we conclude that the common part uniquely denotes the hyperplane containing
Klﬂ K,. Every one of the simplexeg” and T, has its vertices on one side of the

hyperplane, otherwise the condition of the "empty ball" would not be satisfied. Because
the system is nonsingular, there are no more thafi those points. It is like this,
because on the common part contained in the hyperplane there are atgeasds,

which form a simplex, whose size does not exeeed

Remark 4. The introduction of the notion of the family of simpleXas used only in the

dedifinition of points uniformly distributed over the whole n dimensional space, and it will
be applied in this sense in the next theorem.

Theorem 4. (Il Delaunay theorem)
Let7={T;:i=1, ...,0} be the family of simplexes satisfying the condition

1. OT,T,07 i# ] 'ﬁﬂTj=0,
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N

" T =R,
i=1
3. Tp = {‘I’iD ;i =1,...,0} is a set of Delaunay simplexes

4. P={P;:i=1, ...,»} is a set of the vertices of those simplexes (we assume that the set
is nonsingular)

5. {V,:i=1, ...,0} is a Voronoi set.

6. Let Q {Q; :i =1, ..., o} be the set of the vertices of Voronoi polygons and let for each
i=1,...,0:W={V:Q; 0V}
From these assumptions we have:

a. A set of point$ Pk}k:l 0 P, which describes Voronoi polygons from the set®itains
an "empty" ball (not containing points frof) with the center irQi,

b. L =n+ 1and the point{ Pk},';:1 describe Delaunay simplex, where L is the number
of elements of the set.W

Proof can be found in [4].

5. Domain representation and data structure description

In this section the following notations will be used:
F — a face,
T — a tetrahedron.

It is assumed that there exists a generated mesh on the boundary surface of the three
dimensional domaif. The boundary surface is represented by the following sets of data:

Po={P;:i=1, ...,N, } —the set of boundary points,
Fo={Fi:i=1,...,Ns} - the set of triangles on the boundary surf@ce

For the sake of data structure description every boundary triangle is represented by three
boundary points fronP,. In other words, an arbitrary surface element is represented as
a triple of integer numbers, being the number of its vertices.

Furthermore, for the representation volume mesh the following sets are introduced:

F={F :i=1, ..,N;} - the set of triangles being the faces of the tetrah@dra

T={T,:i=1, ..,N;} - the set of the tetrahedra fillir{@.

In the data structure every tetrahedron is represented by its numbers of the four faces.
Additionally, the following sets necessary for the algorithm representation are introduced:

B — a generation front, at the start consisting of boundary faces,
£ — the set of edges of B.
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6. A boundary surface orientation

A single triangle on the boundary surface can be oriented as every orientable surface
by its normal. According to the general algorithm of tetrahedronization it is necessary
to make an orientation with normal towards interior of the donfainThe applied
algorithm is based on the papers of [11, 12].

It is based on establishing the orientation of the arbitrarily chosen boundary face. Then
orientations of the rest of the surface triangles are adapted progressively to that one. For the
algorithm realization the Advancing Front Technique is used (AFT).

7. Theorientation of an arbitrary surfacetriangle

If we have an arbitrary triangle it is checked whether the normal to the face determined
by its orientation is inward or outward the dom@nThe half-line predicted by this normal
is led from the barycenter of the triangle. If the half-line intersects the boundary surface the
odd number of times, then the normal is inward the domain; otherwise it is outward.

As it was previously mentioned, the triangle is represented by the sequence
of its three points numbers, i.€.= kim. The change of th& orientation relies on the
transposition of any of the pairs of numbers from the lsdf {n}. For example, in this case
the following change can be dorkém — kml.

8. A unification of all the boundary triangles

To adapt the boundary surface to AFM for three-dimensional domain triangulation
it is necessary that every triangle of the surface would be directed inward the ddmain
(what is the direction of the normal vector). The closed external surface should have all the
triangles directed inward the domain surrounded by the surface, thus internal closed
surfaces representing holes, outward the volume surrounded by them.

The algorithm of unification of triangles orientations is due to one closed connected
boundary component. It is assumed that there exists a trifiggleith a requested
orientation. The presented method is the modification of the method from the paper of [12],
and is based mainly on AFM. The initial front consists of three edges of the trigjgle
then all the triangles, which have as an edge one of the frontal edges are checked and
if necessary then reoriented. The frontal edges that are adjacent to the verified triangles are
removed from the front and the adjacent edges of those triangles are added to the front. This
process will be repeated until all the triangles are verified.

The modification of the algorithm from the work of [12] is based on this that the
process continues till all the faces are reviewed, contrary to the condition when the front
becomes an empty set. This modification allows to uniformize as well the open surfaces.
Both these algorithms have the same computational complexity.

The summary of the algorithm for the uniform front orientation is as follows:

Algorithm 1.
1.U ~ 7
2.U <« U\Y{Fq.
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3.Find the set M :LﬂUFD’Z’ F.
b

4. 1F#Mis an even nunber) THEN change the orientation of
To=(.m.ng) onto T — (.ng.ng)
ENDI F
5.Take as the initial front F'the set of the edges T,
F=(P€P€,PrgPrhz,Pnan%).
6.1 F U #0) THEN

choose the edge 10T, et | =PQ
ELSE

Fi ni sh the unification process.
ENDI F

7.Find such a triangle FOUthat the vector I,
t aken as an edge woul d be the edge of F,
let F= Pranlanlg.
8.IF (vector | = Pannlz al = Pann13 Ol = Pnan%) THEN
change the orientation of F, i.e. F « (nyngny),
ENDI F
9.N -\{lI}.
10.U « U\F}L
11. Modify thefront
(@1 F (1=P,R, 0O1=R, R, ) THEN
[ T J(PoPn, PP}
ENDI F.
()1 F (1=R,R, O =P, R, ) THEN
M T PPy, PPy
ENDI F.
()1 F (1=P,R, OI=R,PR,) THEN
r - ru Pnzpnl’ l:)nlpnz}
ENDI F.
12.go t 06.

D ___p(©

N A

p(A)

A B
Fig. 2. A new point creation over the fagBC

Rys. 2. Tworzenie nowego punktu nad tebggmABC
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9. The algorithm of volume tetrahedr onization

Using the notations from the previous point the algorithm 3-D domain triangulation can
be presented as follows:
Algorithm 2.
1.Adapt the orientation of the boundary faces inward the
domain Q, according to the algorithm from the previous
poi nt .
2. f — fb.
3.Find all the edges of the boundary faces.
4.8 « Ty

5.1 F (B#0) THEN
(@) Choose the last triangle fromthe front B,
| et F=ABC,

(b) Find point Dthat is on the left
side of F (which has the inward direction) (see Fig. 2)
and which satisfies the follow ng condition:

IIADII =p(A), |BDII =p(B), [EDI| =p(C). (13)

(c) I F edges AD, BD, CD do not intersect the froi,
and the triangles ABD, BCD, CADdo not intersect

all the frontal egdes B, i.e.the set,and

dist(D, 5) > 2A) +P(B) *p(C) (14)
302
THEN
i.AddDto the list of internal pointsPand triangles
F,=ABD, F,=BCD,F;=CAD, to the list of trianglesT.
ii.Add tetrahedronT=FF,F,F;to the list T
of the tetrahedra.
iii.Update the front B, i.e. renove FfromBand add
the faces of the trianglesF F,Fs3toB.
iv.Update the set of the frontal edges & by addi ng
the foll owi ng edges AD, BD, CD.
OTHERW SE
i .By using the Delaunay condition find the point DOB.
Create a tetrahedron which woul d have the face F=ABC.
ii.RenoveF fromB.
iii.Fori=1,2,3.
| F(F OB) THENr enmove F;fromB
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OTHERW SE

AddFto the list of triangles and to the front B
ENDI F

End the loop i.

iv.Modify the set &of the frontal edges.
Let E;=AD, E,=BD, E; =CD.
Fori=1,2,3
IF(EO&) THENadd Eito the set &
OTHERW SE
| F(Eiis not an edge
of the newy created faces) THEN
renove E;fromthe set &,.

ENDI F
ENDI F
End the loopi.

ENDI F

OTHERW SE
Fi ni sh the tetrahedronization.
ENDI F

9.1. The auxiliary test

With respect to the newly generated points it is nhecessary to check, if they could be
accepted. If the poird was created over the fad8C (Fig. 2) to form the tetrahedron with
the verticedA, B, C, D it is necessary to check whether the fatB®, BCD, CAD intersect
the front.

In the papers of [1, 7] the intersection of the tetrahedron faces with every face of the
front is also verified.

In this paper the intersection of edg&3, BD, CD with the frontal faces is performed
and as well the intersection of the front edges with the fa&#; BCD, CAD. It easy to
show that the condition ensures no intersection of the newly obtained tetrahedron with
the front and such an approach is less time consuming.

Additionally, a test is performed, whether the pdints not too close to the front and
the following inequality is taken into consideration:

dis(D,) = dist(D, p) > 2D *P(P) (15)
3x2
where:
r — the generation front,
P — a point belonging 1o and realizing the distanéto I,

dist(D, I') — a distance fror® toT".
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9.2. Forming a tetrahedron by the Delaunay method

When the poinD on the faceABC is not accepted to form a tetrahedron with vertices
A, B, C, D, then the point from the front is taken to form a tetrahedron which now would
have vertice#\, B, C, and the point from the front. The algorithm has the following steps:
1. Find the balBagcp passing through the poings B, C and with a radius equal to:

; = P(A+p(B) +p(C)
3

2. Find the seS§ of candidate points from the front belonging to the Balcp and lying
on the right side of the plafiésc passing through the fagd3C.
3. In the seBthe following relatiorR is introduced:

(16)

XR iff YO BageyOX, YOS (17)

4. The relationR is the equivalence relation, not an ordering relation, as every two

elements irS are in relation (are comparable), so theZsef the points fronSis found
that satisfies the condition:

OXOZXRYOYOS (18)

5. In the seF find the pointD which satis.es the auxiliary tests.
6. Form a tetrahedron with the vertid®sB, C, D and add it to the list.

N
\

Fig. 3. A cube filled with 4188 tetrahedra, 10629 faces and 1276 points
Rys. 3. Prostopadician z 4188 czworgianami, 10629 tréjtami, 1276 punktami

10. Numerical examples

In this section some examples of the tetrahedronization of 3-D domains with the mesh
size function are presented. The examples illustrated here are obtained in the way that those
tetrahedra of triangulated 3-D domain are shown, whose barycenters lie on one side of
a given plane.

In figures 3, 4 the tetrahedronized cube with the mesh density function given by the
formula (19) is presented.

2 > >
s 033\/()(_%] +(y_%j +(Z'%j 19)
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In figures 5, 6 the domain obtained from the union of a cylinder and a part of sphere
filled with a tetrahedra is presented. The size function is given by the formula (20):

pP(x VY2 = O'W“LOOZ if r<10

0.2 otherwise

(20)

Fig. 4. The meshed domain from figure 3 with an another sharing plane
Rys. 4. Striangulowany obszar z rysunku 3 ziplaszczyza dziehca

o }ﬂiﬁ%

"“ﬁ'ﬁ'{""’wﬂ’
AVAVAVASSNA WY

Fig. 5. A cylinder united Wlth a part of the sphere with a symmetrical sharing plane —
80401 faces, 6712 points and 39467 tetrahedra

Rys. 5. Walec z e&cia kuli z symetrycza ptaszczyza dziekca — 80401 trojktow,
6712 punktoéw i 39467 czwofoiandw

N - ANE
v /1 AL %
% < —
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No R /\/K SN ENRNERENND

Fig. 6. The tetrahedronized domain from figure 5 with an another sharing plane
Rys. 6. Striangulowany obszar z rysunku 5 ziplaszczyza dziehca
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