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A real time control system for balancing a ball on a platform 
with FPGA parallel implementation

System balansowy kulkowy w czasie rzeczywistym 
z równoległymi obliczeniami FPGA

Abstract
In this paper, a new PID-regulator based solution to the scientific and practical problem of increasing the 
accuracy of regulating the position of a ball on a platform in real time is proposed. A transfer function for 
balancing a ball on a platform is developed. A PID-regulator for balancing a ball on a platform is synthesized. 
A PID-regulator implementation on FPGA with parallel calculations is designed. An increased accuracy of 
regulating the position of a ball on a platform is approved by natural simulation.
Keywords: PID controller, FPGA, VHDL, real-time systems

Streszczenie
W artykule uzyskano nowe rozwiązanie rzeczywistego naukowego i praktycznego problemu zwiększania 
dokładności regulacji pozycji kulkowych na platformie w czasie rzeczywistym za pomocą regulatorów PID. 
Przy ich realizacji sprzętowej na FPGA z równoległymi obliczeniami przeprowadzono model matematyczny 
obiektu sterującego oraz opracowano sprzętowy komponent dla FPGA.
Słowa kluczowe: regulator PID, FPGA, VHDL, systemy czasu rzeczywistego
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1.  Introduction

In our post-industrial era, the need for automation has not diminished. The use of the 
Internet of things, driverless cars, robots and other complex objects with many parameters 
define the scope of new challenges for control systems in terms of their development and 
efficiency. Therefore, the development, research and design of real-time control systems by 
complex objects with many parameters are an actual task.

It is important to note that studies of follow-up systems are relevant. This is due to the use 
of autopilots and other systems that interact with common objects. An essential characteristic 
of such systems is unpredictability of their critical states. Then this object can’t defined by 
clean mathematical definitions for example by differential equations [1–4].

With the above point in mind, it is important to investigate and search for the most 
effective systems that can be implemented for tasks involving regulation as well as to increase 
the number of parallel-operating regulators. This, in turn, positively affects the speed and the 
power of the system. Such possibilities appear in the hardware realisation of components of 
control systems on Field-Programmable Gate Array (FPGA) [5–8]. FPGA has a few important 
characteristics that distinguish them from ordinary microcontrollers. At first, FPGA have 
higher computing power. At second, FPGA provides the ability to change the configuration 
for control computing tasks. At third, FPGA provides real parallel computing because of the 
programs are implemented on hardware level and do not compete for resources.  At means of 
one FPGA chip the big count of controllers can be implemented to control a many parameters 
at same time at a very height speed.  

2.  Formulation of the problem

The purpose of this work is to develop and research the 
approach to effective implementation of FPGA controllers 
for objects and processes control with many parameters. This 
approach will be realised for the task of balancing a ball on 
a platform. An additional goal of the implementation is to 
demonstrate the ability of FPGA controllers to simultaneously 
implement the image recognition system, Proportional Integral 
Derivative (PID) controller in real time. 

To test the developed control systems, a stand was set up 
in the form of a square supplemented by two servo motors in 
the workshop [9–10]. Above the area of the square, a camera 
was installed to fix the parameters relating to placement 
and movement of the object on the field. The purpose of the 
regulation is to bring the object to a state of equilibrium at 
a certain point, working out the movement along a long given 
trajectory. (Fig. 1).

Fig. 1. A general view of the 
motion-control platform
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Based on the symmetry of the platform on which the control object is located, it can be argued 
that the formulas of the regulator along the X axis and along the Y axis will be the same. Therefore, 
it is appropriate to develop a mathematical model for only one axis. A simplified image of physical 
modelling of the ball movement on the platform with the plane and actuators is shown in Fig. 2.

3.  The problem solution and experimental results 

To simplify the calculations, let’s suppose that slip and friction when moving the ball are 
absent. Let’s consider the Lagrange equation:
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where: 
R 	 – 	the radius of the ball (0.015 m); 
m 	 – 	the mass of the ball (0.01 kg),
d 	 – 	the extension length of the servomotor (0.05 m); 
g 	 – 	the acceleration of free fall; 
L 	 – 	the distance from the end to the middle of the platform (0.35 m); 
J 	 – 	the moment of inertia of the ball (9.99 ∙ 10–6 kg∙m2); 
r 	 – 	the distance from the centre of the ball to the edge of the platform; 
α 	 – 	the angle of rotation of the plate; 
Θ 	 –	 the angle of rotation of the servomotor.

Therefore, it seems appropriate to create an adequate mathematical model for one axis, and 
then implement this model in each of the two controllers, designed to control the movement of 
the ball on its axis. If we use near-zero angles of the platform position, we can assume that, in the 
case of a Tailor series, value of function sin α for angle α will be equal to value of this angle α. 
There is a similar situation for function cos α. For near-zero angle α value of cos α is equal 1. This 
suggests taking into account the near-zero angle α and near-zero speed of the platform. The third 

Fig. 2. Physical modelling of the ball movement on the platform 
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component in left part of equation (1) can be neglected (for example, if the speed is 0.1 radians 
per second, then the square of the speed gives a very small contribution 0.12 = 0.01). Therefore:
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Therefore the equation (1) can be rewritten as:
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Taking into consideration the construction of platform, the angle α of this platform 
rotation can be approximated by means of equation (3):
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In this equation: d – the length of the servomotor lever; L – the half of platform side 
(platform is a quadrate 40 sm × 40 sm, the side is equal 40 sm).

We substitute equation (3) into equation (2) and obtain equation (4):
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Now we have grounds to proceed to create a transfer function through the Laplace 
transform using equation (4):
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Based on the features of the control object, it is expedient to transfer the transmission 
function through the ratio of the ball position R(s) and servomotor rotation angle θ(s):
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From equation (6), by substituting the corresponding data we obtain a transfer function:
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The received transfer function T(s) is simulated in the Matlab Simulink package and the 
dependence of the ball position from the servomotor rotation angle is obtained. The structural 
scheme of control system of the ball on the platform in the Matlab Simulink software package 
is shown in Fig. 3.
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Let us consider the results of simulation. Fig. 4a shows the dependence of the ball position 
from time. Similarly Fig. 4b shows the dependence of the servomotor rotation angle from the 
time. When the servomotor is rotated an angle around 0.17, the ball moves from one side of 
the platform to the other.

Fig. 3. The structural scheme of control system of the ball position on a platform

Fig. 4. The control simulation results of the ball motion on a platform: a) dependence of the ball position from 
time, b) dependence of the servomotor rotation angle from the time

a)                                                                                                                 b)

To calculate the stabilisation of the ball movement in dependence from rotation angle, 
the ball control system on the platform with the PID controller was simulated in the Matlab 
Simulink package. The coefficients of the PID controller (the proportional coefficient Kp, 
the integral coefficient Ki and the derivative coefficient Kd) were calculated with the use of 
the special PID regulator block. Calculated values of these coefficients were Kp = 1.1636, 
Ki = 0.01 and Kd = 1.3626. When modelling the positioning control system with the PID 
controller, expected results were obtained. These results are shown in Fig. 5.

In this work, for the implementation of a closed-loop control system, an algorithm for PID 
for hardware implementation is used. This algorithm belongs to one of the most commonly 
used classes of algorithms in the theory of control. The results obtained in the work prove that 
it can be effectively used to control the servomotor.



114

The PID controller is described in differential equations:
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where:
Kp 	– 	 the proportional coefficient, 
Ti 	 – 	 the integral time constant, 
Td 	 – 	 the derivative time constant.

For a small sampling interval T, this equation can be turned into a differential equation by 
discretisation. A differential equation can be implemented by a digital system, either in hardware 
or software. The derivative term is simply replaced by a first-order differential expression and the 
integral can be calculated through the sum; thus, the differential equation is given as:
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Equation (8) can be rewritten as:
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where:
Ki = KpT/Ti 	 – 	 the integral coefficient, 
Kd =KpTd /T 	 – 	 the derivative coefficient. 

To compute the sum, all past errors, e(0)...e(n), have to be stored. This algorithm is 
called the ‘position algorithm’ [2]. An alternative recursive algorithm is characterised by the 
calculation of the control output u(n) based on u(n − 1) and the correction term Δu(n). 
To derive the recursive algorithm, at first let’s calculate u(n − 1) taking into consideration 
equation (9):

Fig. 5. The control simulation results of the ball motion on a platform with the PID controller: a) dependence of 
the ball position from time, b) dependence of the servomotor rotation angle from the time

a)                                                                                                                 b)
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Then the correction term can be calculated as:
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Equation (11) is called the ‘incremental algorithm’. The current control output is 
calculated as:
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For the hardware implementation of the PID controller, the incremental algorithm 
(Eq. 13) can avoid the accumulation of all past errors e(n) and can realise smooth switching 
from manual to automatic operation, in contrast to the position algorithm.

In the PID controller increasing the proportional gain Kp  can increase the system response 
speed, and it can decrease the steady state error, but not eliminate it completely. Additionally, 
the performance of the closed-loop system becomes more oscillatory and takes longer to settle 
down after being disturbed as the amplification factor increases. To avoid these difficulties, 
the integral control Ki and the derivative control Kd can eliminate the steady-state error and 
improve the stability of the system.

A one-channel design was constructed based on the PID control algorithm. The PID 
incremental algorithm (Eq. 13) is decomposed into its basic arithmetic operations:
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For a parallel design, each basic operation has its own hardware unit – or adder or 
multipliers, which are the main elements of combinational logic. For serial design, which is 
composed of sequential logic, all operations share only one adder and one multiplier.

The equation (12) was used to calculate the coefficients:
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The computational process implemented by this algorithm and the hardware 
implementation of the PID controller in parallel calculations on a FPGA took 284 look-up 
tables. The speed, as the total delay of the combinational circuit of the block, was 45.1 ns 
– this is 30% faster than consistently calculating all operations. Two parallel PID regulators 
on the same chip, which control the platform by the axes of OX and OY, used 568 look-up 
tables. The synthesis and simulation was executed in Xilinx ISE Design Suite 13.2 and ISE 
Simulator (ISim), using the Spartan 3 chip family. When using chips of other families, the 
rates of occupied resources and performance will be different. The modelling of the ball 
motion control on the platform with the high speed parallel PID controller on a FPGA is 
shown in Fig. 6.

Fig. 6. The modelling of the ball motion control on the platform with the high speed parallel PID controller  
on a FPGA

4.  Conclusion

In this paper, a new solution to the scientific and practical task of increasing the efficiency 
of regulating the ball position on a platform in real time has been presented. This solution uses 
PID-regulators with their implementation unit on a FPGA with parallel computations. A two 
parallel PID controller on one FPGA chip has been developed to control of two parameters of 
one object independently of each other. Parallel processing of the contour calculations of the 
PID controller that control the object has been ensured, the output of the regulator has been 
normalised. An increased accuracy of regulating the ball position on a platform is approved by 
natural simulation. The designed controllers can be used for real time controlling high-speed 
objects with many controlled parameters.
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