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Abstract

Austenitic stainless steels are of major engineering importance in many applications due to

their excellent mechanical properties, such as high strength, ductility, and corrosion resis-

tance. Such good properties are also maintained at extremely low temperatures and thus

austenitic stainless steels are used in many cryogenic applications, for example as cryogenic

control/pressure valves or structural materials for elements of the large hadron collider (LHC)

operating at 1.9 K, cryogenic transfer lines: tubes, cylinders, thin-walled shells (bellows ex-

pansion joints), etc. Under certain conditions and in some thermodynamic states, however,

austenitic stainless steels become unstable, and the phase transformation from austenite

(γ) to martensite (α′) together with the accompanying transformation-induced plasticity

(TRIP) effect may occur. In the resulting two-phase microstructure each phase exhibits dif-

ferent thermo-mechanical properties, while the volume fraction of phases in the representative

volume of the material evolves. The development of damage, which is responsible for the ma-

terial degradation, is governed by different mechanisms in each phase: in brittle martensitic

inclusions the stress state has a crucial influence on damage, while in soft, ductile austenitic

matrix the damage state is mainly determined by plastic flow.

The present dissertation is aimed at developing a complex constitutive and numerical

model of a dissipative engineering material, consisting of two phases exhibiting different

properties. Damage evolution of different type in each phase is accounted for. The constitutive

model is developed within the framework of continuum mechanics and thermodynamics of

irreversible processes with internal state variables, on the basis of the local state method. As

examples of engineering materials possible to describe using the developed model, austenitic

stainless steels of types: 304 and 316L, subjected to mechanical loading are considered.



Streszczenie

Austenityczne stale nierdzewne mają duże znaczenie w wielu zastosowaniach inżynier-

skich ze względu na dobre właściwości mechaniczne, takie jak wysoka wytrzymałość, ciągli-

wość i odporność na korozję. Co istotne, stale austenityczne wykazują się tak dobrymi właści-

wościwościami także w ekstremalnie niskich temperaturach, stąd wykorzystywane są w wielu

zastosowaniach kriogenicznych, na przykład jako kriogeniczne zawory sterujące/ciśnieniowe,

materiały konstrukcyjne dla elementów dużego zderzacza hadronów pracującego w tempera-

turze 1, 9K czy w kriogenicznych liniach transferowych: rury, cylindry, cienkościenne powłoki

(kompensatory mieszkowe) itp. Jednak w pewnych warunkach termodynamicznych, auste-

nityczne stale nierdzewne wykazują się niestabilnością, która może spowodować przemianę

fazową austenitu (γ) w martenzyt (α′) wraz z towarzyszącymi jej dodatkowymi odkształce-

niami plastycznymi. W tak otrzymanej dwufazowej mikrostrukturze, w której udział objęto-

ściowy każdej z faz w reprezentatywnej objętości materiału może się zmieniać w czasie (np.

podczas plastycznej deformacji), każda faza wykazuje różne właściwości termomechaniczne.

Rozwój uszkodzeń, które są odpowiedzialne za degradację materiału, jest wywoływany przez

różne mechanizmy w każdej fazie: w kruchej fazie martenzytycznej stan naprężenia ma de-

cydujący wpływ na uszkodzenia, podczas gdy w miękkiej, ciągliwej matrycy austenitycznej

rozwój uszkodzeń jest wywoływany głównie przez odkształcenia plastyczne.

Niniejsza rozprawa poświęcona jest opracowaniu ogólnego modelu konstytutywnego i

numerycznego dyssypatywnego materiału inżynierskiego, składającego się z dwóch faz wy-

kazujących różne właściwości. Głównym elementem pracy jest uwzględnienie ewolucji uszko-

dzeń mających różny charakter w każdej z faz. Model konstytutywny opracowany jest w

ramach mechaniki kontynualnej i termodynamiki procesów nieodwracalnych z wewnętrznymi

zmiennymi stanu, z wykorzystaniem metody stanów lokalnych. Jako przykład materiału in-

żynierskiego, którego zachowanie może zostać opisane przy użyciu opracowanego modelu,

rozważana jest austenityczna stal nierdzewna typu: 304 i 316L, poddana obciążeniu mecha-

nicznemu.
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Chapter 1

Aim and scope of work

Multi-dissipative materials are often characterized by a multiphase microstructure in which

each phase exhibits different mechanical properties, and also volume fraction of each phase

in the representative volume of the material may be subjected to change. The evolution of

damage, which is responsible for material degradation, may be governed by different mech-

anisms in each phase: in brittle phases brittle damage is observed, on which the stress state

has a crucial influence (Murakami, 2012), while in soft, ductile phases the damage state is

mainly determined by plastic flow (Lemaitre, 1992; Chaboche, 1999). For this reason each

phase has to be considered separately when damage evolution is analysed. On the other hand,

phases interact with each other, which is a source of a substantial difficulty in constitutive

modelling. All mechanisms have a significant impact on the macroscopic response of a ma-

terial subjected to mechanical loading. Thus, it is essential to develop advanced constitutive

models properly representing the mechanical behavior of multi-dissipative materials.

1.1 Objective and scope of work

The main objective of the present work is the theoretical and numerical research on damage

evolution in multi-phase engineering materials. As reference materials metastable austenitic

stainless steels (e.g. 304, 316L) have been choosen. Austenitic stainless steels are of major

engineering importance in many applications due to their excellent mechanical properties,

such as high strength, ductility, and corrosion resistance. Such good properties are preserved

practically down to 0K, thus these materials are applied for components of superconducting

magnets and cryogenic transfer lines: tubes, cylinders, thin walled shells (like bellows ex-

pansion joints), or massive parts like vacuum barriers. Under certain conditions (e.g. during

deformation) and in some thermodynamic states, however, in these steels two dissipative

phenomena may take place simultaneously in addition to plastic yielding. The first reflects
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the metastable nature of the material and consists in a diffusionless transformation (tem-

perature, stress or strain driven) from the primary phase (austenite) to the secondary phase

(martensite), together with accompanying transformation-induced plasticity (TRIP) effect.

The second phenomenon consists in the evolution of micro damage (microcracks, voids) of

a ductile or brittle nature. As the result a two-phase microstructure, in which, each phase

exhibits different thermo-mechanical properties, is obtained, and moreover, the volume frac-

tion of phases in the representative volume of the material evolve.

The present Thesis aims at:

1. Development of a constitutive model of the elastic plastic damage two-phase material.

2. Numerical implementation of the proposed model.

3. Identification of the model parameters for 304 and 316L stainless steels.

4. Numerical simulations of chosen structural elements.

The macroscopic constitutive model of a two–phase material will be derived with the use of

thermodynamics of irreversible processes framework and local state method. In this approach,

the state of a material is entirely determined by certain values of certain independent vari-

ables called variables of state. At the macrolevel, the material heterogeneity (on the micro-

and mesoscale) is smeared out over the representative volume element (RVE). When Con-

tinuum Damage Mechanics (CDM) approach is applied, the true state of the material within

the RVE, represented by topology, size, orientation, and number of micro-rearrangements,

is mapped to a material point of the so called fictitious continuum. The true distribution of

microstructures and correlation between them are measured by the change of the effective

constitutive tensors (stiffness or compliance). The microstructural mechanisms are formalized

at the continuum level by a suitable set of internal variables of scalar, vectorial, or tensorial

nature. Three coupled dissipative phenomena will be taken into account, namely plastic yield-

ing, damage evolution, and martensitic phase transformation. The constitutive model will be

derived with the assumption of small strain theory, and rate independent plasticity will be

applied, in addition, only isothermal conditions will be considered. Thus rate and tempera-

ture independent model of plastic strain induced phase transformation will be employed. The

volume fraction of the primary and secondary phases will be described by a scalar variable.

It is assumed that the considered two–phase continuum is composed of the austenitic matrix

and martensitic platelets, randomly distributed and randomly oriented in the matrix. The

martensitic phase is much harder than austenitic one, and thus the austenitic matrix will

be treated as an elastic–plastic material which undergoes ductile damage evolution, whereas

the martensitic inclusions will show purely brittle response. The damage state in each phase
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will be described by second order damage tensor, and a mixture rule will be incorporated to

account for the average damage state in the material.

In the Continuum Damage Mechanics, the phenomenon of damage softening is described

using the so-called effective state variables of a pseudo-undamaged quasi-continuum. To de-

fine these damage effective state variables, various equivalence hypotheses are formulated,

for example: the strain equivalence hypothesis, the stress equivalence hypothesis, the strain

energy or the complementary energy equivalence hypothesis, or the total energy equiva-

lence hypothesis. The total energy equivalence hypothesis will be used here. Moreover, the

aforementioned hypothesis will be extended to other dissipative phenomena like phase trans-

formation as proposed by Egner and Ryś (2017). This formulation enables the definition of

internal state variables as well as the effective thermodynamic conjugated forces, which can

be indifferently used in stress space and strain space, obtaining symmetric physical proper-

ties of a material (symmetric stiffness tensor, compliance tensor, strain hardening modules)

even in the case of anisotropy induced by dissipative phenomena, and modelling of coupling

between damage variable and other internal state variables in a natural way.

Two dissipative phenomena, ductile damage evolution in the austenitic phase and phase

transformation, will be governed by plasticity with a single dissipation potential. In such

approach, the ductile damage and the phase transformation progress only when there is plastic

flow (strong coupling). Separate damage surface will be incorporated in order to model brittle

damage evolution in martensitic phase. Each surface will be subjected to hardening, and

kinetic laws will be derived using the generalized normality rule. It will allow to describe the

kinetics of dissipative phenomena (plastic flow and brittle damage evolution) independently

(weak coupling).

The numerical algorithm will be proposed and implemented via VUMAT subroutine in

Abaqus/Explicit FEM program. Parametric studies of the proposed model will be performed

to verify the capabilities of the model to reproduce macroscopic response under the applied

loading path. The model will be calibrated by means of the experimental data obtained for

two typical stainless steels: 304, 316L.

To sum up the work plan covers the following major steps:

1. Development of a constitutive model of the elastic plastic damage multi-phase material

2. Numerical implementation of the developed model

(a) building a numerical algorithm

(b) building and testing numerical procedures VUMAT in Abaqus/Explicit

(c) performing parametric studies to verify the model is capabilities to properly re-

produce its macroscopic response under different loading paths
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3. Identification of model parameters

4. Numerical simulations of chosen structural elements

1.2 Organization

The present dissertation is structured in the following pattern. Chapter 2 presents state of

the art together with literature survey. At the beginning, the plastic strain-induced marten-

sitic phase transformation is discussed. Some basic models are presented briefly. The large

portion of the chapter, however, is devoted to the problem of coupling between damage and

martensitic transformation in TRIP-assisted steels. As there are hundreds of papers dealing

with damage in multiphase steels (including composite materials), the literature survey is

restricted only to those which deal with steels in which both damage and martensite are of

major importance. The constitutive framework is formulated in Chapter 3. The chaper starts

with the definition of a set of internal variables, and, next, in Sections 3.2-3.3 the total en-

ergy equivalence hypothesis extended to all the dissipative phenomena regarded is discused

in details. Further, in Sections 3.4-3.6 state equations and evolution equations of internal

variables are derived with the use of the proposed hypothesis. Numerical implementation of

the proposed model is presented in Chapter 4 where two algorithms: for a rate-independent

model and a model with the rate-dependent extension but only for regularization purpose, are

proposed. To examine the ability of the presented model to properly predict the behavior of

brittle and ductile materials, as well as the mixed ductile/brittle material, parametric studies

are performed in Chapter 5. Identification of model parameters for 316L and 304 stainless

steels and comparison between experimental and numerical resutls in the case of uniaxial

tension tests are presented in Chapter 6. As an example, the analysis of an expansion bellows

is also shown.
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Chapter 2

State of the art and literature survey

2.1 Introduction

Austenitic stainless steels are of major engineering importance in many applications due

to their excellent mechanical properties over a wide range of temperatures. These steels

combine good mechanical properties with an excellent corrosion resistance, and are there-

fore commonly used for construction materials in nuclear power plants, especially inside

the pressure vessel or in the pipes of primary circuits (Amer et al., 2013). These materials

are also among those most widely used for cryogenic temperature applications in various

industrial fields, because they exhibit superior material performances at extremaly low tem-

peratures, such as high yield/tensile strength, robust ductility/toughness, and high corrosion

resistance/weldability. Therefore, they are employed in a vast range of industrial applications

under extreme conditions, for example, as cryogenic control/pressure valves, and they also

find use in a liquefied natural gas (LNG) carried cargo containment system. Moreover, the

stainless steels of grade 304 and 316 are primary materials used in the reactor components,

where they are subjected not only to mechanical loading but also to radiation which has a

crucial influence on their behavior (Bailat et al., 2000).

2.2 Plastic strain-induced martensitic phase transfor-

mation

Metastable austenitic stainless steels is a class of steel that are susceptible to phase trans-

formation from the austenitic face-centered cubic (FCC) into body-centered cubic (BCC)

martensite under applied deformation. Phase transition of austenite into martensite is a non-

diffusion process. Sometimes it is referred to as displacive transformation because it involves
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moving atoms at very short distances in such a way that relations between neighboring atoms

remain unchanged. This evokes a change in the crystallographic structure, but without the

diffusion mechanism. This physical phenomenon increases the macroscopic work hardening

rate and thus results in a highly nonlinear behavior of material (strong hardening effect due

to phase transformation). Moreover, the considered phase transformation is usually accom-

panied by a significant additional plastic deformation. This mechanical effect was originally

considered as TRIP (transformation-induced plasticity). Basically, two mechanisms play a

key point for the irreversible deformation of an iron-based alloy during and after martensitic

phase transformation: (1) the so called Greenwood and Johnson (1965) mechanism and (2)

the Magee mechanism (Magee and Paxton, 1966). The first one explains that the additional

plastic deformation is due to the difference of elementary cell volume between the two existing

phases, which results in an accommodation process enforcing additional plastic yielding of

the surrounding austenite matrix. The latter takes into consideration the fact that marten-

site platelets are formed with a preferred orientation, and this affects the overall shape of the

body; which means that when a small region is transformed, its shape changes.

Figure 2.1: (a) Typical experimental curve of volume fraction of martensite versus plastic
strain for a stainless steel; (b) linearization of the region II of the martensitic transformation
(Egner et al., 2015a).

The experimental curves that describe the kinetics of the phase transformation in the function

of plastic deformation are of sigmoidal character (Fig. 2.1). It can be seen that the whole

process of austenite transformation into martensite can be divided into three stages (Fig.

2.1b): Stage 1 - initiation of phase transformation in which the rate of transformation is

quite small; Stage 2 - rapid increase in the phase transformation kinetics; Stage 3 – the

phase transformation slows down and the volume fraction of the secondary phase reaches the
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saturation level.

The first physically based description of the kinetics of the plastic strain-induced marten-

sitic transformation was introduced by Olson and Cohen (1975). The authors assumed that

the strain-induced nucleation of martensitic embryos appears on the shear band intersections

and hence assumed that the increasing number of shear-band intersections depends on the

plastic strain, εp, in the austenite. The following one-dimensional model has been proposed

ξ = 1− exp{−β[1− exp(−αεp)]n} (2.1)

where β is the probability that the intersection will produce an embryo, α represents the rate

of shear-band formation, n is a fixed data fit parameter. The sigmoidal curve is applicable

over a wide temperature range. In the work of Stringfellow et al. (1992), the authors extended

Olson and Cohen model indicating that the volume fraction of the martensite is not only the

function of plastic strain but also the local stress state. They included the hardening effect of

the martensite platelets and also plastic softening due to martensitic nucleation by introduc-

ing an additional strain rate called “nucleation” strain rate decomposed into a deviatoric part

and a dilatational part. The deviatoric part is related to the shape change and is assumed

to be coaxial with the deviatoric stress, and the dilatational part is related to the volume

change. The constitutive model was formulated within the finite strain framework, and the

self-consistent method was used to formulate proper equations. The author’s proposal, how-

ever, is restricted to isothermal conditions, and the strain rate effect was not incorporated in

the model. The following formula for the rate of increase in the volume fraction of martensite

was proposed

ξ̇ = (1− ξ)(Af γ̇a +Bf σ̇h) (2.2)

The factor (1 − ξ) decreases the volume fraction of austenite that can be transformed. The

part Af γ̇a is related to plastic strain induced phase transformation and denotes plastic shear

strain in austenite, and Af is a function of volume fraction of shear bands and the probability

that nucleation occurs at a shear-band intersection. The part Bf σ̇h introduces stress depen-

dence in the model, thus σh denotes a measure of the triaxiality of the state of stress, and Bf

is a certain stress and the driving force for the martensite transformation dependent function.

Further extension was made by Tomita and Iwamoto (1995) and Iwamoto et al. (1998) to

account for the temperature and strain rate sensitivities of the strain-induced martensitic

transformation. Their generalization is based on the observation that the number of intersec-

tions of shear bands increases as the strain rate increases. Thus the parameter which appears

in function (Eq. 2.2) and which controls the number of shear bands is a function of temper-

ature and power-law function of the plastic strain rate. The authors also observed that the
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volume fraction of martensite is much higher for compression than for tension, and thus intro-

duced deformation-mode-dependent transformation kinetics. Moreover, the third invariant of

the stress tensor was incorporated in the plastic yield surface to capture a non symmetric

response of tension and compression (Tomita and Iwamoto, 2001). They incorporated in the

model the decomposition of plastic strain into a classical part and a part related to phase

transformation (transformation strain) in a similar way to Stringfellow et al. (1992). Later

on, the martensitic transformation concept of Olson and Cohen was adapted to a mesoscopic

scale, and crystal plasticity framework was used to build a polycrystalline numerical model

(Diani and Parks, 1998). A micromechanical model of martensitic transformation induced

plasticity in an austenitic single crystal was proposed by Cherkaoui et al. (1998). The au-

thors derived their model within the framework of thermodynamics of irreversible processes,

where Helmholtz free energy was used as a state potential of a two phase material. In the

next work (Cherkaoui et al., 2000), based on the micromechanical analysis of the martensitic

transformation, the formation of macro domains with moving boundaries together with con-

ditions for the nucleation and growth of martensitic platelets were considered. The proposed

models were used in the simulation of texture evolution of an annealed 304 stainless steel

(Petit et al., 2007). A thermodynamic transformation criterion for the martensitic transfor-

mation within the continuum mechanical framework, and using micromechanical aspects,

where the Gibbs potential was used, was proposed by Fischer et al. (1994), Fischer and Reis-

ner (1998), and Reisner et al. (1998). At low temperatures, the second stage of the phase

transition (Fig. 2.1b) is becoming more rapid, and thus the phase tranformation can be de-

scribed by the linear approximation as proposed by Garion and Skoczeń (2002); Garion et al.

(2006). Although this model is a significant simplification of Olson and Cohen’s proposal, the

difference between the two models regarding the stress-strain curve and martensite volume

fraction versus accumulated plastic strain is very small (Ryś, 2014). In the work by Han et al.

(2004), the authors conducted a series of uniaxial and shear tests at various strain rates. They

measured the temperature increase and the martensite content as a function of true strain. A

self-consistent model was implemented in an iterative programme based on the radial return

method, and a very good agreement was obtained between the experimental results and their

numerical simulations. A simple phenomenological stress independent strain–induced marten-

sitic transformation in stainless steel was proposed by Santacreu et al. (2006). The model was

further extended to encompass the stress-state-dependency and anisotropy of the martensite

evolution by incorporating the Lode angle dependency parameter in the model (Beese and

Mohr, 2011, 2012). Most of the abovementioned models are formulated within small strain

assumptions, while a multiscale model at fintie strains was proposed by Turteltaub and Suiker

(2005); Suiker and Turteltaub (2006). Transformation plasticity in the framework of large

12



strains was also considered by Hallberg et al. (2007, 2010), where the mechanically induced

phase transformation was proposed, and a deep drawing of a cup made of austenitic stainless

steel was simulated. A thermodynamically consistent framework of the phase transforma-

tion at large deformations was formulated in Mahnken and Schneidt (2010); Mahnken et al.

(2012).

Probably, still the most common model incorporating TRIP effect in constitutive mod-

elling used in the industry is that of Leblond et al. (Leblond et al., 1989; Leblond, 1989).

This analytical model was obtained from a micromechanical analysis and is based on the as-

sumption that the parent phase has a spherical shape, and TRIP effect occurs by the growth

of a spherical product phase core. In the works of Taleb and Sidoroff (2003), and Taleb and

Petit (2006) the authors demonstrated that Leblond’s model fails to describe certain observed

phenomena, especially at the small stress range. The authors also investigated an interac-

tion between TRIP and classical plasticity, as well as a significance of each Greenwood and

Johnson, and Magee mechanism during the bainitic and martensitic transformation. A new

TRIP model was also proposed with a less rigorous assumption than in Leblond’s model.

A micromechanical model for the transformation induced plasticity was developed by Di-

ani et al. (1995) using the local tangent approach. Another micromechanically based model

was proposed by Fischer and Schlögl (1995), the authors investigated the local stress state

in a martensitically transforming micro-region including plastic anisotropy. In the paper of

Fischer et al. (1998) the authors proposed a consistent thermodynamic framework to incor-

porate TRIP in the model, the Gibbs free energy was used as a thermodynamic potential.

The authors introduced the transformation condition, and they were able to obtain coupling

of the plasticity and the phase transformation in the derived flow rule for the plastic strain

rate and the transformation kinetics. The martensitic transformation with TRIP effect in

polycrystalline materials subjected to non-proportional loading paths was investigated by

Fischer et al. (2000).

2.3 Damage modelling

The damage development occurs in almost all materials. It is related to the appearance and

evolution of defects in the material. According to the second principle of thermodynamics,

this process leads to an increase in disorder in material structure, e.g. the increase in en-

tropy. Moreover, it is inevitably and irreversibly accompanied by energy dissipation, and its

external manifestation is the degradation of mechanical properties (strength and stiffness),

thermal properties (coefficient of thermal expansion, conductivity coefficient) and other phys-

ical properties. The development of defects leads to micro-cracks, accompanied by further
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propagation of macro-cracks, eventually resulting in an oveall destruction of the structural el-

ement. The method of describing the development of damage depends on the scale of analysis.

We can distinguish an atomic scale (molecular dynamics), a micro-scale (micromechanics),

or a macro-scale (continuum mechanics). On the atomic scale, the structure of a material

is discontinuous, represented by a lattice or by molecular chains, and the state of defects

is determined by a current configuration of atomic bonds, while the breaking of bonds and

the formation of new ones represent the evolution of damage. On the micro- or mesoscopic

level, the structure of a material is continuous but highly heterogeneous. At this level, the

configuration of dislocations is taken into consideration, which motion is often stopped by

micro-defects, different types of inclusions, grain boundaries, or the concentration of stress.

Damage, in the form of micro-cracks, appears when the local shear stress is beyond the cohe-

sive strength. Inter-granular debonding, as well as decohesion, is also observed on this level.

At the micro- and nano- scale, damage is a discrete phenomenon that can be observed at

the microstructure level. The evolution of micro-damage can be of brittle or ductile nature.

Ductile damage is strongly related to plastic yielding and thus usually occurs within the slip-

bands, created in the favorably oriented crystal grains. It is important that ductile damage

coupled with plastic flow is dominated by the orientation of the bands, not by the directions

of mean stresses. In the case of brittle damage, a crack is initiated without large amount

of plastic strain, and the process is strongly dependent on the stress state and, thus, the

direction of loading, which results in the anisotropy of the damage evolution. Here, the inter-

granular damage mechanism plays a fundamental role. This mechanism is related mainly to

the micro-cracks and micro-voids nucleation and evolution at the grain boundaries. At the

macrolevel the material heterogeneity, observed on the micro- and mesoscale, is smeared out

over the representative volume element (RVE). When continuum damage mechanics approach

is applied, the true state of the material within the RVE, represented by the topology, size,

orientation, and number of micro-rearrangements, is mapped to a material point of the ficti-

tious continuum. The true distribution of microstructures and the correlation between them

are measured by the change of the effective constitutive tensors (stiffness or compliance).

The microstructural mechanisms are formalized at the continuum level by a suitable set of

internal variables of the scalar, vectorial or tensorial nature. The constitutive tensors for the

dissipative material are defined by the use of effect tensors (e.g. damage effect tensor, phase

transformation effect tensor, etc.) that map thermodynamic forces from the physical (discon-

tinuous and heterogeneous) to the fictitious (pseudo-continuous and pseudo-homogeneous)

configurations. The multiscale approach consists in proposing macroscopic constitutive equa-

tions taking into account the local behavior of each subphase in the RVE. A real difficulty

is to establish a theoretical formalism linking macroscopic and microscopic scales when one
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or several subphases are nonlinear. The limitation of the use of continuum mechanics is

that the material is subjected to a critical condition of damage in which the initiation of a

macro-crack takes place. In this case, the method of fracture mechanics (FM) is used and a

single macroscopic crack is examined by its geometry, size and applied load. Although the

process of developing damage is inevitable, there are ways to slow it down. In the case of

engineering structures, appropriate tools are used to inhibit the development of defects, such

as the use of special FGM materials or an optimal design of structures for lifetime destruc-

tion. This, however, requires the development of a complete mathematical description of the

dissipative processes taking place in the construction materials. In addition, knowledge of the

factors influencing the evolution of damage, including stress state, deformation state, plastic

flow, temperature fields, structural changes in crystalline materials or dynamic loads, is also

required.

2.4 Damage evolution in TRIP-assisted steels

As was mentioned above, austenitic stainless steels are of major engineering importance

in many applications, due to their excellent mechanical properties, such as ductility, high

strength or corrosion resistance, over a wide range of temperatures including cryogenic tem-

peratures. As was also mentioned, in these steels two mechanisms are in competition – the

damage evolution, which is responsible for the material degradation, and strain induced phase

transformation with TRIP effect, which improves some mechanical properties (e.g. strength,

ductility) by a composite strengthenig effect (soft matrix is reinforced with a much harder

secondary phase), and a dislocation strengthening of the softer matrix as a consequence of the

transformation strain accompanying martensitic transformation. The martensitic transforma-

tion provides significant modifications of fatigue mechanisms compared with stable alloys, in

particular at the mesoscopic scale (e.g. short cracks). Cyclic hardening curves can be charac-

terized by three stages: initial hardening, slight softening and second hardening followed by

failure. The second hardening stage is due to the martensitic transformation which starts at

some value of the accumulated plastic strain and thus after a critical number of cycles which

decreases when the applied plastic strain amplitude increases. Moreover, some experimental

studies revealed that the strain induced martensitic transformation has a beneficial effect on

the fatigue resistance in low cycle fatigue (LCF). Furthermore, it is often stated that the

TRIP effect and the volume expansion related to it result in increasing the average compres-

sive stress, and the damage development may be hindered in the microstructure by delaying

the void nucleation. Finally, since the martensitic transformation dissipates energy available

for cracking in a stable microstructure, it is understandable that this improves resistance to
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damage evolution. However this positive features are strongly dependent on many factors like

grain size, carbon content, strain rate or stress triaxiality. On the other hand, there exists

some evidence for the presence of micro-damage fields within the martensite sites. Indeed,

high carbon content in the primary phase results in a very hard and brittle martensitic prod-

uct phase, and thus martensitic inclusions may act as potential nucleation sites for crystalline

damage, and therefore eventually can have a harmful effect on the integrity of the material.

This problem often takes place in the heat affected zone in welds of high-strength, low-alloy

steels.

Probably the first attempt in analyzing the correspondence between fracture toughness

and martensitic transformation of a high carbon TRIP alloy was thanks to Antolovich and

Singh (1971). The experiments were conducted in two temperature regimes: at low tem-

perature regime, where the martensitic transformation occurred, and at high temperature

regime, where no phase transformation was observed. The extrapolation techniques were

used to compare both results, and it was stated that the martensitic transformation makes

positive contribution to the fracture toughness of TRIP alloys because of absorbing energy

that could otherwise be available for crack extension. Parks and Stringfellow (1991) imple-

mented their previously derived model (Stringfellow et al., 1992) in ABAQUS and examined

tensile necking and crack tip blunting. It was noted that in the absence of transformation the

failure due to a process of shear instability occurs faster, and thus the phase transformation

at a crack tip results in stabilizing flow and retarding the failure process. This observation

was confirmed by fracture toughness experiments performed by Stavehaug (1990). It was ob-

served that the crack propagation in partially transformed materials tends to branch which

results in blunting. Finally, it was stated that the observed high toughness of the material

is mainly due to the inhibition of shear localization and the deflection of the crack front

away from the forward direction. Near crack-tip transformation and localization processes,

based on the metallographic study, was further investigated by Olson (1996). A numerical

model was provided, and it was noted that the toughening mechanism is related to the sta-

bilization of plastic flow, resulting in the pressure-sensitive strain hardening provided by the

strain-induced transformation. The influence of the testing temperature and strain rate on

the strain-induced transformation and total elongation in TRIP-aided dual-phase steel was

examined by Sugimoto et al. (1992). As suggested by Socrate (1995), on the micromechanical

level, in high-strength metastable austenitic steels crack initiation is delayed, since the void

nucleation is reduced due to the phase transformation. Moreover, the growing martensitic

phase restricts the subsequent void growth. Monotonic and cyclic tests, done on a relatively

stable austenitic steel (316LN), were performed by Botshekan et al. (1998) in two temper-

atures, 300 and 77K. The tensile tests were controlled by the total strain with a constant
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strain rate. The tests were interrupted several times to measure the martensite fraction. In

low cycle fatigue (LCF) tests various total strain amplitudes were imposed (1%, 1.6%, 2.25%).

The experimental tests revealed that higher low-cycle fatigue life was obtained in the tests

conducted at 77 K. The authors explained that these results are related to a higher slip homo-

geneity, which results in a more difficult crack nucleation, and a higher resistance to the early

crack growth due to a partial blocking of the short crack paths by martensitic islands. In the

work of Stolarz et al. (2001), two specimens made of the high purity metastable austenitic

steel (Fe-17Cr-13Ni) with different grain size (D1=12.5 and D2=40.5 µm) were subjected to

cyclic loading with the same plastic strain amplitude (fatigue test). The authors studied the

mechanisms of nucleation and growth of short cracks. It was shown that the phase transfor-

mation strongly depends on the grain size, the short crack nucleation is retarded compared

with stable microstructures, and the nucleation itself takes place exclusively within marten-

site islands formed on the surface. The nucleation and propagation mechanism of the short

cracks was divided into three stages (cf. Stolarz et al. (2001)):

• The nucleation and propagation of the crack induce plastic zone in the tip of a crack

and thus martensitic transformation occur,

• when the transformed zone reaches the grain boundary, crack propagation is temporar-

ily stopped, because the further phase transformation is favoured move along the grain

boundary than in the bulk,

• crack propagation is continued in the neighbouring grain without changing direction.

The damage resistance, fracture toughness and austenite to martensite transformation rate in

TRIP-assisted steels were investigated in Jacques et al. (2001). Two steels differing in terms

of the volume fraction of phases (ferrite, bainite, retained austenite) and by the mechanical

stability of retained austenite were examined. A double edge notched plate was tested un-

der tension. The fracture resistance was characterised by means of the JR curves and crack

tip opening displacement. It was observed that, at first, in the plastic zone at the crack tip

retained austenite is transformed to martensite. On this stage, ferrite-martensite debonding

and almost no cracking of martensite grains can be observed. However, further increase in

damage sites is predominantly due to the cracking of martensite grains. Moreover, it was

observed that after nucleation of a microcrack in the martensitic phase, there is no plastic

void growth or microcracking extension, and thus further damage evolution is due to cre-

ation of new damage sites. The three-dimensional FE model was based on the finite strain

J2 flow theory with isotropic hardening in ABAQUS. The investigations shown that TRIP

effect postpones the plastic localization but, on the other hand, reduces fracture toughness
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at crack initiation. Thus, it was stated that the enhancement of resistance to cracking re-

quires limitation of the amount of retained austenite. Finally, the authors concluded that

the martensitic transformation is responsible for creation of the damage sites, however it

was emphasized that the influence of martensite on the damage evolution depends on the

volume fraction of martensite and on mechanical properties of martensite, which are related

to carbon content. Indeed, high level of carbon makes martensite very brittle, and thus if

martensite is subjected to large tensile stresses, cracking inside the inclusion or along the

interface will occur. High-martensite dual-phase steels were investigated by Bag et al. (1999,

2001) by means of studying quasi-static and dynamic fracture toughness and the fatigue-crack

growth behavior. It was shown that in the developed steels fracture-toughness increases with

increasing the initial volume of martensite in the range of 0.3-0.6 for quasi-static and 0.45-

0.6 for dynamic tests. It was also noted that the best range of toughnesses was obtained

for specimens with a refined microstructural state. The stability of the retained austenite

within the fatigue plastic zone of a low-carbon high strength steel was studied within foil

specimens containing fatigue cracks by Huo and Gao (2005). The results have shown that

the retained austenite inside the plastic zone at a fatigue crack tip has been transformed

into martensite due to plastic deformation. The authors deduced that because of the effect

of the energy absorbed and crack closure in the process of the strain-induced martensitic

transformation, the propagation rate of the fatigue crack can be reduced. In Chatterjee and

Bhadeshia (2006) it was shown that in TRIP steels small hard martensite does not read-

ily crack as the load transfer onto martensite is difficult by straining the microstructure.

However, long platelets of martensite transformed from coarse grain austenite lead to early

cracking. The influence of the martensitic phase transformation on fracture parameters in the

case of deep drawing was examined by Berrahmoune et al. (2006). The martensite content

throughout the cup (made of 301LN SS) wall and thickness was determined. It has been

found that an increased martensite content has a strong influence on the cracking sensitivity,

and it was stated that the increase of the martensite content increases the delayed crack-

ing phenomenon when the drawing ratio exceeds a certain limit. The investigation of the

relationship between the microstructure and fracture resistance of TRIP-assisted multiphase

steels composed of ferritic matrix with retained austenite, bainite and martensite (as dis-

persed phases) has been provided by Lacroix et al. (2008, 2006). Three main mechanisms of

damage were observed: decohesion between two martensite grains; decohesion between ferrite

and martensite grains; cleavage of a martensite grain. It was observed that the crack propa-

gates through martensitic inclusions which are located mainly in ferritic grain, thus the main

damage mechanism was decohesion between the martensite and ferrite phase. Moreover, the

authors showed that TRIP effect can improve the ductile tearing resistance of thin plates.
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In the works of Han et al. (2008, 2009) the mechanical properties of multiphase TRIP-aided

steels were examined for various initial volumes of the retained austenite volume fraction

as well as its stability condition. The authors stated that the mechanically induced phase

transformation of retained austenite has a negative impact on the mechanical properties. Two

separate laws for void nucleation and void growth were incorporated, and it was assumed that

the void nucleation rate is an increasing function not only of the equivalent plastic strain but

also of the volume fraction of martensite. In the works of Uthaisangsuk et al. (2008, 2009,

2011), the influence of a microstructure on damage in TRIP and DP (dual phase) steels

have been studied. At the micro scale, two failure modes were found, cleavage (brittle in

nature) and dimple (ductile in nature) fracture. It was noticed that the contribution of the

fracture mechanism depends on the stress-strain conditions, the internal purity, the volume

fraction of retained austenite, and the location of the austenite and martensite islands in the

microstructure. It was noted that a fail of a grain of the harder phase within softer matrix

results in further ductile damage evolution in the surrounding matrix. However, the main

driving mechanism for ductile fracture is void initiation and void growth in the softer matrix.

On the one hand, the volume expansion during phase transformation hinders the damage de-

velopment in the microstructure by delaying the void nucleation but, on the other hand, the

volume expansion increases dislocation density which promotes voids nucleation. Moreover,

for TRIP steels the presence of martensite in the initial microstructure can lead to an early

crack initiation. The increased stress triaxiality accelerates the TRIP effect and crack growth

in the microstructure. The strong dependence of the rate of the martensite transformation on

the stress triaxiality originates from the volume expansion involved in martensite formation.

Ductile damage evolution within soft phase was modelled by the use of continuum mechan-

ics and well known GTN approach (Gurson-Tvergard-Needleman). The void nucleation and

the void growth law was incorporated for the ductile damage evolution, and the cohesive

model was used to investigate cleavage damage in FE simulations. The phase transforma-

tion of retained austenite to martensite was not accounted for. It was also suggested that in

composite-like structures damage occurs in surroundings of inclusions due to a high hardness

gradient. Therefore, for this reason, the newly formed high strength martensite may act as

a source of void nucleation in austenite. The influence of the martensite volume fraction on

failure modes in dual phase steels, where the failure was considered in the form of plastic

strain localization, was examined by Sun et al. (2009). Lee and coworkers (Lee et al., 2009)

proposed a new constitutive model of an austenitic stainless steel. Two types of austenitic

steels (304 and 316) were tested under a cryogenic temperature. The phase transformation

and evolution of micro-damage were included in the model. The modelling of the plastic

behavior was based on the modified visco-plastic damage of Bodner type model. The model
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of Tomita and Iwamoto (1995) was used to incorporate phase transformation effects in the

constitutive description. The small strain theory was used although the computations were

performed up to fracture. The phase transformation occurring in the crack tip region in the

austenitic stainless steel 304 was investigated by Hallberg et al. (2012). The authors stated

that the martensite which appears in a crack tip region gives rise to fracture toughening of

the material. The higher resistance of crack initiation due to the presence of a martensitic

phase was also observed. Moreover, it was shown that the formation of martensite at the

crack tip may delay or even prevent further crack propagation. This transformation toughen-

ing and reduction of crack growth rate has been attributed to crack tip shielding and crack

tip blunting, and crack closure due to roughening of the crack surfaces or due to the crack

being subjected to compression by the dilatation in the transformed material.

Since the modelling of phase transformation and damage evolution in austenitic stainless

steels has been an important element of the research at the Institute of Applied Mechan-

ics (Cracow University of Technology) for many years, it is necessary to present scientific

achievements that have been developed. Garion and Skoczeń (2002, 2003) proposed a model

of an austenitic stainless steel subjected to loading at cryogenic temperatures where the

Mori-Tanaka homogenization scheme was used to include the influence of the martensitic

transformation on the hardening process. The authors extended the isotropic ductile dam-

age model of Chaboche-Lemaitre to the case of an orthotropic material by introducing the

tensor of texture. The coupling between martensitic transformation and damage evolution,

however was not accounted for. In the work of Egner and Skoczeń (2010) the model proposed

by Garion and Skoczeń (2003) was reformulated within the framework of thermodynamics

of irreversible processes and used to calculate damage evolution in materials characterized

by low stacking fault energy (such as copper, stainless steel 316L) in cryogenic conditions.

Experimental evidence of the deceleraion of the damage evolution rate due to presence and

development of martensite was presented. Mathematical and numerical model with coupling

between the martensitic transformation and damage evolution was proposed in Egner and

Ryś (2012), and Egner et al. (2015a,b). Moreover, the previous model was extended to account

for different types of the damage evolution in both phases, and a mixture rule was postulated

in order to obtain the average damage state in the RVE. It was assumed that the brittle dam-

age state in martensite depends directly on the actual stress state. Such approach is quite

convenient (e.g. brittle damage may develop independently of plastic flow, and a separate

Lagrange multiplier is not required) but leads to inconsistent results of numerical simula-

tions of unloading during cyclic loading. The model was implemented in Abaqus/Vumat via

user subroutine to simulate the behaviour of axisymmetric, corrugated thin-walled cryogenic

bellows under cyclic loading at cryogenic temperatures in Ryś (2015). The model was also
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used in the case of circular bars subjected to torsion in liquid nitrogen and room temperature

conditions, 3D FE simulation was compared to the analytical solution of the torsion prob-

lem (Ortwein et al., 2016). The ductile damage evolution model used in the abovementioned

propositions was based on the Chaboche-Lemaitre model of damage development (extended

to acoount for anisotropy), alternative proposition was presented in Ryś (2016), where an

isotropic Bonora type model was used. Moreover, the total energy equivalence hypothesis

was used to derive particular state equations, and a non-assosiated flow rule was used, which

allowed to obtain better correspondence between numerical and experimental results. Finally,

in the recent work (Egner and Ryś, 2017), a general theory of the constitutive modelling of

multidissipative materials was developed where the total energy hypothesis (originally de-

veloped for damage materials) was extended to modelling not only damage but also other

dissipative phenomena (e.g. phase transformation). Additionaly to the yield criterion (based

on the J2 theory), analogical damage surface was introduced to model brittle damage evo-

lution. Radiation induced damage in austenitic steels was considered in Ryś and Skoczeń

(2017).

It has to be mentioned here that the presented dissertation is based on the previously

published works. Especially Chapters 3 and 6 are based on the recent work by Egner and

Ryś (2017).
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Chapter 3

Constitutive model of a
multi-dissipative material

The constitutive model is based on the following assumptions (Egner et al., 2015a; Egner

and Ryś, 2017):

1. the partially transformed material is composed of the austenitic matrix and martensitic

platelets, randomly distributed and oriented in the matrix,

2. the phase transformation is considered as plastic strain-induced and the austenitic phase

is recognized as a rather soft material in comparison to the much harder martensite,

3. the austenitic matrix is subjected to plastic deformation and ductile damage develop-

ment, whereas the inclusions show purely brittle response,

4. ductile damage in the matrix material and phase transformation are controlled by

plasticity (within a single generalized yield function), while brittle damage evolution

(in the secondary phase inclusions) is constrained by a separate damage surface,

5. brittle damage yield surface is subjected to isotropic hardening,

6. a rule of mixture is applied to estimate the average level of damage in the RVE,

7. mixed isotropic/kinematic plastic hardening is regarded,

8. strains are small,

9. isothermal conditions are considered,

10. the amount of the secondary phase does not exceed 80-90%.
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3.1 Internal variables of state

In the case of the small strain theory, the total strain tensor, ε , can be expressed as a sum

of the elastic (reversible) strain, εE , and inelastic (irreversible) strain, εI : 1

ε = εE + εI (3.1)

In the process of deformation, evolution of material micro-structure may be induced, for

example by changes in density and configuration of dislocations, development of microscopic

cavities, transition changes from primary to secondary phase, etc. All these rearrangements

may contribute to both reversible and irreversible strains (Al-Rub and Voyiadjis, 2003; Egner,

2012), therefore:

εE = εe +
n∑
k=1

εEk, εI =
n∑
k=1

εIk, εk = εEk + εIk, k = 1, 2, ..., n (3.2)

where εe denotes “pure” elastic strain, εEk, εIk are reversible and irreversible components

of the total strain εk, respectively, induced by k-th dissipative phenomenon. Here, in the

particular case of elastic – plastic – damage material with martensitic phase transformation

the following decomposition is assumed

εE = εe + εed (3.3)

where the total elastic strain, εE, is decomposed into the pure elastic strain, εe, and the

reversible–damage strain, εed. On the other hand, the following three phenomena cause in-

elastic strain: plastic flow, damage evolution and phase transformation, what results in the

following decomposition

εI = εp + εid + εtr (3.4)

Furthermore, since two types of damage evolution are considered, the irreversible damage

strain can be further decomposed into parts related to ductile damage evolution, εidd, and

brittle damage evolution, εibd

εid = εidd + εibd (3.5)

The part of inelastic strain, εtr related to the phase transformation can be decomposed into a

deviatoric part, which is related to the shape change due to the TRIP effect, and a volumetric

1The standard symbolic notation is employed, where bold-face characters denote second- or fourth-order
tensors, a double dot denotes double contraction, e.g. A : B = AijklBkl, and ⊗ a tensor product. A super-
imposed dot denotes the material time derivative (i.e. rate), assumed always to exist.
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part (cf. Stringfellow et al. 1992)

εtr = εs + εv (3.6)

According to the framework of thermodynamics of irreversible processes, the current state of

an RVE is entirely determined by known values of a chosen set of internal (hidden) variables

whose number and character (scalar or tensorial) depend on a physical mechanism causing

the particular microstructural rearrangement and the total strain (or displacement). There

are no precise rules of choosing internal variables but, in practice, these variables should

be measurable but not controllable (Maugin, 1999). In the case of the proposed model, the

following set of independent variables is chosen

{Vβ} = {εE;αp, rp; Dd,Db, rb; ξ} (3.7)

where εE is the elastic strain tensor, rp and αp are plasticity-related variables corresponding

to isotropic (change of size of yield surface) and kinematic (change of location of yield sur-

face) hardening respectively, while ξ is a volume fraction of the martensitic inclusions in the

total volume of the RVE. The last symbol in Eq. (3.7), rb, describes the variable related to

isotropic hardening of the brittle damage yield surface.

To account for the texture-induced anisotropy of the ductile matrix, and damage-induced

anisotropy of the brittle inclusions, the second-rank tensors Dd and Db are, respectively,

postulated as the measures of damage, after Egner et al. (2015a). The total material degra-

dation in the RVE is described by the damage tensor D, being a superposition of the ductile

part Dd and the brittle part Db. The simplest linear rule of mixture is here applied to define

the average damage tensor D:

Dij = (1− ξ)Ddij + ξDbij =
〈
Dij

〉d
RVE

+
〈
Dij

〉b
RVE

(3.8)

It is obvious that a more general formula of the mixture rule can also be used, which is

Dij = (1−m(ξ))Ddij +m(ξ)Dbij (3.9)

where m(ξ) ∈ 〈0, 1〉 is a function satisfying m(0) = 0 and m(1) = 1.
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3.2 The generalized total energy equivalence hypothe-

sis

Continuum mechanics approach used in the present analysis provides the constitutive and

evolution equations in the framework of thermodynamics of irreversible processes. The ma-

terial heterogeneity (on the micro- and meso-scale) is smeared out over the representative

volume element (RVE) of the piece-wise discontinuous and heterogeneous material. In contin-

uum damage mechanics the phenomenon of damage softening is described by the use of the

so-called effective state variables of a pseudo-undamaged quasi-continuum. To define these

damage-effective state variables, various equivalence hypotheses are formulated, for example:

(a) strain equivalence hypothesis (Lemaitre, 1971; Lemaitre and Chaboche, 1978), (b) stress

equivalence hypothesis (Simo and Ju, 1987), (c) strain energy or complementary energy equiv-

alence hypotheses (Cordebois and Sidoroff, 1982a,b), or finally, (d) total energy equivalence

hypothesis (Chow and Lu, 1992; Saanouni et al., 1994). According to these hypotheses, the

effective state variables are defined in such a way that respectively strains, stresses, strain

energy or complementary strain energy, or the total energy for both real (damaged) and

fictitious (pseudo-undamaged) materials are the same.

In the following section, a constitutive description of an austenitic stainless steel is de-

rived based on the total energy equivalence hypothesis but extended to all the dissipative

phenomena regarded. The theoretical background of the consistent application of this hy-

pothesis on the macro-scale to phenomena other than damage was presented in the paper by

Egner and Ryś (2017).

The formulation based on the total energy equivalence hypothesis satisfies a number of

compromises (Saanouni, 2012). In particular, the groups of effective state variables can be

equivalently used either in the strain or stress space. The transition from one space to the

other can be performed by the application of the Legendre-Fenchel transformation. In the

presence of anisotropic and dissipative behaviour, the total energy equivalence leads to sym-

metric physical properties (elastic modulus, strain hardening modules, etc) for a damaged

and phase transformed material. Moreover, it allows to achieve naturally a strong coupling

between damage, phase transformation, and all other variables, without neglecting any in-

teraction between various phenomena taking place in the material.

The development of plasticity, damage and phase transformation affects the global me-

chanical properties of steel, either causing softening (damage) or hardening (plasticity, phase

transformation, cf. Egner and Skoczeń (2010); Egner et al. (2015a)). This means that ma-

terial behavior (both elastic and inelastic) is influenced by the microstructural mechanisms.

To account for the influence of the dissipative phenomena on the overall mechanical proper-
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ties, the so-called effective state variables can be used in the state and dissipation potentials

instead of the classical state variables. These effective state variables are here defined on the

basis of the total energy equivalence generalized to all dissipative phenomena (cf. Saanouni

et al. (1994); Egner and Ryś (2017)):

“At any time (t), to an RVE in its real (deformed, damaged, phase transformed)

configuration, described by a set of state variables, we associate an unchanged

(undamaged, untransformed) equivalent fictive configuration the state of which

is described by the effective state variables – in such a manner that the total in-

ternal energy defined over the two (real and fictive) configurations is the same”.

Such formulation involves two main configurations (see Fig. 3.1): a real, discontinuous and

phase transformation
effect tensor N

phase transformation
effect tensor N

combined damage and
phase transformation

effect tensor P

Real con guration (R)

austenitic matrix

martensitic
inclusions

ductile damage
in matrix material

brittle damage
in inclusions

Fictitious
con guration (F)

1
Intermediate con�guration I
(not damaged, two-phase)

Intermediate con�guration I
(damaged, mono-phase)

2

damage effect

tensor M

damage effect

tensor M

Figure 3.1: Illustration of the generalized total energy equivalence hypothesis.

heterogeneous configuration (R) of a material subjected to three dissipative phenomena:

plastic slips, damage and phase transformation, and a fictitious, quasi-continuous and quasi-

homogeneous configuration ( ˆ̃F ) ≡ ( ˜̂
F ). Mapping from configuration (R) to ( ˆ̃F ) ≡ ( ˜̂

F ) may

be equivalently performed with the use of two intermediate configurations: (Ĩ1), which is

idealized undamaged but phase transformed, and (Î2), which is a damaged but idealized

untransformed configuration. Each intermediate configuration is characterized by proper ef-

fective variables, defined on the basis of the total energy equivalence applied to the real

configuration (R) and the intermediate configuration considered. Mapping from the real con-

figuration (R) to fictitious configuration ( ˆ̃F ) ≡ ( ˜̂
F ) may therefore be indifferently realized in

26



two ways: (R) → (Ĩ1) → ( ˆ̃F ) or (R) → (Î2) → ( ˜̂
F ), as a combination of two qualitatively

different transformations: one of them transforms a highly discontinuous (damaged) config-

uration to a perfectly continuous (undamaged) one, while the second transforms a highly

heterogeneous (multi-phase) configuration to a perfectly homogeneous (mono-phase) config-

uration.

Using such a unified approach to damage and phase transformation requires two transforma-

tion tensors: the classical damage effect tensor (Mijkl), which maps the state variables from

the damaged to pseudo-undamaged configuration ((R) → (Ĩ1) or (Î2) → ( ˜̂
F )), and a new

phase transformation effect tensor (Nijkl). The new tensor maps the state variables from the

transformed to pseudo-untransformed configuration ((Ĩ1)→ ( ˆ̃F ) or (R)→ (Î2)).

In such approach, all dissipative phenomena are consistently described by the use of the same

thermodynamic framework. The representative volume element of a real, discontinuous (due

to cavities and microcracks) and heterogeneous (due to phases) material is mapped into a

point of a fictitious homogeneous continuum in which all micro-rearrangements are smeared

out without resolving the details of the contributing components. The effective state variables

Table 3.1: Pairs of variables related to different configurations defined in the model.

phenomenon

Real
configuration

(R)

Intermediate
configuration

(Ĩ1)

Intermediate
configuration

(Î2)

Pseudo-undamaged
and untransformed
configuration

( ˆ̃F ) ≡ ( ˜̂
F )

plastic flow
plastic hardening
(kinematic and
isotropic)

(εE,σ)
(αp,Xp)
(rp, Rp)

(ε̃E, σ̃)
(α̃p, X̃p)
(r̃p, R̃p)

(ε̂E, σ̂)
(α̂p, X̂p)
(r̂p, R̂p)

(ˆ̃εE, ˆ̃σ)

( ˆ̃αp, ˆ̃Xp)

(ˆ̃rp, ˆ̃Rp)

phase
transformation (ξ, Y CH) (ξ, Y CH) (ξ = 0, Y CH = 0) (ξ = 0, Y CH = 0)

ductile damage (Dd,Yd) (Dd = 0,Yd = 0) (Dd,Yd) (Dd = 0,Yd = 0)

brittle damage
(Db,Yb)
(rb, Rb)

(Db = 0,Yb = 0)
(r̃b, R̃b)

(Db = 0,Yb = 0)
(r̂b, R̂b)

(Db = 0,Yb = 0)

(ˆ̃rb, ˆ̃Rb)

Total internal
energy (isother-
mal)

U t Ũ t Û t ˆ̃U t ≡ ˜̂
U t

are related to different configurations considered in the model (see Fig. 3.1, Tab. 3.1), and
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defined on the basis of the total energy equivalence between subsequent configurations:

U t(εE,αp, rp; ξ; Dd; Db, rb) = Ũ t(ε̃E, α̃p, r̃p; ξ; r̃b) =

= Û t(ε̂E, α̂p, r̂p; Dd; Db, r̂b) = ˆ̃U t(ˆ̃εE, ˆ̃αp, ˆ̃rp; ˆ̃rb)
(3.10)

It is assumed here that the total energy, U t, can be additively decomposed into a sum of

elastic energy, U e, kinematic hardening energy, Ukin, and isotropic hardening energy, U iso.

Thus, the introduced hypothesis can be further formulated in a stronger form, namely all the

total energy components are equivalent in each configuration.

U e =
1
2
σijε

E
ij =

1
2
σ̃ij ε̃

E
ij =

1
2
σ̂ij ε̂

E
ij =

1
2

ˆ̃σij ˆ̃εEij (3.11)

Ukin =
1
2
Xpijα

p
ij =

1
2
X̃pijα̃

p
ij =

1
2
X̂pijα̂

p
ij =

1
2

ˆ̃Xpij ˆ̃αpij (3.12)

U iso =
1
2
Rprp +

1
2
Rbrb =

1
2
R̃pr̃p +

1
2
R̃br̃b =

1
2
R̂pr̂p +

1
2
R̂br̂b =

1
2

ˆ̃Rp ˆ̃rp +
1
2

ˆ̃Rb ˆ̃rb (3.13)

Note that the fictive undamaged and untransformed configuration ( ˆ̃F ) ≡ ( ˜̂
F ) is qualitatively

different from the virgin material configuration, because the complete description of the

current state of the fictive material ( ˆ̃F ) ≡ ( ˜̂
F ) requires not only the use of observable variables

but also hardening variable pairs ( ˆ̃αp, ˆ̃Xp), (ˆ̃rp, ˆ̃Rp), (ˆ̃rb, ˆ̃Rb), while for the virgin material all

internal variables are zero. In other words, in configuration ( ˆ̃F ) ≡ ( ˜̂
F ) the information about

the current state of “hardening” related to all dissipative phenomena has to be recorded.

3.3 Damage and phase transformation effect operators

A general solution that satisfies equation (3.11) may take the following form:

σ̃ij = [Mijkl(D)]−1σkl, ε̃Eij = [Mijkl(D)]T εEkl (3.14)

σ̂ij = [Nijkl(ξ)]
−1σkl, ε̂Eij = [Nijkl(ξ)]

T εEkl (3.15)

ˆ̃σij = [Pijkl(D, ξ)]
−1σkl, ˆ̃εEij = [Pijkl(D, ξ)]

T εEkl (3.16)

Each of the operators introduced above (M, N, P) should meet appropriate restrictions which

result from the basics of linear algebra and physics of a phenomenon under consideration.

Namely, the damage effect operator M(D) should:

• be a positive definite, symmetric, and decreasing function of damage tensors,
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• be reduced to the fourth-rank unit tensor in the absence of damage,

• tend toward the fourth-order zero tensor at total fracture of the RVE when the average

damage tensor approaches the unit tensor.

The phase transformation effect operator N(ξ) should:

• be a positive definite, symmetric and monotonic function of phase transformation vari-

able,

• be reduced to the fourth-rank unit tensor in the absence of phase transformation,

• transform the properties of the matrix material into the properties of the secondary

phase material when the phase transformation variable reaches unity.

The combined effect operator P(D, ξ) should:

• be a positive definite, symmetric but not necessarily monotonic function of damage and

phase transformation variables,

• be reduced to the fourth-rank damage effect operator in the absence of phase transfor-

mation, and to the fourth-rank phase transformation effect operator in the absence of

damage: P(D, 0) = M(D), P(0, ξ) = N(ξ).

To derive the solution that satisfies Eqs (3.12) and (3.13), the following additional assump-

tions are applied:

a) a given dissipative phenomenon does not affect itself,

b) it is assumed (for simplicity) that phase transformation affects only plastic hardening

variables and not damage variables (which remain unchanged),

c) the relations between inelastic tensorial variables (related to kinematic hardening) in

subsequent configurations involve fourth-order inelastic operators Min, Nin, Pin which

exhibit the same features as “elastic” operators M, N, P (see above),

d) since current state of phase transformation is described with the use of scalar variable ξ,

the phase transformation effect tensor (affecting plastic kinematic hardening variables) is

here a unimodular fourth-rank tensor:

Nin = hkin(ξ)I (3.17)
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As a result, operator Pin, related to a combination of mappings (R) → (Ĩ1) → ( ˆ̃F ) or

(R)→ (Î2)→ ( ˜̂
F ) takes the following form:

Pin(D, ξ) = hkin(ξ)M (3.18)

e) damage affects plastic kinematic hardening variables in the same way as elastic strains

Min = M,

f) the relations between inelastic scalar variables (related to isotropic hardening) are de-

scribed by the use of scalar functions g(D), hiso(ξ) and p(D, ξ) = g (D)hiso (ξ).

According to the above assumptions we obtain:

X̃pij = [Mijpq(D)]−1Xppq, α̃pij = [Mijpq(D)]Tαppq (3.19)

X̂pij =
1

hkin (ξ)
Xpij, α̂pij = hkin (ξ)αpij (3.20)

ˆ̃Xpij =
1
hkin

(Mijkl)
−1Xpkl, ˆ̃αpij = hkin(Mijkl)

Tαpkl (3.21)

Accordingly, for the isotropic hardening variables it is:

R̃p =
Rp

g(D)
, r̃p = g(D)rp, R̃b = Rb, r̃b = rb (3.22)

R̂p =
Rp

hiso(ξ)
, r̂p = hiso(ξ)rp, R̂b = Rb, r̂b = rb (3.23)

ˆ̃Rp =
Rp

g(D)hiso(ξ)
, ˆ̃rp = g(D)hiso(ξ)rp, ˆ̃Rb = Rb, ˆ̃rb = rb (3.24)

In the present considerations, it is adopted that scalar damage effect function g(D) and

hardening functions hkin(ξ), hiso(ξ) take the forms (Saanouni et al., 1994; Egner and Ryś,

2017):

g(D) = 1−
√
DijDij = 1−Deq, hkin(ξ) = 1 + hXξ, hiso(ξ) = 1 + hRξ (3.25)

where hX , hR are material parameters.

It should be noted here that the introduced above phase transformation effect scalar functions

hkin(ξ) and hiso(ξ) are purely phenomenological, however a similar linear function hkin(ξ) in

a kinematic hardening description was proposed by Sitko and Skoczeń (2012) on the basis of

micromechanical considerations.
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3.4 Effective material properties based on total energy

equivalence

In the present work, the Helmholtz free energy density (per unit volume), ψ, is used as

the thermodynamic potential which describes the current state of the material and, in real

configuration (R), is a function of the state variables

ψ = ψ({Vβ}) = ψ(εE;αp, rp; Dd,Db, rb; ξ) (3.26)

Moreover, it is assumed that the state potential of the material in its real configuration (R)

can be written as a sum of elastic (E), inelastic (I), and chemical (CH) terms:

ψ = ψ (Vβ) = ψE + ψI + ψCH (3.27)

For the present study, the following functions for ψE and ψI are adopted:

ψE =
1
2
εEij

ˆ̃Eijklε
E
kl (3.28)

ψI = ψp + ψbd =
1
2

ˆ̃Cijklα
p
ijα
p
kl +

1
2

ˆ̃Qp(rp)2 +
1
2
Qb(rb)

2
(3.29)

where ˆ̃E, ˆ̃C, ˆ̃Qp and Qb denote (damage affected) elastic stiffness tensor, (damage and phase

transformation affected) plastic hardening moduli (respectively kinematic and isotropic) and

damage isotropic hardening modulus in a current real configuration (R).

Term ψCH in Eq. (3.27) stands for the chemically stored energy:

ψCH = [1− f (ξ)]ψCHγ + f (ξ)ψCHα′ (3.30)

Terms ψCHγ and ψCHα′ are the chemical energies of the respective phases, dependent on the

specific heat, entropy and temperature (cf. e.g. Hallberg et al. (2007), Fischer et al. (2000)).

Symbol f(ξ) denotes a function of the current state of phase transformation, such that

f(0) = 0 and f(1) = 1.

According to the used hypothesis of the total energy equivalence, it is reasonable to introduce

the Helmholz free energy density, ˆ̃ψ related to the pseudo unchanged configuration ( ˆ̃F ) ≡ ( ˜̂
F ),

which is
ˆ̃ψE =

1
2

ˆ̃εEijE
0
ijkl

ˆ̃εEkl (3.31)

ˆ̃ψI = ˆ̃ψp + ψ̂b =
1
2
C0ijkl ˆ̃α

p
ij

ˆ̃αpkl +
1
2
Qp0(ˆ̃rp)

2
+

1
2
Qb0(rb)

2
(3.32)
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ˆ̃ψCH = ψ̃CHγ (3.33)

where E0, C0, Qp0 and Qb0 denote material characteristics for the (virgin) undamaged and

not transformed material. In view of the total energy equivalence the Helmholtz free energies

in all configurations considered are equivalent, therefore:

ˆ̃ψE = ψE, ˆ̃ψI = ψI, ˆ̃ψCH = ψCH. (3.34)

In the case of γ → α′ phase transformation, it can be assumed that elastic behaviour of both

phases is the same and therefore phase transformation does not affect elastic properties of

the material (cf. e.g. Hallberg et al. (2007); Mahnken et al. (2012)). In such case, the phase

transformation operator N (Eqs. 3.15) is a unit tensor, N = I, and, consequently, P = M

(see Eqs. 3.16). Equation (3.161) therefore takes the simplified form:

ˆ̃σij = (Mijkl)
−1σkl = σ̃ij (3.35)

Since γ → α′ phase transformation does not affect the elastic properties of the material,

the current elastic stiffness tensor is affected only by damage, ˆ̃E(D) = Ẽ(D). The tensor is

related to the initial stiffness of the undamaged material, E0, by the use of the fourth-rank

symmetric damage effect tensor M(D) (cf. Saanouni (2012)). Using relations (3.16), (3.28),

(3.31), and (3.34) the relation between the initial and current stiffness tensors is obtained:

Ẽijkl(D) = MijpqE
0
pqmnMklmn (3.36)

The following expression for M(D), proposed by Cordebois and Sidoroff (1982a,b), will be

used here:

Mikjl =
1
2

[
(δik −Dik)δjl + δik(δjl −Djl)

]
(3.37)

Relations (3.34), (3.32) and (3.29) result in:

ˆ̃Cijpq = (1 + hXξ)
2MijklC

0
klrsMrspq (3.38)

ˆ̃Qp = (1 + hRξ)
2(1−Deq)

2Qp0 (3.39)

while the material parameter related to damage isotropic hardening remains unchanged,

ˆ̃Qb = Qb0 (3.40)
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In the absence of the martensitic phase (ξ ≡ 0), and if there is no damage, the material is

considered as isotropic, thus the plasticity tensor in the fictitious configuration ( ˆ̃F ) ≡ ( ˜̂
F ) is

C0ijkl = C0Iijkl. In such case, Eq. (3.38) is simplified into the following expression:

ˆ̃Cijkl (D, ξ) = (1 + hXξ)
2C0Mijmn(D)Mmnkl(D) (3.41)

It can be seen from Eqs. (3.36), (3.38) and (3.41) that in the presence of the (acquired)

anisotropic behavior induced by damage, the generalized total energy equivalence leads to

symmetric physical properties of multi-dissipative materials.

3.5 Equations of state

According to an approach widely used in the literature on damage mechanics, generalized

here for all other dissipative phenomena, the mechanical behavior of a real dissipative medium

is derived from the same state and dissipation potentials as a fictitious unchanged medium

in which state variables are replaced by effective variables.

By eliminating all reversible processes from the Clausius-Duhem inequality, the following

state equation, which expresses the thermodynamic force σ conjugated to the observable

state variable εE, is obtained:

σij =
∂ψ

∂εEij
= Ẽijklε

E
kl (3.42)

In addition, the forces conjugated to other state variables are defined in a like manner. For

damage variable D, the thermodynamic conjugated force has the form:

Yij = −∂( ˆ̃ψ)
∂Dij

= −∂( ˆ̃ψE)
∂Dij

− ∂( ˆ̃ψI)
∂Dij

−
∂(ψ̃CHγ )
∂Dij

= Y eij + Y pij + Y trij (3.43)

where Y eij, Y
p
ij and Y trij stand for the contributions to the thermodynamic force Yij from

elasticity, plastic hardening, and phase transformation respectively (cf. also Egner (2012);

Egner and Ryś (2017)):

Y eij = −E0pqklJrspqijεEklεErs, Jrspqij =
∂Mrspq

∂Dij

(3.44)

Y pij = −Cp0(1 + hXξ)
2MklmnJklrsijα

p
mnα

p
rs +

Qp0

Deq

(1−Deq)(1 + hRξ)
2(rp)2Dij (3.45)

Y trij = −
∂(ψ̃CHγ )
∂Dij

(3.46)

33



The conjugated force for phase transformation becomes:

Y CH =
∂( ˆ̃ψ)
∂ξ

=
∂( ˆ̃ψI)
∂ξ

+
∂(ψ̃CHγ )
∂ξ

(3.47)

The forces conjugated to plastic and damage hardening variables take the form:

Xpij =
∂( ˆ̃ψ)
∂αpij

= (1 + hXξ)
2C0MijmnMmnklα

p
kl (3.48)

Rp =
∂( ˆ̃ψ)
∂rp

= (1 + hRξ)
2(1−Deq)

2Qp0rp (3.49)

Rb =
∂( ˆ̃ψ)
∂rb

= Qb0rb (3.50)

Equations (3.42)-(3.50) define the complete set {Jcf} = {σij;−Yij, Y CH;Xpij, R
p, Rb} of ther-

modynamic forces conjugated to state variables (see Table 3.1).

3.6 Evolution of state variables

In the present study the following time-independent dissipative mechanisms: plastic flow,

ductile damage, phase transformation, and brittle damage are considered. Each of these

mechanisms is constrained by a separate scalar-valued potential function that is positive,

null at the origin, and convex in its principal arguments. It should be pointed out that some

of the considered phenomena, such as ductile damage in the austenitic phase and phase

transformation, are strongly coupled with plastic flow, that is, if there is no plastic yielding,

thus also neither ductile damage evolution nor phase transformation occur in a material.

Brittle damage evolution is an independent process that can occur even in the elastic regime

but only in the presence of the secondary phase. Generally, we can distinguish two types

of coupling of plasticity with damage: the so called strong coupling and weak coupling.

Weak coupling is obtained by using two separate uncoupled plastic and damage loading

surfaces. Strong coupling is realized by using one single smooth generalized yield surface for

the plasticity and damage evolution. Another approach to achieve strong coupling is using

separate plasticity and damage surfaces with separate non-associated flow rules in such a

way that both damage and plasticity flow rules are dependent on both plastic and damage

potentials (Voyiadjis and Deliktas, 2000).

The plastic potential, F p is here equal to von Mises-type yield surface plus additional terms
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related to the isotropic and kinematic dynamic recovery (Chaboche, 2008)

F p = fp +
1
2

ˆ̃bp

ˆ̃Qp
(Rp)2 +

3
4

ˆ̃γX
′p
ij

ˆ̃C−1ijklX
′p
kl (3.51)

In the above equation, fp denotes the von Mises yield surface:

fp =

√
3
2

(σ′ij −X
′p
ij )(σ′ij −X

′p
ij )− ˆ̃σy −Rp (3.52)

Symbols σ′ij and X
′p
ij stand for the stress and the back stress deviators (in the presence of

anisotropic damage, the incompressibility of the plastic material is lost):

σ′ij =
(
δimδjn −

1
3
δijδmn

)
σmn, X

′p
ij =

(
δimδjn −

1
3
δijδmn

)
Xpmn (3.53)

while ˆ̃γ and ˆ̃bp are additional material parameters which may be affected by the dissipative

phenomena taking place in the material.

Ductile materials strained in cryogenic conditions develop micro-damage fields in a similar

way like at room or enhanced temperatures. Evolution of damage fields (micro-cracks and

micro-voids) is also driven by plastic strains and similar kinetic laws can be used. Thus for

ductile damage dissipation the relevant potential F d is assumed in the following form (cf.

Saanouni (2012)):

F d =
2S

(s+ 1)(1−Ddeq)
β

(
Y deq
S

)(s+1)
−Bd , Ddeq =

√
DdijD

d
ij (3.54)

where S, s and β are characteristic damage-related parameters (that may be affected by phase

transformation), and Bd is a threshold for the norm of the thermodynamic force associated

with ductile damage, below which ductile damage does not develop. Symbol Y deq stands for

the norm of thermodynamic force conjugated to ductile damage, see Eq. (3.43):

Y dij = −∂( ˆ̃ψ)
∂Ddij

= −∂( ˆ̃ψ)
∂Dkl

∂Dkl

∂Ddij
= (1− ξ)Yij (3.55)

This norm is here defined as:

Y deq =

√
1
2
Y dijAijklY

d
kl (3.56)
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where Aijkl is the anisotropy operator of ductile damage evolution (Hayakawa et al., 1998):

Aijkl =
1
2

(δijδkl + δilδjk) (3.57)

The phase transformation dissipation potential, F tr, is expressed as a function of Y CH in a

simple form:

F tr = (ξmax − ξ)
mξDξ

(1−Deq)
(Dξp)

mξ−1Y CH −Btr (3.58)

where factor (ξmax − ξ) reflects the decreasing volume fraction available for transformation,

mξ and Dξ are parameters, and p =
∫
t λ̇
pdt (λ̇p is a plastic multiplier). Symbol Btr denotes

the barrier force for phase transformation (cf. Fischer et al. (2000), Mahnken and Schneidt

(2010)).

The brittle damage evolution in martensitic inclusions is not governed by plasticity, and thus

a separate brittle damage dissipation potential, F b, is introduced in the following form (cf.

Al-Rub and Voyiadjis (2003)):

F b = fb +
1
2
bb

Qb0
(Rb)2 =

√
1
2
Y bijAijklY

b
kl − ly −Rb +

1
2
bb

Qb0
(Rb)2

= ξ

√
1
2
YijAijklYkl − ly −Rb +

1
2
bb

Qb0
(Rb)2

(3.59)

where ly denotes the initial size (radius) of the brittle damage surface, and bb is an additional

model parameter related to nonlinearity of the isotropic damage hardening. Symbol Y bij is

the thermodynamic force conjugated to brittle damage, see Eq. (3.43):

Y bij = −∂( ˆ̃ψ)
∂Dbij

= −∂( ˆ̃ψ)
∂Dkl

∂Dkl

∂Dbij
= ξYij (3.60)

As already mentioned before, the kinetic equations for a real dissipative medium can be

derived from the dissipation potentials of a fictitious (non-dissipative) medium with the use

of effective variables. Effective plastic potential ˆ̃F p (Eq. 3.51) in the fictitious ( ˆ̃F ) ≡ ( ˜̂
F )

configuration, expressed in effective variables, is:

ˆ̃F p = ˆ̃fp +
1
2
bp

Qp0
( ˆ̃Rp)2 +

3
4
γ

Cp0
ˆ̃Xpij

ˆ̃Xpij (3.61)
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where the effective conjugated variables are defined by Eqs. (3.35) and (3.19)-(3.24).

Effective yield function ˆ̃fp is expressed in the following way:

ˆ̃fp = J2(σ̃ij − ˆ̃Xpij)− σ0y −
ˆ̃Rp =

=

√√√√3
2

[
(Mijkl)

−1(skl −
X
′p
kl√

1 + hXξ
)
] [

(Mijmn)−1(smn −
X
′p
mn√

1 + hXξ
)
]
− σ0y −

ˆ̃Rp (3.62)

In the above functional, all (dependent) state variables are expressed in the fictitious config-

uration. This approach is most general and consistent with the introduced concept, however

there are also other possibilities, for example the functional can be based only on effective

stress while other variables may be used in a real configuration. It can be easily seen that

there are many other possibilities, which results in different couplings, thus there is quite

much freedom of choosing a particular option (discussion about choosing different couplings

in continuum damage mechanics can be found in Besson et al. (2009)).

The expression for the second invariant, J2, may be presented in a form more convenient for

numerical implementation. Taking into account Eqs. (3.35), (3.211) and (3.25) the relations

(3.53) may be expressed in the following form:

σ̃′ij = T−1ijklσkl,
ˆ̃X
′p
ij = T−1ijkl

Xpkl
1 + hXξ

(3.63)

where

T−1ijkl =
(
δimδjn −

1
3
δijδmn

)
M−1

mnkl = M−1
ijkl −

1
3
M−1

mmklδij (3.64)

Now, the second invariant of the effective stress deviator (3.62) can be rewritten as:

J2(σ̃ij − ˆ̃Xpij) =

√√√√3
2

[
T−1ijkl

(
σkl −

Xpkl
1 + hXξ

)] [
T−1ijmn

(
σmn −

Xpmn

1 + hXξ

)]
(3.65)

By employing the normality rule, the following kinetic law for inelastic strain is obtained:

ε̇Iij = λ̇p
∂ ˆ̃F p

∂σij
+ λ̇p

∂F d

∂σij
+ λ̇b

∂F b

∂σij
+ ε̇trij = ε̇pij + ε̇iddij + ε̇ibdij + ε̇trij (3.66)

where the strain rate components resulting from the mechanisms governed by plasticity are:

ε̇pij = λ̇p
∂ ˆ̃F p

∂σij
= λ̇p

3
2T
−1
pqijT

−1
pqkl(σkl −

Xp
kl

1+hXξ
)

J2(σ̃ij − ˆ̃Xpij)
(3.67)
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ε̇iddij = λ̇p
∂F d

∂σij
= λ̇p

2S

(1−Ddeq)
β

(
Y deq
S

)s
AmnklY

d
kl

Y deq

∂Y dmn
∂σij

(3.68)

The development of brittle damage gives the contribution:

ε̇ibdij = λ̇b
∂F b

∂σij
= λ̇b

AklmnY
b
mn√

1
2Y
b
pqApqsxY

b
sx

∂Y bkl
∂σij

(3.69)

The last term in (3.66) is related to the TRIP effect associated with phase transformation

(cf. Stringfellow et al. (1992), Hallberg et al. (2007)):

ε̇trij = A

 ∂ ˆ̃fp

∂σij
+

1
3

∆υδij

 ξ̇ (3.70)

in which the dilatation term accounts for the volume change induced by transformation with

∆υ > 0 and A = A0 +A1
(
σeq
σy

)
is dimensionless coefficient taking into account orientational

charakter of the transformation strains (Stringfellow et al., 1992).

On the basis of the normality rule, the rate of plastic isotropic hardening internal variable is

defined as follows:

ṙp = −λ̇p∂
ˆ̃F p

∂Rp
=

λ̇p

(1−Deq)(1 + hRξ)

(
1− bp

Qp0
Rp

(1−Deq)
3(1 + hRξ)

3

)
(3.71)

Introducing state equation (3.49) in Eq. (3.71) results in the following relation:

ṙp = −λ̇p∂
ˆ̃F p

∂Rp
=

λ̇p

(1−Deq)(1 + hRξ)

(
1− bprp

(1−Deq)(1 + hRξ)

)
(3.72)

The normality rule applied to plastic potential with respect to back stress Xp gives:

α̇ij = −λ̇p ∂
ˆ̃F p

∂Xpij
=

3
2

λ̇p

1 + hXξ
T−1pqijT

−1
pqkl


(
σkl −

Xp
kl

1+hXξ

)
J2(σ̃ij − ˆ̃Xpij)

− γ

C(1 + hXξ)
3X
p
kl

 (3.73)

The rates of damage state variables Dd, Db and rb result from the normality rule applied to

the relevant potentials, F d and F b (Eqs (3.54) and (3.59)):

Ḋdij = λ̇p
∂F d

∂Y dij
=

λ̇p

(1−Ddeq)
β

(
Y deq
S

)s
AijklY

d
kl

Y deq
H (p− pD) (3.74)
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Ḋbij = λ̇b
∂F b

∂Y bij
= λ̇b

AijklY
b
kl√

1
2Y
b
pqApqsrY

b
sr

(3.75)

ṙb = −λ̇b∂F
b

∂Rb
= λ̇b

(
1− bb

Qb0
Rb
)

= λ̇b
(
1− bbrb

)
(3.76)

For the phase transformation, the following kinetic equation is obtained:

ξ̇ = λ̇p
∂F tr

∂Y CH
= λ̇p(ξmax − ξ)

mξDξ

(1−Deq)
(Dξp)

mξ−1 (3.77)

In the case of the absence of damage, the above formula is similar to the one proposed by

Santacreu et al. (2006).

The constitutive model is completed with the following loading/unloading conditions:

λ̇p ­ 0; ˆ̃fp ¬ 0; λ̇p ˆ̃fp = 0 (3.78)

λ̇b ­ 0; fb ¬ 0; λ̇bfb = 0 (3.79)

The yield criterion (Eq. 3.62) is a function of the effective Cauchy stress, the backstress, the

isotropic hardening, the damage tensor and the scalar magnitude of martensite content, and

since (at plastic state, ˆ̃f = 0) complementary conditions (Eq. 3.78) imply
˙̃̂
f = 0, thus the

consistency condition can be expressed as follows:

˙̃̂
fp =

∂ ˆ̃fp

∂σij
σ̇ij +

∂ ˆ̃fp

∂Xpij
Ẋpij +

∂ ˆ̃fp

∂Rp
Ṙp +

∂ ˆ̃fp

∂Dij

Ḋij +
∂ ˆ̃fp

∂ξ
ξ̇ = 0 (3.80)

The conjugated forces Xpij and Rp are functions of the internal state variables αpij and rp (Eqs.

3.48, 3.49), hence the consistency condition can be rewritten in terms of the flux variables as

follows:
˙̃̂
fp =

∂ ˆ̃fp

∂σij
σ̇ij +

∂ ˆ̃fp

∂Xpkl

∂Xp
kl

αpij
α̇pij +

∂ ˆ̃fp

∂Rp
∂Rp

∂rp
ṙp +

∂ ˆ̃fp

∂Dij

Ḋij +
∂ ˆ̃fp

∂ξ
ξ̇ = 0 (3.81)

The use of the simplified rate form of the mixture rule (Eq. 3.8) and the definitions of the

internal variable evolution equations (Eqs. 3.72, 3.73, 3.74, 3.75 and 3.77) results in the

following relation

˙̃̂
fp =

∂ ˆ̃fp

∂σij
σ̇ij − λ̇p

∂ ˆ̃fp

∂Xpkl

∂Xpkl
αpij

∂ ˆ̃F p

∂Xpij
− λ̇p ∂

ˆ̃fp

∂Rp
∂Rp

∂rp
∂ ˆ̃F p

∂Rp

+λ̇p(1− ξ) ∂
ˆ̃fp

∂Dij

∂F d

∂Y dij
+ λ̇bξ

∂ ˆ̃fp

∂Dij

∂F b

∂Y bij
+ λ̇p

∂ ˆ̃fp

∂ξ

∂F tr

∂Y CH
= 0

(3.82)

39



Thus the consistency condition can be written in the following simple form

λ̇pHpp − λ̇bHpd = Zp (3.83)

where the following definitions were used

Zp =
∂ ˆ̃fp

∂σij
σ̇ij (3.84)

Hpp =
∂ ˆ̃fp

∂Xpkl

∂Xpkl
αpij

∂ ˆ̃F p

∂Xpij
+
∂ ˆ̃fp

∂Rp
∂Rp

∂rp
∂ ˆ̃F p

∂Rp
− (1− ξ) ∂

ˆ̃fp

∂Dij

∂F d

∂Y dij
− ∂ ˆ̃fp

∂ξ

∂F tr

∂Y CH
(3.85)

Hpd = ξ
∂ ˆ̃fp

∂Dij

∂F b

∂Y bij
(3.86)

On the other hand, the consistency condition for the brittle damage criterion implies:

ḟb =
∂fb

∂Y bij
Ẏ bij +

∂fb

∂Rb
Ṙb = 0 (3.87)

The use of the definition of the thermodynamic force, Rb (Eq. 3.50) gives

ḟb =
∂fb

∂Y bij
Ẏ bij +

∂fb

∂Rb
∂Rb

∂rb
ṙb = 0 (3.88)

However, based on Eq. (3.60), the above condition can be rewritten as follows:

ḟb =
∂fb

∂σij
σ̇ij +

∂fb

∂Rb
∂Rb

∂rb
ṙb +

∂fb

∂Dij

Ḋij +
∂fb

∂ξ
ξ̇ (3.89)

Again, substituting the definitions of the internal variable evolution equations (Eq. 3.76, 3.74,

3.75 and 3.77) results in

ḟb =
∂fb

∂σij
σ̇ij − λ̇b

∂fb

∂Rb
∂Rb

∂rb
∂F b

∂Rb
+ λ̇bξ

∂fb

∂Dij

∂F b

∂Y bij

+λ̇p (1− ξ) ∂f
b

∂Dij

∂F d

∂Y dij
+ λ̇p

∂fb

∂ξ

∂F tr

∂Y CH

(3.90)

The above equation can be written in the following simple form

−λ̇pHdp + λ̇bHdd = Zd (3.91)
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where the following definitions were used

Zd =
∂fb

∂σij
σ̇ij (3.92)

Hdd =
∂fb

∂Rb
∂Rb

∂rb
∂F b

∂Rb
− ξ ∂f

b

∂Dij

∂F b

∂Y bij
(3.93)

Hdp = (1− ξ) ∂f
b

∂Dij

∂F d

∂Y dij
+
∂fb

∂ξ

∂F tr

∂Y CH
(3.94)

On the basis of the equations (3.83) and (3.91), we have

λ̇pHpp − λ̇bHpd = Zp

−λ̇pHdp + λ̇bHdd = Zd
(3.95)

Thus the plastic and damage multipliers can be solved from the linear system of equations

given such that λ̇
p

λ̇b

 =
1
H

H
dd Hpd

Hdp Hpp


Z
p

Zd

 (3.96)

where

H = HppHdd −HpdHdp (3.97)

Using this solution, the plastic and damage multipliers can be written in terms of the incre-

mental stress as follows

λ̇p =
1
H

Hdd ∂ ˆ̃fp

∂σij
+Hpd

∂fb

∂σij

 σ̇ij
λ̇b =

1
H

Hdp ∂ ˆ̃fp

∂σij
+Hpp

∂fbd

∂σij

 σ̇ij
(3.98)

In order to obtain equations of the plastic and damage multipliers in terms of the incremental

strain, the incremental form of Eq. (3.42) must be inserted in Eq. (3.82) and Eq. (3.90), then

one can obtain

λ̇phpp − λ̇bhpd = zp (3.99)
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where

hpp = Hpp +
∂ ˆ̃fp

∂σij
Ẽijkl(D)

 ∂ ˆ̃fp

∂σkl
+
∂F d

∂σkl
+ A

 ∂ ˆ̃fp

∂σkl
+

1
3

∆υδkl

 ∂F tr

∂Y CH


−(1− ξ) ∂

ˆ̃fp

∂σij

∂Ẽijkl (D)
∂Dmn

(
εkl − εIkl

) ∂F d

∂Y dmn

(3.100)

hpd = Hpd − ∂ ˆ̃fp

∂σij
Ẽijkl (D)

∂F b

∂σkl
+ ξ

∂ ˆ̃fp

∂σij

∂Ẽijkl (D)
∂Dmn

(
εkl − εIkl

) ∂F b

∂Y bmn
(3.101)

zp =
∂ ˆ̃fp

∂σij
Ẽijkl (D) ε̇kl (3.102)

and

−λ̇phdp + λ̇bdhdd = zd (3.103)

where

hdd = Hdd +
∂fb

∂σij
Ẽijkl (D)

∂F b

∂σkl
− ξ ∂f

b

∂σij

∂Ẽijkl (D)
∂Dmn

(
εkl − εIkl

) ∂F b

∂Y bmn
(3.104)

hdp = Hdp − ∂fb

∂σij
Ẽijkl (D)

 ∂ ˆ̃fp

∂σkl
+
∂F d

∂σkl
+ A

 ∂ ˆ̃fp

∂σkl
+

1
3

∆υδkl

 ∂F tr

∂Y CH


+(1− ξ) ∂f

b

∂σij

∂Ẽijkl (D)
∂Dmn

(
εkl − εIkl

) ∂F d

∂Y dmn

(3.105)

zd =
∂fb

∂σij
Ẽijkl (D) ε̇kl (3.106)

Thus, the plastic and damage multipliers can be obtained by solving the linear system of

equations given by Eq. (3.99) and Eq. (3.103)

λ̇
p

λ̇b

 =
1
h

h
dd hpd

hdp hpp


z
p

zd

 (3.107)

where

h = hpphdd − hpdhdp (3.108)
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thus

λ̇p =
1
h

hdd ∂ ˆ̃fp

∂σij
+ hpd

∂fb

∂σij

 Ẽijkl (D) ε̇kl

λ̇b =
1
h

hdp ∂ ˆ̃fp

∂σij
+ hpp

∂fb

∂σij

 Ẽijkl (D) ε̇kl

(3.109)

3.7 Elastic-plastic-damage tangent modulus

On the basis of the rate form of the classical Hookean constitutive equation,

σ̇ = Ẽ (D) :
(
ε̇− ε̇I

)
+
∂Ẽ (D)
∂D

:
(
ε− εI

)
: Ḋ (3.110)

one can derive the tangent modulus of the elastic-plastic-damage and a partially transformed

material. At first, the relation between the incremental stress and the incremental total

damage measure must be find. This can be realized by substituting Eq. (3.98) into the

following rate form of the mixture rule (Eq. 3.8), used in calculations

Ḋ = (1− ξ)Ḋd + ξḊb =
˙〈
D
〉d
RVE

+
˙〈
D
〉b
RVE

= λ̇p(1− ξ)∂F
d

∂Yd
+ λ̇bξ

∂F b

∂Yb
(3.111)

Thus, the relation can be written in the following general form

Ḋ = P : σ̇ (3.112)

where P is a fourth order tensor defined as

P =
1
H

(1− ξ) ∂F
d

∂Yd
⊗

Hdd∂ ˆ̃fp

∂σ
+Hpd

∂fb

∂σ

+ ξ
∂F b

∂Yb
⊗

Hdp∂ ˆ̃fp

∂σ
+Hpp

∂fb

∂σ

 (3.113)

Now, the substitution of the above relation into Eq. (3.110) results in the following general

equation

σ̇ = De : ε̇E = De : (ε̇− ε̇I) (3.114)
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where De is the elastic tangent modulus, and it is expressed in the following way:

(De)−1 =



Ẽ−1 if λ̇p = 0; λ̇b = 0

Ẽ−1 (D)− (1−ξ)
Hpp

Ẽ−1 (D) : ∂Ẽ(D)
∂D : εE : ∂Fd

∂Yd ⊗
∂
ˆ̃
fp

∂σ
if λ̇p > 0; λ̇b = 0

Ẽ−1 (D)− ξ
Hdd

Ẽ−1 (D) : ∂Ẽ(D)
∂D : εE : ∂Fb

∂Yb ⊗
∂fb

∂σ
if λ̇p = 0; λ̇b > 0

Ẽ−1 (D)− Ẽ−1 (D) : ∂Ẽ(D)
∂D : εE : P if λ̇p > 0; λ̇b > 0

(3.115)

On the other hand, te use of Eqs. (3.66-3.70) together with Eq. (3.98) in (3.114) results in

the following general constitutive equation which relates the incremental stress and the total

incremental strain

σ̇ = Depd : ε̇ (3.116)

where the tangent modulus, Depd of the elastic-plastic-damage and phase transformed ma-

terial is as follows

(
Depd

)−1
=



(De)−1 if λ̇p = 0; λ̇b = 0

(De)−1 + 1
Hpp

(
∂ ˆ̃Fp
∂σ
⊗ ∂

ˆ̃
fp

∂σ
+ ∂Fd

∂σ
⊗ ∂

ˆ̃
fp

∂σ
+ Atr ⊗ ∂

ˆ̃
fp

∂σ

)
if λ̇p > 0; λ̇b = 0

(De)−1 + 1
Hdd

∂Fb

∂σ
⊗ ∂fb

∂σ
if λ̇p = 0; λ̇b > 0

(De)−1 + 1
H



∂ ˆ̃F p

∂σ
⊗

Hdd∂ ˆ̃fp

∂σ
+Hpd

∂fb

∂σ


+
∂F d

∂σ
⊗

Hdd∂ ˆ̃fp

∂σ
+Hpd

∂fb

∂σ


+ Atr ⊗

Hdd∂ ˆ̃fp

∂σ
+Hpd

∂fb

∂σ


+
∂F b

∂σ
⊗

Hdp∂ ˆ̃fp

∂σ
+Hpp

∂fb

∂σ





if λ̇p > 0; λ̇b > 0

(3.117)

and the following substitiusion has been used

Atr = A
∂F tr

∂Y CH

∂ ˆ̃fp

∂σ
+

1
3

∆υ1

 (3.118)
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Chapter 4

Numerical approach – a fully implicit
backward Euler scheme

The current constitutive formulation involves two convex and smooth yield surfaces (plastic

and brittle damage) which intersect non-smoothly, which results in the presence of singular

points in the boundary of the convex elastic domain. Basically, standard algorithms (e.g. re-

turn mapping algorithms) may be used to cope with such problems, however special attention

must be paid to loading/unloading conditions for algorithmic implementation (cf. e.g. Simo

and Hughes (1998); Brepols et al. (2017)). In general, even if loading conditions are fulfilled

for both surfaces, it does not necessarily mean that both plastic and brittle damage processes

are ultimately active. Recently, in a similar problem of two (plastic and damage) surfaces,

The Closest Point Projection (CPP) algorithm was used in Voyiadjis and Dorgan (2007),

and Ryś and Skoczeń (2017). In the present work, two return mapping algorithms will be

presented. In the first algorithm, the Newton-Raphson scheme is used to solve a set of (rate-

independent) nonlinear algebraic equations, while in the second algorithm a rate-dependent

formulation is adopted as the regularization of the rate-independent model.

The constitutive model of the rate independent elastic-plastic-damage and partially

transformed continuum, under the assumption of small strains, is defined by the following
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set of evolution equations (cf. Eqs. 3.66, 3.72, 3.73, 3.74, 3.75, 3.76, 3.77)

ε̇I = λ̇p
∂ ˆ̃F p

∂σ
+ λ̇p

∂F d

∂σ
+ λ̇b

∂F b

∂σ
+ λ̇p

∂F tr

∂Y CH

∂ ˆ̃fp

∂σ
+

1
3

∆υ1

A (4.1)

α̇p = −λ̇p ∂
ˆ̃F p

∂Xp
(4.2)

ṙp = −λ̇p∂
ˆ̃F p

∂Rp
(4.3)

Ḋ = (1− ξ) Ḋd + ξḊb, with Ḋd = λ̇p
∂F d

∂Yd
and Ḋb = λ̇b

∂F b

∂Yb
(4.4)

ṙb = −λ̇b∂F
b

∂Rb
(4.5)

ξ̇ = λ̇p
∂F tr

∂Y CH
(4.6)

The above equations have to be solved together with the state laws,

σ = Ẽ (D) : εE (4.7)

Xp = ˆ̃C(D, ξ) : αp (4.8)

Rp = ˆ̃Q(D, ξ)rp (4.9)

Rb = Qb0rb (4.10)

−Y =
1
2
εE :

∂Ẽ(D)
∂D

: εE︸ ︷︷ ︸
Ye

+
1
2
αp :

∂ ˆ̃C(D, ξ)
∂D

: αp +
1
2
∂ ˆ̃Qp(D, ξ)

∂D
(rp)2︸ ︷︷ ︸

Yp

(4.11)

such that the yield criterion as well as the damage criterion have to be fulfilled:

ˆ̃fp =

√
3
2

[
T−1 : (σ − X̂)

]
:
[
T−1 : (σ − X̂)

]
− σ0y −

ˆ̃Rp = 0 (4.12)

fb =

√
1
2
Yb : A : Yb − ly −Rb = 0 (4.13)

Using of the following time discretization scheme ∆(•) = ∆t ˙(•), where ∆t is a time increment,

and ∆(•) = (•)n+1 − (•)n, employing the fully implicit backward Euler scheme allows to
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rewrite differential equations (4.1-4.6) in the following incremental form:

εIj = εI0 + ∆εIj (4.14)

αpj = αp0 + ∆αpj (4.15)

rpj = rp0 + ∆rpj (4.16)

Dj = D0 + ∆Dj, with Ddj = Dd0 + ∆Ddj and Dbj = Db0 + ∆Dbj (4.17)

rbj = rb0 + ∆rbj (4.18)

ξj = ξ0 + ∆ξj (4.19)

The subscripts “j” and “0” indicate the value of a variable at the current iteration and

at the previously converged state, respectively, and “∆” denotes the total increment from

previously converged state to the current (unknown) state. The state at the end of the

previous time increment “0” is known, which means that it is determined by the known set

of values of internal variables {εI0,α
p
0, r
p
0 ,Dd0,D

b
0, r
b
0 , ξ0}, and the following thermodynamic

forces {σ0,Xp0, R
p
0 , R

b
0 ,Y0}. The total strain, εj, at the current time step is also known and

defined as follows:

εj = ε0 + ∆εj (4.20)

where ∆εj denotes a prescribed value of the strain increment.

State equations (4.7-4.11) at the current time step are defined as follows:

σj = Ẽj : εEj = Ẽj :
(
εj − εIj

)
(4.21)

Xpj = ˆ̃Cpj (D, ξ) : αpj (4.22)

Rpj = ˆ̃Qpj (D, ξ)r
p
j (4.23)

Rbj = Qb0rbj (4.24)

−Yj =
1
2
σj :

∂Ẽ−1j
∂Dj

: σj +
1
2
αpj :

∂ ˆ̃Cj(D, ξ)
∂Dj

: αpj +
1
2
∂ ˆ̃Qpj (D, ξ)
∂Dj

(rpj )2 (4.25)
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The explicit form of discretized Eqs. (4.1-4.6) is as follows 1

∆εIj = ∆λpj
(

ˆ̃fp,σ + F d,σ + F tr,Y CH

(
ˆ̃fp,σ +

1
3

∆υ1
)
A
)
j

+ ∆λbj
(
fb,σ
)
j

(4.26)

∆αpj =
3
2

∆λpj
1 + hXξj

T−Tj :T−1j :


(
σj −

Xpj
1+hXξj

)
J2(σ̃j − ˆ̃Xpj )

− γ

C0(1 + hXξj)
3X
p
j

 (4.27)

∆rpj =
∆λpj

(1− (Deq)j)(1 + hRξj)

(
1−

bprpj
(1− (Deq)j)(1 + hRξj)

)
(4.28)

∆rbj = ∆λbj
(
1− bbrbj

)
(4.29)

∆Dj = ∆λpj (1− ξj)
(
F d,Yd

)
j

+ ∆λbj ξj
(
F b,Yb

)
j

(4.30)

∆ξj = ∆λpj (ξmax − ξj)
mξDξ

(1− (Deq)j)
(Dξpj)

mξ−1 (4.31)

where, ∆λpj = λpj − λ
p
0 and ∆λbj = λbj − λb0.

In order to solve the problem, the elastic-predictor – plastic-corrector procedure is used and

the Newton-Raphson scheme is employed in the plastic-corrector part of the algorithm to

solve the nonlinear algebraic equations. In the elastic predictor step the trial stress (σtrial)

and the thermodynamic force conjugated to damage (Ytrial) is computed with the assumption

that the applied total strain increment (∆ε) is elastic and hence the damage state is frozen

σtrial = Ẽ0 :
(
ε− εI0

)
= σ0 + Ẽ0 : ∆ε −Ytrial =

1
2
σtrial :

(
∂Ẽ−1

∂D

)
0

: σtrial + Yp0 (4.32)

It should be noted here that the time increment subscript “j” is omitted here. Thus, unless

indicated otherwise, all quantities without subscript are actually evaluated at time “j”.

During elastic-predictor step, the set of trial dependent state variables, {σtrial,Xp0, R
p
0 ,Ytrial,

Rb0 ,D0, ξ0}, is used to check whether the yield criterion, ˆ̃fp,trial
(
σtrial,Xp0, R

p
0 ,D0, ξ0

)
¬ 0,

and the brittle damage criterion fb,trial
(
Yb,trial, Rb0

)
¬ 0, are fulfilled. For the case when

the yield and the brittle damage criteria are satisfied, i.e. fp,trial ¬ 0 and fb,trial ¬ 0,

the current state {σ,Xp, Rp,Y, Rb} is set to the trial state {σtrial,Xp0, R
p
0 ,Ytrial, Rb0}. Simi-

larly, the independent state variables are updated in the following way: {εI,αp, rp, rb,D, ξ}T

= {εI0,α
p
0, r
p
0 , r
b
0 ,D0, ξ0}

T . Alternatively, three other situations may take place, i.e.:

1. ˆ̃fp,trial > 0 and fb,trial < 0, then the current state resulting from the trial state lies

outside the plastic yield surface. Since the plastic flow has occurred, the plastic corrector

1for simplicity, the following notation is used e.g.
(

ˆ̃
fp,σ

)
j
≡ ∂

ˆ̃
fp
j

∂σj
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step must be applied in order to return the trial state onto the yield surface (the brittle

damage evolution process is not active),

2. ˆ̃fp,trial < 0 and fb,trial > 0, thus, only the brittle damage criterion is violated and the

brittle damage evolution has occurred, the damage-corrector step must be applied in

order to return the trial state onto the brittle damage surface,

3. ˆ̃fp,trial > 0 and fb,trial > 0, then the current state lies outside the plastic yield surface

as well as the brittle damage surface. Such situation suggests that the plastic flow and

the brittle damage evolution have occurred. Hovewer, as was mentioned, in the case of

two non-smoothly intersected surfaces, even if loading conditions are fulfilled for both

surfaces, this does not necessarily mean that both plastic and damage processes are

ultimately active. A possible way to overcome such ambiguity will be presented at the

end of the present section.

Equations (4.14-4.19) together with discretized equations (4.26-4.31) can be now written in

the residual form as follows:

Rε = −εI + εI0 + (λp − λp0)
(

ˆ̃fp,σ + F d,σ + F tr,Y CH

(
ˆ̃fp,σ +

1
3

∆υ1
)
A
)

+ (λb − λb0)fb,σ (4.33)

Rαp = −αp +αp0 +
3
2
λp − λp0
1 + hXξ

T−T :T−1:


(
σ − Xp

1+hXξ

)
J2(σ̃ − ˆ̃Xp)

− γ

C0(1 + hXξ)
3X
p

 (4.34)

Rrp = −rp + rp0 +
λp − λp0

(1−Deq)(1 + hRξ)

(
1− bprp

(1−Deq)(1 + hRξ)

)
(4.35)

Rrb = −rb + rb0 + (λb − λb0)
(
1− bbrb

)
(4.36)

RD = −D + D0 + (λp − λp0) (1− ξ) ∂F
d

∂Yd
+ (λb − λb0)ξ

∂F b

∂Yb
(4.37)

Rξ = −ξ + ξ0 + (λp − λp0)(ξmax − ξ)
mξDξ

(1−Deq)
(Dξp)

mξ−1 (4.38)

Rp = ˆ̃fp (σ,Xp(αp), Rp(rp),D, ξ) = 0 (4.39)

Rb = fb
(
Yb(D, ξ), Rb(rb)

)
= 0 (4.40)

It is easy to see from the above equations that there are eight unknowns (of tensor or scalar

type) that can be accumulated in the vector of unknowns u = {εI,αp, rp, rb, ξ,D, λp, λb},
residual functions can also be accumulated, RT = {Rε,Rαp , Rrp , Rrb , Rξ,RD, Rp, Rb}. It is

evident that the condition

R(u) = 0 (4.41)

defines the solution. The above condition can be linearized and solved with the use of the
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Newton-Raphson scheme at iteration (s), which can be written in the following general form:

R(us) +
[
∂R(us)
∂u

]
du = 0 (4.42)

Solving the above general equations allows to obtain the corrections du = {dεI, dαp, drp, drb,
dξ, dD, dλp, dλb} for the current iteration (s) (and at current timen step j). Accordingly, the

values of the unknowns for the next iteration are obtained from:

u(s+1) = u(s) + du(s) (4.43)

The iteration procedure is stopped as soon as the norm of R(u) is sufficiently small, e.g.

10−8.

As was mentioned, the case when the two criteria are fulfilled in the trial step ( ˆ̃fp,trial > 0

and fb,trial > 0), implies that the plastic flow and the brittle damage evolution have occurred.

However, as was also mentioned, in the case of two non-smoothly intersected surfaces, even

if loading conditions are fulfilled for both surfaces, it does not necessarily mean that both

plastic and damage processes are ultimately active. To overcome such ambiguity, an algorithm

proposed in Simo and Hughes (1998) is adopted.

The discrete counterparts of the loading/unloading conditions (Eqs. 3.78, 3.79) take the form:

∆λp ­ 0; ˆ̃fp ¬ 0; ∆λp ˆ̃fp = 0 (4.44)

∆λb ­ 0; fb ¬ 0; ∆λbfb = 0 (4.45)

Importantly, if only one process is active (either plastic or brittle damage), then the condition
ˆ̃fp,trial > 0 (or fb,trial > 0) implies that ∆λp > 0 (or ∆λb > 0), and the solution is reduced to

single-surface problem. However, if two conditions are fulfilled, then the conditions ˆ̃fp,trial > 0

and fb,trial > 0 do not necessarily imply that ∆λp > 0 and ∆λb > 0 (e.g. it is possible to

have ˆ̃fp,trial > 0 and, at the same time ˆ̃fp < 0). Thus, the key point of the problem is the

question how to define the set of active processes when ˆ̃fp,trial > 0 and fb,trial > 0. This is

done in two steps:

1. For s = 0, at every time step j (see Eq. 4.42), the nonlinear system of algebraic equations

is solved by Newton-Raphson method for us+1 = {εI,s+1,αp,s+1, rp,s+1, rb,s+1, ξs+1,
Ds+1, λp,s+1, λb,s+1}.

2. The sign of dλp and dλb is checked. If dλp < 0, then the plastic process is deemed to be

inactive, as well as if dλb < 0 then the brittle damage process is deemed to be inactive
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and hence the corresponding constraint is dropped. If dλp > and dλb > 0, then both

processes are active.

Then set s← s+1 and repeat step 1 and 2 until the convergence is obtained. Otherwise,

if a limit of the number iteration is reached, the program is stopped.

The algorithm is summarized in the Table 4.1, and a simple example is also provided in

Appendix 1.

Rate-dependent regularization of rate-independent model

It is well known that a rate-dependent formulation can be adopted as the regularization of

the rate-independent plasticity (Simo and Hughes, 1998). Such numerical regularization is

widely used in crystal plasticity computations to overcome the problem of determining the

set of active plastic slips on slip surfaces (e.g. Peirce et al. (1983); Pan and Rice (1983)).

Indeed, since in the rate-dependent plasticity all dissipative processes start from the very

beginning of loading, the dilemma about active ones is avoided. A similar idea is used here.

Writing Eqs. (3.52) and (3.59) in the following form

ˆ̃τeq = σ0y + ˆ̃Rp where ˆ̃τeq = J2(ˆ̃σij − ˆ̃Xpij)

Y beq = ly +Rb where Y beq =

√
1
2
Y bijAijklY

b
kl

(4.46)

the right hand sides of the above equations (σ0y+
ˆ̃Rp and ly+Rb) are understood as the current

flow resistance and the current resistance against brittle damage evolution, respectively. In

order to encompass a rate-dependent regularization in the present formulation, the following

functions are assumed (cf. Gurtin et al. (2010))

ˆ̃τeq =
(
λ̇p

λ̇p0

)m
(σ0y + ˆ̃Rp) Y beq =

(
λ̇b

λ̇b0

)m
(ly +Rb) with m > 0 (4.47)

where m is a rate sensivity parameter, and λ̇p0, λ̇b0 are reference rates (taken here equal to

each other, for simplicity). The rate-independent model is recovered in the limit as m → 0.

The inversion of the above relations gives the explicit functions of the plastic and damage

multipliers:

λ̇p = λ̇p0

 ˆ̃τeq

σ0y + ˆ̃Rp


1/m

λ̇b = λ̇b0

(
Y beq

ly +Rb

)1/m
(4.48)
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Table 4.1: Elastic predictor – plastic corrector algorithm∗

Elastic predictor

εj = ε0 + ∆εj
σtrialj = Ẽ0 :

(
εj − εI0

)
= σ0 + Ẽ0 : ∆εj

−Ytrialj = 1
2σ
trial
j :

(
∂Ẽ−1
∂D

)
0

: σtrialj + 1
2α
p
0 : ∂ ˆ̃C(D0,ξ0)

∂D : αp0 + 1
2
∂ ˆ̃Qp(D0,ξ0)

∂D (rp0)
2

fp,trialj := fp
(
σtrialj ,Xp0, R

p
0 ,D0, ξ0

)
fb,trialj := fbj

(
Yb,trialj , Rb0

)
Check for (possible) active processes

IF fp,trialj < 0 and fb,trialj < 0 THEN

{σj,Xpj , R
p
j ,Yj, R

b
j } = {σtrialj ,Xp0, R

p
0 ,Ytrialj , Rb0}

{εIj,α
p
j , r
p, rbj ,Dj, ξj} = {εI0,α

p
0, r
p
0 , r
b
0 ,D0, ξ0} and EXIT

ELSE
Define set Jact of active processes (α =p for plasticity α =b for brittle damage process)

J
(s=0)
act := {α ∈ {p, b}|fα,trialj > 0}

u0j = u0 and GO TO plastic-damage corrector

END IF

Plastic-damage corrector

DO

dusj =
[
∂R(uj)
∂uj

]−1
R(usj)

u(s+1)j = u(s)j + du(s)j
Check whether

[
du(s)j

]
7

= dλpj
(s) > 0 and

[
du(s)j

]
8

= dλbj
(s)
> 0

IF NOT obtain a new set of constraints J (s+1)act by dropping fαj for which dλαj
(s) < 0

Check convergence

IF fαj
(s+1) <TOL1 and ||R|| <TOL2 THEN EXIT

ELSE s← s+ 1

END IF

END DO

∗ Note that in the above Table 4.1, the following substitution is used fp,trialj = ˆ̃
fp,trialj

In order to minimize the time-dependency of the model in numerical simulations, and obtain

results that are convergent to the rate-independent model, m = 500 was set, and λ̇p0 = λ̇b0 =

0.01[1/s]. The final set of discretized equations that are solved with the Newton-Raphson
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scheme (Tab. 4.2) is summarized below.

Rε = −εI + εI0 + ∆λp ˆ̃fp,σ + ∆λpF d,σ + ∆λpF tr,Y CH
(

ˆ̃fp,σ +
1
3

∆υ1
)
A+ ∆λbfb,σ (4.49)

Rαp = −αp +αp0 +
3
2

∆λp

1 + hXξ
T−T :T−1:


(
σ − Xp

1+hXξ

)
J2(σ̃ − ˆ̃Xp)

− γ

C0(1 + hXξ)
3X
p

 (4.50)

Rrp = −rp + rp0 +
∆λp

(1−Deq)(1 + hRξ)

(
1− bprp

(1−Deq)(1 + hRξ)

)
(4.51)

Rrb = −rb + rb0 + ∆λb
(
1− bbrb

)
(4.52)

RD = −D + D0 + ∆λp (1− ξ) ∂F
d

∂Yd
+ ∆λbξ

∂F b

∂Yb
(4.53)

Rξ = −ξ + ξ0 + ∆λp(ξmax − ξ)
mξDξ

(1−Deq)
(Dξp)

mξ−1 (4.54)

Rp = ∆λp −∆tλ̇p0

 ˆ̃τeq

σ0y + ˆ̃Rp


1/m

(4.55)

Rb = ∆λb −∆tλ̇b0

(
Y beq

ly +Rb

)1/m
(4.56)

Table 4.2: Newton-Raphson scheme for rate-dependent problem

Solve for every time step ‘j’

DO

dusj =
[
∂R(uj)
∂uj

]−1
R(usj)

u(s+1)j = u(s)j + du(s)j
Check convergence

IF fαj
(s+1) <TOL1 and ||R|| <TOL2 THEN EXIT

ELSE s← s+ 1

END IF

END DO
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Chapter 5

Parametric studies

5.1 Elastic-brittle model

According to Eqs. (3.50), (3.59) and (3.76), the response of the elastic-brittle model

can be changed by manipulating three parameters, i.e. ly, which is a stress-type quantity

above which the brittle damage evolution starts developing, and two parameters, Qb0 and bb,

that are related to non-linear isotropic-like hardening of the damage surface. The numerical

results presented below were obtained for a fixed value of damage threshold ly = 3 [MPa],

initial Young modulus E0 = 200 [GPa], and Poisson ratio ν = 0.3. In figures presented below

the influence of parameters Qb0 and bb on the stress-strain behaviour and thermodynamic

force, Rb, is shown. As can be expected, increasing the value of Qb0 and decreasing the value

of bb implies significant increase in material strength, Fig. 5.1. This behavior is simply a

consequence of steering the size of the damage surface, which can be seen as the restriction on

damage evolution process and thus elastic-damage modulus degradation, Fig. 5.2. Increasing

parameter bb results in a fast saturation of the hardening variable, Rb (Fig. 5.1b). Moreover, it

causes the sigmoidal character of the damage evolution curve (Fig. 5.2a). The use of a specific

form of tensor Aijkl describing the damage-induced change of the damage surface results in

the anisotropy of damage evolution even in the case of uniaxial stress state without any

additional parameters. The anisotropy of damage is shown in Fig. 5.3a, where a normalized

strain is computed according to equation εIii/Max {εIii}. It is also worth pointing out that

including irreversible damage strain εibdij (note that here εIij = εibdij ) in the model (see Eq.

3.69) has a significant influence on the stress–strain response since the value of this strain is

pronounced, Fig. 5.4. The variation of different types of strains is shown in Fig. 5.3b, where

the normalized damage denotes Dii/Max{Dii}.
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Figure 5.1: Influence of hardening parameters (Qb0,bb) on (a) stress-strain relation and (b)
isotropic hardening, Rb.
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Figure 5.4: Influence of damage strain on stress-strain response.

5.2 Elastic–plastic ductile damage versus elastic–plastic

with phase transformation model

To illustrate the influence of ductile damage and phase transformation on the model re-

sponse, each phenomenon is examined separately. Importantly, brittle damage evolution is

disregarded here. It is also assumed that ductile damage and phase transformation start to

develop together with the onset of plastic yielding in a quite intensive way (see Fig. 5.7),

hence the following parameters are used pD = 0, s = 1, β = 1 for damage evolution (Eq.

3.74) and Dξ = 8, mξ = 2 for phase transformation (Eq. 3.77). The value of yield stress

is σ0y =600[MPa] and additional strain related to phase transformation is neglected here

(ε̇tr = 0).
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Figure 5.5: Influence of phase transformation or damage evolution on stress-strain response
for model with (a) isotropic and (b) kinematic hardening.
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The phase transformation influence functions (Eq. 3.25) are monotonic increasing functions

of the secondary phase content to account for the experimentally observed strong harden-

ing effect due to the phase transformation phenomenon. On the other hand, the damage

influence tensor (Eq. 3.37) is a monotonic but decreasing function of the damage variable to

enforce damage softening. These two effects are clearly visible in Fig. 5.5. Thermodynamic

forces related to isotropic and kinematic hardenig affected by damage evolution and phase

transformation are presented in Fig. 5.6.
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Figure 5.6: Influence of phase transformation or damage evolution on (a) isotropic hard-
ening (with kinematic hardening disregarded) and (b) kinematic hardening (with isotropic
hardening disregarded).
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Figure 5.7: Kinetics of (a) phase transformation and (b) ductile damage evolution for the
present parametric studies.
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5.3 Plasticity, mixed ductile/brittle damage and phase

transformation

The general model of plasticity, ductile damage in matrix, phase transformation, and brittle

damage in the secondary phase are now considered. In Figures 5.8 – 5.10, the following cases

are compared:

• nonlinear plasticity for σ0y = 600MPa, Qp0 = 1400MPa, b = 2, Cp0 = 10000MPa

γ = 100 (dashed line);

• nonlinear plasticity coupled with ductile damage for S = 10MPa, pD = 0, s = 1, β = 1

(dotted line);

• nonlinear plasticity coupled with phase transformation for Dξ = 5, mξ = 2, A = 0.01,

hX = 2, hR = 15 (dashed/dotted line);

• full coupled model, nonlinear plasticity, mixed ductile/brittle damage, and phase trans-

formation, for parameters listed above and Qb0 = 20MPa, ly = 0.5MPa;

In accordance with the physical nature of the dissipative phenomena considered here (plastic

strain hardening enhanced by phase transformation and damage softening), it seems that the

proposed model captures all of these phenomena and couplings between them qualitatively in

a proper way, which can be seen in the following figures, representing stress–strain relations

(Fig. 5.8) and thermodynamic forces related to isotropic and kinematic hardening of the yield

surface (Fig. 5.9).
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Figure 5.8: Stress-strain curves for different phenomena included.
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Figure 5.9: Influence of phase transformation and/or damage evolution on (a) isotropic and
(b) kinematic hardening.

The damage evolution (in the direction of loading) correlated with the phase transforma-

tion for current model parametrs is presented in Fig. 5.10a whereas damage evolution in the

principal directions, reflecting damage anisotropy, is presented in Fig. 5.10b. The components

of ductile and brittle damage (see mixture rule Eq. (3.8)) were distinguished to show the frac-

tion of both types of damage in the RVE. According to Eq. (3.8), the symbols appearing in

the pictures are defined as follows:

Dij =
∫
t
Ḋijdt, Ddij =

∫
t
Ḋdijdt, Dbij =

∫
t
Ḋbijdt,〈

Dij

〉d
RVE

=
∫
t

˙〈
Dij

〉d
RVE

dt =
∫
t
(1− ξ)Ḋdijdt,〈

Dij

〉b
RVE

=
∫
t

˙〈
Dij

〉b
RVE

dt =
∫
t
ξḊbijdt

(5.1)

An important result is that the use of mixture rule (Eq. 3.8) results in the drop of the rate

of the damage evolution (compare the difference between Ddij and
〈
Dij

〉d
RVE

). Moreover, the

introduction of the additional strain related to the phase transformation, ε̇trij (Eq. 3.70) in

the model reduces the value of the plastic strain (Fig. 5.11), and thus the rate of damage

evolution since its value is significant. On the other hand, thermodynamic force conjugate

to damage Y pij strongly depends on the volume fraction of martensite and hence the growing

volume fraction of martensite contributes to an increase in the rate of damage evolution.

These features of the model agree with the experimental investigations presented in Section

2.4 where it was noted that, on the one hand martensite evolution can have a positive effect

on damage evolution (e.g. because of absorbing energy that could otherwise be available for
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crack extension, higher slip homogeneity resulting from phase transformation) but, on the

other hand, can have a negative effect on damage state (e.g. martensitic phase is more brittle,

additional strain resulting from phase transformation gives rise to the increase in dislocation

density in the surrounding material, which may promote damage evolution). With the use of

two separate evolution laws for ductile and brittle damage and employing the total energy

equivalence hypothesis, the proposed model is able to capture these physical features.
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Figure 5.10: Evolution of (a) damage (in direction of loading) and phase transformation
versus inelastic strain and (b) individual components of damage tensor versus normalized
inelastic strain.
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Figure 5.11: Variation of different types of strains with secondary phase content, ξ.
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Chapter 6

Identification of model parameters for
316L and 304 stainless steels

6.1 Material parameters

The proposed model has been calibrated with the use of the experimental data from load-

ing/unloading uniaxial tests performed for two stainless steel grades: 304 and 316L. The

unloading procedure allows to trace the variation of the elastic-damage (unloading) modu-

lus, and, in this way, to estimate the evolution of damage. The experimental stress-strain

curves for 316L (after Garion et al. (2006); Egner and Skoczeń (2010)) and 304 (after Tabin

et al. (2017)) stainless steels subjected to uniaxial tension (with unloading) are presented in

Fig. 6.1, the measured subsequent unloading moduli (Ẽ) relative to the initial Young modulus

(E0) are also presented in the plots.
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Figure 6.1: Stress-strain curves and unloading modulus for (a) 316L (after Garion et al.
(2006); Egner and Skoczeń (2010)) and (b) 304 (after Tabin et al. (2017)) stainless steels.

According to the energy equivalence principle, in the uniaxial state of stress, damage evolution
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can be calculated with the use of the following equation

D = 1−

√
Ẽ

E0
(6.1)

Such experimentally determined damage level is shown in Fig. 6.4 (black dots). It is worth

mentioning that the experiments were performed at extremely low temperatures (liquid he-

lium, 4.2 K). Such measurements are laborious, time-consuming and require a rather so-

phisticated equipment in order to maintain correct experimental conditions. A more detailed

discussion about experimental setup may be found in Garion et al. (2006); Egner and Skoczeń

(2010) and Tabin et al. (2016, 2017).

An automated Isight optimization workflow for the calibration of material parameters

was used in order to fit the proposed model to the experimental results (Fig. 6.2). Three

types of experimental results were loaded in the programme, i.e. stress-strain curve, dam-

age evolution versus inelastic strain, and martensite volume fraction versus inelastic strain.

The Pointer technique that consists of a complementary set of optimization algorithms was

chosen to automatically find the optimal model parameters. Material parameters used in the

following numerical examples are summarized in Table 6.1.

Figure 6.2: Optimization algorithm for calibration of model parameters.
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Table 6.1: Material parameters

SS 316L SS 304

Young modulus, E0 247.266a 210a GPa
Poisson’s ratio, ν 0.3a 0.3a -

Plasticity

σ0y 515 320 MPa
Q0 2625 2178 MPa
b 9 13.4 -
hR 8 13 -
C0 95591 73048 MPa
γ 290 409 -
hX 0 0 -

Damage

S 3.2 2.2 MPa
pD 0.05 0.04 -
s 1 1 -
β 0 0 -
ly 0.01 0.01 MPa
Qb0 1600 1400 MPa

Phase transformation

ξmax 0.9a 0.9a -
mξ 25 40 -
Dξ 8.5 8.2 -
A0 0.02b 0.02b -
A1 0.05b 0.05b -
dv 0.29b 0.29b -

Additional parameters of rate-dependent regularization

rate sensivity parameter, m 500 500 -
reference rate, λ̇p0 = λ̇b0 0.01 0.01 1/s
a after Egner and Skoczeń (2010); Tabin et al. (2017); Garion et al. (2006)
b after Stringfellow et al. (1992); Hallberg et al. (2007)
* values without superscript were found with the Isight system

6.2 Uniaxial tension tests

Figures 6.3a,b show numerical and experimental stress-strain curves for 316L and 304 stain-

less steels, resulting from a uniaxial tension test. Three cases are distinguished in each figure:

(1) full model (coupled plasticity, phase transformation, and ductile/brittle damage), (2)

plasticity coupled with phase transformation, and (3) plasticity coupled with ductile dam-

age evolution. Such a combination clearly shows the influence of individual effects (strong
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hardening due to phase transformation and softening due to damage) as well as their mutual

couplings. One can also see that the agreement between experimental and numerical results

is satisfactory.
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Figure 6.3: Stress-strain comparison of numerical and experimental results for (a) 316L and
(b) 304 stainless steels. Presentation of various couplings.

Damage evolution (in the direction of loading) correlated with phase transformation for

both materials is presented in Fig. 6.4 whereas damage evolution in the principal directions,

reflecting damage anisotropy, is presented in Fig. 6.5. The components of ductile and brittle

damage (see mixture rule (3.8)) were distinguished to show the fraction of both types of

damage in the RVE. According to Eq. (3.8), the symbols appearing in the pictures are

defined as follows (coupling with phase transformation rate is disregarded):

Dij =
∫
t
Ḋijdt,

〈
Dij

〉d
RVE

=
∫
t

˙〈
Dij

〉d
RVE

dt,
〈
Dij

〉b
RVE

=
∫
t

˙〈
Dij

〉b
RVE

dt (6.2)

In order to show the influence of phase transformation on the rate of damage, the result in

which the martensitic transformation was disregarded is also shown (Fig. 6.4). One can see

that, at the beginning, the damage evolves in a rather accelerated way and is purely ductile

in nature. However, as soon as martensite starts to develop, a drop of the damage rate is

observed, and brittle damage evolution accompanies the phenomenon of phase transforma-

tion. The observed effect of damage evolution deceleration in the parent phase is due to the

transformation strain included in the constitutive model (Eq. 3.70) and the used mixture rule

(Eq. 3.8). Strains resulting from damage evolution (Eqs. 3.68, 3.69) have a less significant

impact.

In several papers mentioned in Section 1.2 the authors argument that the additional strain

resulting from phase transformation gives rise to the increase in dislocation density in the

64



surrounding material, which may promote damage evolution. This effect is also included in

the present model through the definition of the thermodynamic force Y conjugate to damage.

Given that the part Yp strongly depends on the volume fraction of martensite, and hence

the growing volume fraction of martensite contributes to an increase in the rate of damage

evolution.
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Figure 6.4: Damage evolution and martensite fraction in RVE for (a) 316L and (b) 304
stainless steels. Influence of phase transformation on ductile and brittle damage components
in accordance with Eqs. (3.8) and (6.2).

Total damage, D11

Total damage, D22=D33

Ductile damage, 〈D11〉RVEd

Ductile damage, 〈D22〉RVEd =〈D33〉RVEd

Brittle damage, 〈D11〉RVEb

Brittle damage, 〈D22〉RVEb =〈D33〉RVEb

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

normalized inelastic strain

d
a
m
a
g
e
c
o
m
p
o
n
e
n
t

(a)

Total damage, D11

Total damage, D22=D33

Ductile damage, 〈D11〉RVEd

Ductile damage, 〈D22〉RVEd =〈D33〉RVEd

Brittle damage, 〈D11〉RVEb

Brittle damage, 〈D22〉RVEb =〈D33〉RVEb

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

normalized inelastic strain

d
a
m
a
g
e
c
o
m
p
o
n
e
n
t

(b)

Figure 6.5: Individual components of damage tensor for (a) 316L and (b) 304 stainless steels.
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6.3 Axisymmetric, corrugated thin-walled cryogenic bel-

lows

Owing to the implementation of the constitutive model in the finite element software, the

mechanical behaviour of various structures can be simulated. As an example, the analysis

of an expansion bellows is presented here. Bellows expansion joints belong to thin-walled

structures of high flexibility and are often key components of systems operating at high tem-

perature gradients in which a significant shrinkage of structures may occur during the cooling

process, hence the relative motion of two adjacent assemblies needs to be compensated. Since

bellows expansion joints are subjected to severe conditions (cryogenic temperatures, radia-

tion and mechanical loading, pressure), the choice of a relevant material is a key point in the

design. Commonly, austenitic stainless steels are used for cryogenic applications because of

their pronounced ductility at low temperatures, and good magnetic and vacuum properties.

Here, a half convolution of a typical U-type bellows has been subjected to displacement-

controlled cyclic mechanical loading. The parameters of 304SS (Tab. 6.1) were used, and

the applied axial displacement amplitude was uy = +42/ − 16 mm (see Fig. 6.6), and 100

cycles were simulated. For simplicity, isotropic damage state variables were here used, so that

Mijkl = (1−D)Iijkl (see Eq. (3.37)). Basic geometrical parameters of the expansion bellows

used in the simulation are listed in Tab. 6.2.

Table 6.2: Geometrical parameters of the expansion bellows (Skoczeń, 2004)

Material Thickness of ply,
t [mm]

Number of convultions Outer diameter,
D0 [mm]

Inner diameter,
Db [mm]

Convoluted length,
[mm]

SS 304 0.15 15 90.15 82 78

root

crest

internal surface

external surface

A

B C

D

Figure 6.6: Boundary conditions and finite element mesh for single ply bellows (the mesh
shown in the figure is two times coarser then that used in the computations).
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The results obtained after 100 cycles are shown in Figs. 6.7-6.9. In Fig. 6.7 the distributions

of chosen characteristic quantities related to state variables are presented. It can be seen that

the most “efforted” area is placed at the internal surface near the bellows root. This is mainly

due to the fact that the maximum meridional bending moment in the shell is localized at root

and at crest (points A and D in Fig. 6.6). As a consequence of this highly localized bending

and the relevant distribution of strain across the wall, the plastic strain fields develop on the

external and internal surfaces of the shell. Figure 6.8 shows the evolution of damage through

the thickness (at root and crest, Fig. 6.8a) and along the meridional line ABCD projected

on x direction (Fig. 6.8b), while the profile of the martensite volume fraction in the same

directions is presented in Fig. 6.9a,b. The most intensive damage accumulation occurs at

root and at crest, where a strong localization of plastic strains takes place. It is accompanied

by damage fields containing microcracks and microvoids, and by the plastic strain-induced

phase transformation. This remains in a good agreement with the experimental observations,

where the most intensive damage zones were observed at the internal side of the bellows root

(cf. Garion and Skoczeń (2003)).

(a) (b) (c) (d)

Figure 6.7: Distribution of: (a) λp =
∫
t λ̇
pdt; (b) λb =

∫
t λ̇
bdt; (c) damage, D and (d) marten-

site content, ξ after 100 cycles.
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Figure 6.8: Distribution of various damage components through thickness (a) and along the
meridional line ABCD projected on x direction (b).
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Figure 6.9: Distribution of martensite content through thickness (a) and along the meridional
line ABCD projected on x direction (b).
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Chapter 7

Summary

The constitutive model presented in the dissertation results from the identification of three

fundamental phenomena that occur in a wide range of temperatures in the materials charac-

terized by low stacking fault energy (e.g. austenitic steels):

• plastic flow resulting from the movement of dislocations,

• plastic strain-induced transformation from the parent phase (γ) to the secondary phase

(α′), characteristic of meta-stable materials,

• evolution of micro-damage (micro-voids and micro-cracks) reflected by decreasing un-

loading modulus in the course of deformation.

A consistent thermodynamic framework has been built in order to describe all the phenom-

ena, as well as coupling between them, in a unified way. The approach based on the total

energy equivalence hypothesis, originally developed for damaged materials, extended to mod-

elling not only damage but also other dissipative phenomena was used to derive the model.

The hypothesis is based on introducing two main configurations: the real one in which a

material is discontinuous (due to microcracks and microvoids) and heterogeneous (due to

different phases present), and the equivalent fictitious configuration that is continuous (un-

damaged) and homogeneous (monophase). The novelty of this RVE based approach consists

in introducing a mapping from the real to the fictitious configuration, defined as a combi-

nation of two physically different transformations. One is a classical mapping from a real,

damaged (discontinuous but homogeneous) to a fictitious, undamaged (continuous) space. It

involves a classical fourth rank damage effect tensor that allows to define damage-effective

variables. The other transformation maps an RVE of a real, two-phase (heterogeneous but

continuous) material into a point of a fictitious, mono-phase (homogeneous) configuration.

The latter transformation requires a definition of another influence tensor, which allows to
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obtain transformation-effective variables. The advantage of the proposed method lies in the

possibility to describe all the dissipative phenomena by the use of the same thermodynam-

ically consistent formalism, therefore the application of additional, usually complicated and

laborious homogenization methods is not necessary.

To account for the damage-induced anisotropy of the ductile austenitic phase and the

brittle martensitic content, the relevant second rank tensors were postulated. Ductile damage

evolution has been described by an anisotropic model being a generalization of the classical

isotropic model, known in the literature as the Chaboche–Lemaitre model. Ductile damage

rate tensor depends on the ‘ductile’ strain energy density release rate tensor (Y dij ), not on

the ‘total’ strain energy density release rate tensor (Yij) as in the original model. The ductile

damage model is supplemented by an additional brittle-type damage model, to account for

the stress-dependent damage state in the martensitic inclusions. The brittle damage surface

based on the ‘brittle’ strain energy density release rate tensor (Y bij ) was used. The total

material degradation is assumed to be a superposition of the ductile and the brittle parts,

with the use of phase transformation variable as a composition factor (weight function). It

allows for different coupling effects between damage and phase transformation to appear in

a natural way: secondary phase volume fraction development results in a drop of the rate of

ductile damage evolution. On the other hand, a high volume fraction of the brittle secondary

phase may provide brittle macro-cracks and thus cause material failure.

Validation of the model is based on the available experimental data and very rare exper-

iments carried out at extremely low temperatures, where multiple unloading technique was

applied in order to monitor the evolution of micro-damage. Parameters included in the evo-

lution equations for thermodynamic forces and kinetic laws of evolution of internal variables

were found with the use of ISIGHT program.

Accounting for three dissipative phenomena: plasticity, damage evolution and phase

transformation in the present constitutive model allows to obtain a satisfactory reproduction

of the experimental stress-strain curve for 316L and 304 stainless steels subjected to uniaxial

tension at the temperature of 4.2K.
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Appendix A

Rate-independent algorithm – an
example

In the following section, a simulation of loading of a square of dimensions h × h[mm] is

shown. The purpose of this section is to present the main features of the rate-independent

algorithm which is summarized in Table 4.1. On the bottom edge of the square, presented in

Fig. A.1, the vertical displacement is zero (u|y=0 = 0) while the upper is u|y=h = 0.08h. On

the left and right side of the square, the horizontal displacement is ±0.5u. The computation

is performed with the use of (linear) rectangular element and with a constant displacement

rate 0.004[mm/s]. In this case, mixed linear-kinematic (C0 = 1000[MPa], γ = 0) and lin-

ear–isotropic (Qp0=1000[MPa], bp = 0) hardening laws, affected by ductile (S = 2[MPa],

s = 1, β = 1, pD = 0) and brittle (ly = 0.01[MPa], Qb0 = 100[MPa]) damage and phase

transformation (hR = 5, hX = 5), are used. The evolution of the secondary phase is quite

rapid at the beginnig (Dξ = 20, mξ = 2) as presented in Fig. A.2b. The rest of the used

parameters is as in Table 6.1. The equivalent von Mises stress-strain as well as total damage

and martensite content vs. total strain plots (in the direction of loading y) are presented in

Fig. A.1, for better clarity of the macroscopic response for the present model parameters.

H

H

u u

0.5u

0.5u

0.5u

0.5u x

y

Figure A.1: Schematic sketch of loading of the square element.
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Figure A.2: Equivalent stress-strain plot (a) and damage (D11), and martensite content (ξ)
vs. total strain (b) for current parameters.

The values of the criterion of plastic yelding and brittle damage evolution for trial state

( ˆ̃fp,trial, fb,trial) and at the end of every time step ‘j’ ( ˆ̃fp, fb) are presented in Fig. A.3. The

values of the increments of plastic and brittle damage multipliers at the end of every time

step ‘j’ denoted by ∆λp and ∆λb, respectively and for some iteration ‘s’ (usually for s = 1

or s for which a negative value of dλp or dλb was obtained in the case where two processes

were active initially) are presented in Fig. A.5. The most interesting situation is between

increments 86 ÷ 89 for which the trial brittle damage criterion, fb,trial, is higher than zero

(Fig. A.4b), which implies the onset of brittle damage evolution, however the increments for

the first iteration, dλb(s=1) are negative (Fig. A.6b), and thus, eventually, the brittle damage

process is inactive for those time increments. Similarly, for increments between 506 ÷ 536

the plastic yield criterion is higher than zero, however increments dλp(s=2) for j = 506, 507

and dλp(s=1) for j = 508÷ 536 are negative, which excludes plastic process from active ones.

Importantly, the values of fb and ˆ̃fp at the end of time steps j = 86÷ 89 and j = 506÷ 536,

respectively, are negative, which confirms the proper choice of active processes.
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Figure A.3: Values of yield criterion, ˆ̃fp (a) and damage criterion, fb (b) at the beginning
and the end for each time step.
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Figure A.4: Values of yield criterion, ˆ̃fp (a) and damage criterion, fb (b) at the beginning
and at the end for specific time steps.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●
●
●
●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

dλp s) for specific iteration s)

Δλp for total time step)

0 100 200 300 400 500
0.00005

0.00000

0.00005

0.00010

j time increment

d
λ
p
s
) ,
Δ
λ
p

(a)

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

dλp s) for specific iteration s)

Δλp for total time step)

100 200 300 400 500 600 700 800

0.2

0.0

0.2

0.4

0.6

j time increment

d
λ
b
s
) ,
Δ
λ
b

(b)

Figure A.5: Values of increments of plastic (a) and brittle damage (b) multipliers at the end
of every time step ‘j’ (∆λp, ∆λb) and for certain iteration ‘s’ (for s = 1 or s for which
negative value of dλp or dλb was obtained).
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Figure A.6: Values of increments of plastic (a) and brittle damage (b) multipliers at the end
of selected time steps ‘j’ (∆λp, ∆λb) and for certain iteration ‘s’ (for s = 1 or s for which
negative value of dλp or dλb was obtained).
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