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1. Introduction 

The purpose of the paper is to describe a method of grid generation for 3-D domains. 
The problem has an important role in finite element applications. According to generation 
methods, we have the following classification: 
– structured grid generation techniques, 
– unstructured grid generation techniques. 

Generation of structured grids takes less computer time, but the range of geometries  
is restricted. The only possibility to control the size of the meshes is to place points over the 
surfaces, and then to fix the height of every tetrahedron. 

In the case of unstructured volume grids, if the meshes generated over the surfaces have 
the required sizes, then by using the Advancing Front Technique the placement of new 
points can be controlled. Additionally, the Advancing Front Technique gives the possibility 
of tetrahedronization of complex geometries [14]. Unfortunately, the algorithms of 
generation of unstructured grids are much more complicated. The program’s performance  
is much more time consuming. However, when the Advancing Front Technique is com- 
bined with Delaunay triangulation, then very neatly looking meshes can be obtained. These 
methods have been investigated by Lo, George, Frey, Borouchaki, Wang [2, 19]. 

The presented here approach is based mainly upon AFT with simultaneous points 
insertion and triangulation [7, 8], but when different parts of the front "meet" themselves 
and the point to be inserted at this time is not accepted, then on the considered triangle  
of the front the tetrahedron is built by using as a lacking vertex the point from the front.  
It is done by using the idea of the Delaunay triangulation. 

Unstructured grid generation is connected with the creation of a mesh on the boundary 
of a domain [13, 19], i.e. in this case, a closed surface or a disjoint union of surfaces being 
the boundary of the domain. If the domain is topologically and geometrically complicated 
the problem of surface grid generation becomes more complex. 

The paper consists of 10 sections. Sections 1-4 contain definitions and theorems about 
Voronoi tesselation and Delaunay triangulation. The author presents only those proofs, 
which are done originally by him. The presented here theory gives the necessary knowledge 
on the subject not known in the literature of this form with a strict mathematical approach. 
Sections 5-9 contain the data structure and the algorithm of volume meshing. Section 10 
presents numerical results. The proposed approach and performed computer code give  
(in comparisons with others, for example [17, 19, 15]) the possibility of adaptation [9]  
by appropriate mesh size function modification. In the computer code a mesh size function 
is defined as a routine. 

The new elements of the paper are: 
– the method of point creation over a chosen face of the front for a new tetrahedron 

insertion, 
– the algorithm of choosing points of the front for the sake of a new element creation, 
– taking into account a mesh size function, 
– an auxiliary test for checking front-face intersection, 
– a new data structure, own computer code and own numerical examples, 
– the form of the theoretical approach on the Delaunay triangulation. 
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2. An introduction to simplexes 

At this point the principal information about simplex and its properties are introduced. 
More advanced material can be found in the [16] paper. 

It is assumed, that we have a system of (n + 1) points P0, P1, ..., Pn in the considered  
n-dimensional space, which do not lie in any hyperplane. 
 

Definition 1. A simplex S defined on the set of points P0, P1, ..., Pn is the set of points: 
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The number n is called its dimension. 
 

In the case, when n = 2 we have 3 points P0, P1, P2 not lying on one straight line.  
The simplex de.ned on this set is a triangle. 

If n = 3 the simplex with its vertices placed at P0, P1, P2, P3 not lying in one hyperplane 
determines a tetrahedron with vertices located at these points. 
 

Definition 2. Coeffiecients λ0, λ1, …, λn are called barycentric coordinates of the 
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It is easy to verify that barycentric coordinates are uniquely determined, thus the 
following lemma can be proved: 

 

Lemma 1. If the system of points P0, P1, ..., Pn does not lie in one hyperplane in ,nRI  then 
the system of the vectors P0P1, P0P2, ..., P0Pn is linearly independent. 
 

 
 

Fig. 1. Partition of a simplex into subsimplexes 
 

Rys. 1. Podział sympleksu na podsystemy 
 

Let us assume that in the considered n-dimensional space there is a given set of points 
P0, P1, ..., Pn, which do not lie in one hyperplane. The following definition defines  
subsimplexes which construct the boundary of a simplex in n-dimensional space. 
 

Definition 3. The following set: 
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is called the face (edge) of the size 0 ≤ k< n of the simplex S = P0P1P2 ... Pn. 
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Additionally, the set P0, P1, ..., Pn of points is included in faces (edges). The following 
formula is true [5, 16] (figure 1): 
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where {i0, i1, ..., ik} is a (k + 1) – element combination from the set {0, 1, 2, ..., n}, and  

S  means the closure of the S. 
 

Remark 1. Because all the components of the formula (3) are open sets in the topology 
induced in an appropriate k-dimensional hyperplane (including vertices of the simplex),  
so none of the components can be omitted, and all of them are disjoint. 

 

For example, for n = 2 we have a simplex being a triangle P0P1P2 (figure 1) and its 
edges are simplexes P0P1, P0P2, P1P2, and certain points P0, P1, P2 are 0-dimensional 
simplexes. Figure 1 illustrates the disjointness among: the triangle, its sides and its vertices. 

In a general case, we have: 1
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2.1. Triangulation of arbitrary system of points in nRI  

Let us assume that there is a given set P = {P1, ..., Pm} of points in nRI  satisfying  

the following condition: ∀i ≠ j for i, j = 1, 2, ..., m and not lying in one hyperplane.  
The following de.nition is introduced: 

 

Definition 4. A set of simplexes (triangles) { } TN
iiT 1=  in n-dimensional space is called  

a triangulation of a set P, if: 

  (i) ∪
TN

i iT
1=

 – is a convex set, 

 (ii) All the vertices of the triangles belong to the set P, 

(iii) Every point Pi, i = 1, ..., m is a vertex of at least one Tk, for 1 ≤ k ≤ NT, 

(iv) ∀i ≠ j i, j = 1, 2, ..., NT : ./0. =∩ ji TT  

It can be proved that so de.ned triangulation .lls the convex hull of the set P. 
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3. Dirichlet Tesselation 

We assume that there is given a set of points Pi ∈ ,nRI  where i = 1, ..., N; Pi .≠ Pj,  

for i, j = 1, 2, ..., N, i ≠ j; and that these points do not lie in one hyperplane. Let us introduce 
the following definition [4]: 

 

Definition 5. The Voronoi set associated with the point Pi, for i = 1, ..., N, is called the set: 
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The following lemma is connected with Voronoi polygons properties and can be proved 
by standard algebra tools. 
 

Lemma 2. Let nRI∈BA,    A ≠ B, 
 

 { }BxAxx −=−∈= :nRIU  (6) 
 

then U is a hyperplane with normal n = AB and point .
2

U∉+= BA
C  

The following theorem describes the properties of Voronoi files: 
 

Theorem 1. Let P = {Pi : i = 1, ..., N} (N may be equal to infinity) be a set of points in ,nRI  

then Voronoi files have the following properties: 

  (i)  },:{
,1 ji

nN

ijji RIxV PxPx −<−∈=
≠=∩  

 (ii)  Vi are open sets, 

(iii)  ,
1

nN

j j RIV =
=∪  i.e. Voronoi sets fill the whole n-dimensional space, 

(iv) The boundary of Voronoi files consists of a finite number of sets obtained as the result 
of an intersection of hyperplanes with halfspaces, what means that every Voronoi file 
is a polygon. 

 (v)  Voronoi polygons are disjoint, 
(vi)  Voronoi polygons are convex sets. 

 

Proof: 
 

  (i)  The proof is a direct consequence of the de.nition number 5, 

 (ii)  The set }:{ ji
nRIx PxPx −<−∈  for i, j = 1, ..., N, j ≠ i is an open set as an 

inverse image of the interval (–∞, 0) through a continuous mapping: f(x)= ||x – Pi|| – 
– ||x – Pj||. A Voronoi polygon Vi is a finite intersection of files of this type. Because 
the intersection of finite number of open files is an open set it means that the point (ii) 
is proven. 
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(iii) It is obvious that .
1

nN

j j RIV ⊂
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N

j j
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1
.

=
⊂  Let x ∈ nRI  and:  

 

 { },,...,,min 21 Nk PxPxPxPx −−−=− for some   k ∈ {1, …, N} (7) 
 

as the finite set has a minimum, so Nk PxPx −≤−  for ∀j = 1, …, N, j ≠ k. Because 

the closure of an intersection of finite sets equals to the intesection of their closures 
and with respect to the point (i) we have: ,kV∈x  what proves (iii). 

(iv)  This point follows from the de.nition 5, lemma 2, formula of the point (i) and from  
the following formula describing the boundary of the intersection set: 

 

 ∪ )()()()()( ABBABA ∂∩∂∩=∩∂  (8) 
 

where ∂(A) is the boundary of A, and A denotes the closure of A. 
 (v)  On the contrary, it is assumed that ∃x ∈ Vi ∩ Vj, for some i, j ∈ {1, 2, ..., N}, i ≠ j, also 

x ∈ Vi and x ∈ Vj. From the first relation and the definition 5 it follows that: 
 

 kiikNk PxPx −<−≠=∀ :,,...,1  (9) 
 

It means that .ki PxPx −<−  

Because of symmetry, by interchanging i with j we analogously obtain: 

.ij PxPx −<− The first inequality denies the second one. 

(vi)  From the point (i) we have: 
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As the intersection of convex sets is a convex set, it is enough to prove, that the set Hi 
is convex. Let x, y ∈ Hi for i = 1, ..., N. We will prove that λx + µy ∈ Hi as λ + µ = 1 
and λ, µ ≥ 0. From the above assumptions we have: 

 

 0),( ≥λ nAx and 0),( ≥µ nAy  (11) 
 

 what leads to: 0)),(( ≥λxA and 0)),(( ≥µ nyA  (12) 
 

Adding the inequalities (11), (12), and from the fact that at least one of them is sharp 
(λ + µ = 1), eventually we obtain: (A(λx + µy), n) > 0, what means that λx + µy ∈ Vi. 

4. A system of points in a space and the "walking sphere" 

The following lemmas and theorems are connected with the infinite set of points in ,nRI  
which are the vertices of simplexes [5] covering the whole space. In the 2-D case it will  
be a family of triangles, but in the 3-D case, it is a family of tetrahedra. The assumption that 
the points are the vertices of a tetrahedra is to ensure the "uniform" overspreading of points 
in the whole space. It is easy to check that such a family is countable. The following lemma 
can be proved: 
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Lemma 3. Exactly one sphere passes through n + 1 points (in ),nRI  which do not lie in one 

hyperplane. 
It is easy to prove the following lemma: 

 

Lemma 4. The common part of two intersecting spheres lies in a uniquely determined 
hyperplane. 
 

The purpose of the paper is to present the Delaunay idea [4, 17], which is called the idea 
of an empty sphere, i.e. the sphere that does not have in its interior any points from the 
considered set. Such a sphere walking in a space with varying radius and center touches  
(n + 1) points, which determine a simplex. This idea is the foundation of triangulation 
methods [6, 19]. 

 

Definition 6. The difference between the square of the distance from a sphere center and  
a given point and the square of this sphere radius is called the power of the point with 

respect to a sphere in .nRI  
 

Remark 2. In the case of a plane the power of a point with respect to a circle is the square 
of the line segment of tangential line to the circle passing throughout the point and 
determined by the point and the point of tangency. 
 

Theorem 2. (I Delaunay theorem) By the following assumptions: 

  (i)  Let ∞
== 1}{ iiTT  be a family of simplexes filling ,nRI i.e. ∪

∞

=
=

1i i
n TRI  ∀i ≠ j  

Ti ∩ Tj = /,0  
 (ii)  An arbitrary bounded nonempty set has common points with finite number of 

simplexes from T, 

(iii)  Let P = ∞
=1}{ iiP  be the set of all vertices of all symplexes from the family T, 

(iv)  Let KT indicates the ball passing throughout n + 1 vertices of the simplex T ⊂ ,nRI   
we have the following conclusion: 
∀Ti, Tj ∈ T 

iTK does not contain vertices of Tj in its interior (and vice versa), if and 

only if ∀Ti, Tj ∈ T  that satisfy the condition: =∩ ji TT  {(n – 1)-dimensional simplex} 

iTK  does not contain vertices Tj in its interior (and vice versa). (We say then about 

mutual Delaunay position) 
 

Proof can be found in [4]. 
 

Definition 7. The system of points S = {S1, ..., Sk} ⊂ P ⊂ nRI  has a singular placement,  

if k > n + 1, all of its points belong to a sphere in nRI  and the sphere does not contain  

any points from the set P. 
 

Definition 8. A set of points P ⊂ nRI  is called singular, if there exists a subsystem with 

singular placement S ⊂ P, otherwise it is called nonsingular. 

Remark 3. If a system of points in the nRI  space is singular, then it can be transformed 
into a nonsingular system by choosing a linear mapping "infinitesimaly" differing from  
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the identity. It means that by a "small" movement of points in a singular system it is 
possible to turn this system of points into a nonsingular one. 

Indeeed, if we add to a unit matrix representing an identity matrix an apriopriate matrix 
(such a matrix exists) with its norm close to zero, then the system of points after this 
transformation will not be singular. It follows from the fact that linear mapping does not 
keep points on the sphere. 

Further, we will assume that we have to deal with nonsingular systems of points.  
At present, the definition of the infinite system of points "uniformly" distributed over the 
space will be provided. 

Let the system of points P be a nonsingular system of points P ⊂ ,nRI being the vertices 

of simplexes, closures of which cover .nRI  Additionaly, it is assumed that in every 

bounded set there is a finite number of points from P. Taking into account these 

considerations the triangulation procedure will be as follows: 

a) Starting from an arbitrarily chosen point P ∈ P we can find point P′ ∈ P, such that the 

lowest ball K with a sphere L containing segment PP′ has no other points from P in its 

interior. By increasing the radius of the sphere L so as to make points P, P′ ∈ L we get 
the next point P′′ ∈ L. We continue the procedure till the moment, when we obtain  
(n + 1) points from P on the L and none in the S. 

b) Let us denote by W1 a simplex defined by those (n + 1) points. Such a simplex exists, 
because considered points do not lie in one hyperplane. Otherwise, it would be possible 
to augment the radius (keeping these points on the sphere) and to find (n + 2) points 
lying on it, but it would deny the nonsingularity of the system P. 

c) By choosing any from the (n + 1) faces of W1 and moving the center of the sphere,  
the ball passes throughout the vertices of W1 and "extending it" into the exterior  
of the chosen face, but keeping the vertices of the face on the sphere (n points from P) 

till the moment of "catching" a point from P – a ball is obtained. The obtained ball does 

not contain in its interior any points belonging to P. Its sphere passes through (N + 1) 

points from P. The points define the simplex W2. The procedure is kept going till all 

points of P become the vertices of at least one of all obtained simplexes. 
 

Definition 9. The obtained system of simplexes ∞
=1}{ jjW  is called the Delaunay 

triangulation of the set P. 
 

Theorem 3. Let T = { Ti : i =1,..., ∞} be the family of simplexes satisfying the conditions: 

An arbitrary bounded set in nRI  contains a finite number of simplexes from T, 

∀Ti, Tj ∈ T   i ≠ j   .,/0
1

n

i iji RITTT ==
∞

=∪∩  

P = {Pi : i =1, …, ∞} is the set of vertices of the family T. 

TD = }...,,1:{ ∞=iT D
i  is the set of Delaunay simplexes constructed on the set P. 
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The following theses are valid: 

a) ,
1

n

i

D
i RIT∪

∞

=
=  

b) ∩ D
j

D
i TT  is an empty set or a simplex of the size smaller than n. 

 

Proof:  

a) It is obvious that .
1

n

i

D
i RIT∪

∞

=
⊂  

 

Let us take an arbitrary point x ∈ .nRI  If x is a vertex of one D
iT  then  

x ∈ ∪
∞

=1
,

i

D
iT  otherwise there is an empty ball with a radius r > 0 that contains x.  

In the next step we will augment its radius, while not changing its center, till we meet  
a vertex. Keeping that vertex on the sphere we move the center of the ball, so as  
the point x leaves on the sphere till catching the next vertex on the sphere. Continuing 
the procedure we obtain an empty ball with (n + 1) points from P lying on its sphere.  

If the simplex T1 denoted by (n + 1) points contains x, then the proof is finished. 
Otherwise, we do as follows: 

We find the (n – 1)-dimensional face closest to x. Let T2 denotes the simplex having  
the face common with T1. By the similar reasoning – if x ∈ T2, the proof is finished, 
otherwise by using the same rule we find the simplex T3. 

The process must be stopped after a finite number of steps, because according to  
the beginning assumption, in every bounded set there is a finite number of vertices from 
P and x must belong to some Tk. 

b) Suppose, we have two arbitrary different simplexes DD TT 21 ,  from the set T. Let K1  

and K2 be the spheres passing through the vertices of the ., 21
DD TT  If K1 and K2 are 

disjoint or tangential, then DT1 and DT2  are disjoint too. 

In the case, when /021 ≠∩KK  and K1 or K2 is not tangent, by applying lemma 4  

we conclude that the common part uniquely denotes the hyperplane containing 

.21∩KK  Every one of the simplexes DT1  and DT2  has its vertices on one side of the 

hyperplane, otherwise the condition of the "empty ball" would not be satisfied. Because 
the system is nonsingular, there are no more than n of those points. It is like this, 
because on the common part contained in the hyperplane there are at least n points, 
which form a simplex, whose size does not exceed n. 

 

Remark 4. The introduction of the notion of the family of simplexes T is used only in the 

dedifinition of points uniformly distributed over the whole n dimensional space, and it will 
be applied in this sense in the next theorem. 

 

Theorem 4. (II Delaunay theorem) 
Let T = {Ti : i =1, ..., ∞} be the family of simplexes satisfying the condition: 

1. ,/0, ∩ =≠∈∀ jiji TTjiTT T  
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2. ,
1

n

i i RIT∪
∞

=
=  

3. TD = }...,,1:{ ∞=iT D
i  is a set of Delaunay simplexes, 

4. P = {Pi : i =1, …, ∞} is a set of the vertices of those simplexes (we assume that the set  

is nonsingular), 
5. { Vi : i =1, …, ∞} is a Voronoi set. 
6. Let Q {Qi : i =1, …, ∞} be the set of the vertices of Voronoi polygons and let for each  

i = 1, …, ∞ : Wi = }.:{ kik VV ∈Q  

From these assumptions we have: 

a. A set of points ,}{ 1 P⊂=
L
kkP  which describes Voronoi polygons from the set Wi contains 

an "empty" ball (not containing points from P) with the center in Qi, 

b. L = n + 1 and the points L
kk 1}{ =P  describe Delaunay simplex, where L is the number  

of elements of the set Wi. 
 

Proof can be found in [4].  

5. Domain representation and data structure description 

In this section the following notations will be used: 
F – a face, 
T – a tetrahedron. 

It is assumed that there exists a generated mesh on the boundary surface of the three 
dimensional domain Ω. The boundary surface is represented by the following sets of data: 
 

Pb = {Pi : i =1, ..., NP } – the set of boundary points, 
 

Fb = {Fi : i =1, ..., NF } – the set of triangles on the boundary surface Ω. 
 

For the sake of data structure description every boundary triangle is represented by three 
boundary points from Pb. In other words, an arbitrary surface element is represented as  

a triple of integer numbers, being the number of its vertices. 
Furthermore, for the representation volume mesh the following sets are introduced: 

 

F = {Fi : i =1, ..., NF } – the set of triangles being the faces of the tetrahedra Ω, 
 

T = {Ti : i =1, ..., NT } – the set of the tetrahedra filling Ω. 
 

In the data structure every tetrahedron is represented by its numbers of the four faces. 
Additionally, the following sets necessary for the algorithm representation are introduced: 
B – a generation front, at the start consisting of boundary faces, 

E – the set of edges of B. 
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6. A boundary surface orientation 

A single triangle on the boundary surface can be oriented as every orientable surface  
by its normal. According to the general algorithm of tetrahedronization it is necessary  
to make an orientation with normal towards interior of the domain Ω. The applied 
algorithm is based on the papers of [11, 12]. 

It is based on establishing the orientation of the arbitrarily chosen boundary face. Then 
orientations of the rest of the surface triangles are adapted progressively to that one. For the 
algorithm realization the Advancing Front Technique is used (AFT). 

7. The orientation of an arbitrary surface triangle 

If we have an arbitrary triangle it is checked whether the normal to the face determined 
by its orientation is inward or outward the domain Ω. The half-line predicted by this normal 
is led from the barycenter of the triangle. If the half-line intersects the boundary surface the 
odd number of times, then the normal is inward the domain; otherwise it is outward. 

As it was previously mentioned, the triangle T is represented by the sequence  
of its three points numbers, i.e. T = klm. The change of the T orientation relies on the 
transposition of any of the pairs of numbers from the set {k, l, m}. For example, in this case 
the following change can be done: klm → kml. 

8. A unification of all the boundary triangles 

To adapt the boundary surface to AFM for three-dimensional domain triangulation  
it is necessary that every triangle of the surface would be directed inward the domain Ω 
(what is the direction of the normal vector). The closed external surface should have all the 
triangles directed inward the domain surrounded by the surface, thus internal closed 
surfaces representing holes, outward the volume surrounded by them. 

The algorithm of unification of triangles orientations is due to one closed connected 
boundary component. It is assumed that there exists a triangle T0 with a requested 
orientation. The presented method is the modification of the method from the paper of [12], 
and is based mainly on AFM. The initial front consists of three edges of the triangle T0, 
then all the triangles, which have as an edge one of the frontal edges are checked and  
if necessary then reoriented. The frontal edges that are adjacent to the verified triangles are 
removed from the front and the adjacent edges of those triangles are added to the front. This 
process will be repeated until all the triangles are verified. 

The modification of the algorithm from the work of [12] is based on this that the 
process continues till all the faces are reviewed, contrary to the condition when the front 
becomes an empty set. This modification allows to uniformize as well the open surfaces. 
Both these algorithms have the same computational complexity. 

The summary of the algorithm for the uniform front orientation is as follows: 
 

Algorithm 1. 
 

1. U ← Tb. 

2. U ← U \{F0}. 
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3. Find the set ∩∪
bF

FLM
T∈

= .  

4. IF (#M is an even number) THEN change the orientation of 

),,( 0
3

0
2

0
10 nnnT =  onto ),,( 0

3
0
2

0
10 nnnT ←  

ENDIF 

5. Take as the initial front Γ the set of the edges T0 
).,,( 1

1
0
2

2
1

0
3

3
1

0
1 nnnnnn

PPPPPP=Γ  

6. IF )/0( ≠U  THEN 

choose the edge l ∈ Γ, let l =PQ 
ELSE 
Finish the unification process. 
ENDIF 

7. Find such a triangle F ∈ U that the vector l, 
taken as an edge would be the edge of F, 
let .3

1
2
1

0
1 nnn

F PPP=  

8. IF (vector )1
1

0
3

3
1

0
1

2
1

0
1 nnnnnn

lll PPPPPP =∨=∨=  THEN 

change the orientation of F, i.e. F ← (n1, n3, n2), 
ENDIF 

9. Γ←Γ\{ l}. 

10. U ← U \{ F}. 

11. Modify the front 

(a) IF )(
1221 nnnn PPlPPl =∨=  THEN  

∪ },{
1331 nnnn PPPPΓ←Γ  

ENDIF. 

 (b) IF )(
1331 nnnn PPlPPl =∨=  THEN 

∪ },{
1221 nnnn PPPPΓ←Γ  

ENDIF. 

(c) IF )(
2332 nnnn PPlPPl =∨=  THEN 

∪ },{
2112 nnnn PPPPΓ←Γ  

ENDIF. 

12. go to6. 
 

 
 
 
 

Fig. 2. A new point creation over the face ABC 
 

Rys. 2. Tworzenie nowego punktu nad trójkątem ABC 
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9. The algorithm of volume tetrahedronization 

Using the notations from the previous point the algorithm 3-D domain triangulation can 
be presented as follows:  
 

Algorithm 2. 
 

1. Adapt the orientation of the boundary faces inward the 
domain Ω, according to the algorithm from the previous 
point. 

2. F ← Fb. 

3. Find all the edges of the boundary faces. 

4. B ← Tb. 

5. IF )/0( ≠B  THEN 

(a) Choose the last triangle from the front B, 
let F = ABC, 

(b) Find point D that is on the left 
side of F (which has the inward direction) (see Fig. 2)  
and which satisfies the following condition: 

 

 ||AD|| = ρ(A),   ||BD|| = ρ(B),   ||CD|| = ρ(C).  (13) 
 

(c) IF edges AD, BD, CD do not intersect the front B, 
and the triangles ABD, BCD, CAD do not intersect  

all the frontal egdes B, i.e. the set Eb and 
 

 
23

)()()(
),(

⋅
ρ+ρ+ρ> CBA

D Bdist  (14) 
 

THEN 
  i. Add D to the list of internal points P and triangles  

F1 = ABD, F2 = BCD, F3 = CAD, to the list of triangles T. 

 ii. Add tetrahedron T = FF1 F2 F3 to the list T  

of the tetrahedra. 
iii. Update the front B, i.e. remove F from B and add 

the faces of the triangles F1 F2 F3 to B. 

 iv. Update the set of the frontal edges Eb by adding  

the following edges AD, BD, CD. 
OTHERWISE 

  i. By using the Delaunay condition find the point D ∈ B. 

Create a tetrahedron which would have the face F = ABC. 

 ii. Remove F from B. 

iii. For i = 1, 2, 3. 

IF (Fi ∈ B) THEN remove Fi from B 
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OTHERWISE  
Add F to the list of triangles and to the front B  
ENDIF  
End the loop i. 

 iv. Modify the set Eb of the frontal edges.  

Let E1 = AD, E2 = BD, E3 = CD.  
For i = 1, 2, 3 

IF (Ei ∉ Eb) THEN add Ei to the set Eb  
OTHERWISE 
IF (Ei is not an edge  

of the newly created faces) THEN  

remove Ei from the set Eb. 

ENDIF  

ENDIF 
End the loop i.  

 

ENDIF 
 

OTHERWISE  
Finish the tetrahedronization. 
ENDIF 

9.1. The auxiliary test 

With respect to the newly generated points it is necessary to check, if they could be 
accepted. If the point D was created over the face ABC (Fig. 2) to form the tetrahedron with 
the vertices A, B, C, D it is necessary to check whether the faces ABD, BCD, CAD intersect 
the front. 

In the papers of [1, 7] the intersection of the tetrahedron faces with every face of the 
front is also verified. 

In this paper the intersection of edges AD, BD, CD with the frontal faces is performed 
and as well the intersection of the front edges with the faces ABD, BCD, CAD. It easy to 
show that the condition ensures no intersection of the newly obtained tetrahedron with  
the front and such an approach is less time consuming. 

Additionally, a test is performed, whether the point D is not too close to the front and 
the following inequality is taken into consideration: 
 

 
23

)()(
),(),(

×
ρ+ρ>=Γ PD

PDdistDdist  (15) 
 

where: 

Γ  – the generation front, 
P  – a point belonging to Γ and realizing the distance D to Γ, 
dist(D, Γ)  – a distance from D to Γ. 
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9.2. Forming a tetrahedron by the Delaunay method 

When the point D on the face ABC is not accepted to form a tetrahedron with vertices  
A, B, C, D, then the point from the front is taken to form a tetrahedron which now would 
have vertices A, B, C, and the point from the front. The algorithm has the following steps: 
1. Find the ball BABCD passing through the points A, B, C and with a radius r equal to: 
 

 
3

)()()( CBA
r

ρ+ρ+ρ=  (16) 
 

2. Find the set S of candidate points from the front belonging to the ball BABCD and lying  
on the right side of the plane ΠABC passing through the face ABC. 

3. In the set S the following relation R is introduced: 
 

 XR   iff   Y ∈ BABCY ∀X, Y ∈ S (17) 
 

4. The relation R is the equivalence relation, not an ordering relation, as every two 

elements in S are in relation (are comparable), so the set Z of the points from S is found 
that satisfies the condition: 

 

 ∀X ∈ Z XR Y ∀Y ∈ S (18) 
 

5. In the set Z find the point D which satis.es the auxiliary tests. 
6. Form a tetrahedron with the vertices A, B, C, D and add it to the list. 
 

 
 

Fig. 3. A cube filled with 4188 tetrahedra, 10629 faces and 1276 points 
 

Rys. 3. Prostopadłościan z 4188 czworościanami, 10629 trójkątami, 1276 punktami 

10. Numerical examples 

In this section some examples of the tetrahedronization of 3-D domains with the mesh 
size function are presented. The examples illustrated here are obtained in the way that those 
tetrahedra of triangulated 3-D domain are shown, whose barycenters lie on one side of  
a given plane. 

In figures 3, 4 the tetrahedronized cube with the mesh density function given by the 
formula (19) is presented. 
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1
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33.0),,( 






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In figures 5, 6 the domain obtained from the union of a cylinder and a part of sphere 
filled with a tetrahedra is presented. The size function is given by the formula (20): 
 

 




 <+++=ρ

otherwise0.2

0.1if,02.03.0),,(
222 rzyxzyx  (20) 

 

 
 

Fig. 4. The meshed domain from figure 3 with an another sharing plane 
 

Rys. 4. Striangulowany obszar z rysunku 3 z inną płaszczyzną dzielącą 
 

 
 

Fig. 5. A cylinder united with a part of the sphere with a symmetrical sharing plane –  
80401 faces, 6712 points and 39467 tetrahedra 

 

Rys. 5. Walec z częścią kuli z symetryczną płaszczyzną dzielącą – 80401 trójkątów, 
6712 punktów i 39467 czworościanów 

 

 
 

Fig. 6. The tetrahedronized domain from figure 5 with an another sharing plane 
 

Rys. 6. Striangulowany obszar z rysunku 5 z inną płaszczyzną dzielącą 
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