
IOP Conference Series: Earth and Environmental Science

PAPER • OPEN ACCESS

Application of Distributed Optical Fibre Sensor for Strain and
Temperature Monitoring within Continuous Flight Auger Columns
To cite this article: Rafal Sienko et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 221 012006

 

View the article online for updates and enhancements.

This content was downloaded from IP address 91.226.51.197 on 15/04/2019 at 16:11

https://doi.org/10.1088/1755-1315/221/1/012006
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/480691133/Middle/IOPP/IOPs-Mid-EES-pdf/IOPs-Mid-EES-pdf.jpg/1?


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

World Multidisciplinary Earth Sciences Symposium (WMESS 2018)

IOP Conf. Series: Earth and Environmental Science 221 (2019) 012006

IOP Publishing

doi:10.1088/1755-1315/221/1/012006

1

Application of Distributed Optical Fibre Sensor for Strain and 
Temperature Monitoring within Continuous Flight Auger 
Columns  

Rafal Sienko 1, Lukasz Bednarski 2, Piotr Kanty 3, Tomasz Howiacki 4 
1 Cracow University of Technology, Warszawska St. 24, 31-155 Cracow, Poland 
2 AGH University of Science and Technology, Mickiewicza Al. 30, 30-059 Cracow,  
  Poland 
3 Menard Polska Sp. z o.o., Powązkowska St. 44c, 01-797 Warsaw, Poland 
4 SHM System Sp. z o.o., Sp. komandytowa, Libertów Jana Pawła II  St. 82A, 30-444   
  Cracow, Poland  

rsienko@pk.edu.pl 

Abstract. Distributed optical fibre technology provides new possibilities in structural health 
monitoring in comparison with traditional spot measurements, because it allows to measure 
selected physical quantities continuously over structural member length.  The spatial resolution 
can start from as fine as 5 mm when using advanced optical reflectometers based on the principle 
of Rayleigh scattering. The quality of information obtained about structural condition is 
especially important for geotechnical applications because there are many uncertainties 
regarding the theoretical model describing cooperation between the foundations and the substrate 
as well as including the values of physical parameters. Moreover, the geometry of structural 
members (e.g. the diameter of the column) can be very different from design assumptions and 
vary along the depth depending on technology of execution. In presented case study the analysis 
of continuous flight auger (CFA) column was described based on the strain and temperature 
measurements carried out continuously over the length of 12 m. The measurements were done 
during the load tests, but also in the early-age concrete, when thermal-shrinkage strains appeared. 
The way of installation and exemplary results were presented as well as data interpretation was 
described and discussed hereafter. 

1.  Introduction 

1.1.  Continuous Flight Auger Columns 
Continuous Flight Auger (CFA) columns are one of the most widely used ground improvement type 
because of their versatility, simplicity and efficiency. CFA concrete columns are formed by drilling the 
hollow using special auger to the required depth which is equal to the full design length of the column. 
The auger construction is essential for this technology – see figure 1. In its central part there is an inner 
tube, which is closed during driving and opened during extraction from the hole, allowing for down-up 
concreting in continuously way. At the same time the auger is extracted at a controlled rate, removing 
the soil to the ground level. Moreover, the auger pushes the soil sideways during penetration causing its 
partial compaction. 

http://creativecommons.org/licenses/by/3.0
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Figure 1. Exemplary execution of Continuous Flight Auger columns on site [Menard archives] 

 
For concreting, the special concrete mix should be used with appropriate consistency and aggregate 

which allow for tightly filling the space below the auger. The speed of extraction of the auger and a fresh 
concrete mix pumped under pressure support the stability of the hole during execution. CFA concrete 
column parameters such as length, concrete consumption, performance duration are automatically 
registered and should be controlled by the operator.  

CFA columns are suited to different kind of grounds. This technology works very well in non-
cohesive soils (compacted sands) as well as cohesive soils (semi-solid clay). The main areas where CFA 
method is used are residential or industrial buildings and bridges which transfer the whole gravity load 
on the floor, hydraulic structures or other large-format and engineering facilities e.g. road or railway 
embankments [1]. Depending on the corresponding loads, the following parameters for CFA columns 
could be selected: diameter (from 0.3 m to 1.2 m), length (up to 30 m) and spacing (usually in the range 
from 1.2 m to 3.5 m, using rectangular or triangular arrangement). 

The widespread use of this technology contributed to widening experiences and knowledge, both 
among the contractors and designers. As a result of many applications, construction techniques, 
appropriate material parameters, design algorithms, static capacity evaluations, construction guidelines 
and quality control techniques were widely discussed and described [2]. Nowadays there are many 
advanced tools available for theoretical analysis, so there is a possibility to evaluate effective spatial 
numerical models for designing and optimizing process. For example, CFA column can be modelled as 
beam element embedded into the continuum through Mohr-Coulomb interface [3] or by connecting 
different non-compatible meshes using kinematic constraints or a robust mesh tying method [4]. Usually 
the creation of FEM model is based on the results from in situ investigations such us extended CPT 
tests, which provide information about the soil layers stiffness. Despite this, it should be emphasized 
that theoretical considerations including even advanced mathematical models, especially with respect to 
the heterogeneous concrete and the ground, could lead to the significant errors [5] and always remain 
imperfect. Thus, appropriate in situ control should be provided to enlarge the practical knowledge, 
calibrate numerical models and reduce uncertainties within specific case study, minimizing the risk of 
damage or failure or optimizing the design process. 

1.2.  Monitoring of concrete columns 
Construction process of CFA columns is always monitored by an electronic system, but structural 
integrity of the columns is still affected by different factors such as concrete quality (low workability), 
cement consumptions, aggregate segregation or exudation. What is more, installation in difficult soils 
can lead to structural damages [6], such as cross sections reductions or bulge formations (soft soils), soil 
mining problems (loose sands with high water level), hole stability and auger rates control problems 
(ground with voids or water pockets). Moreover, the concrete elasticity modulus as well as the diameter 
of the column can be very different from design assumptions and vary along the depth. 

All this uncertainties and construction difficulties causes that not all CFA columns are free from 
damage occurrences, which is also confirmed by in situ investigations. In paper [7] the results from 
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representative number of integrity tests were presented and discussed, showing that almost 20% of 
executions were with considerable quality deficiencies – see figure 2.  

 

 
Figure 2. Failure class distribution for CFA or screw piles [7] 

 
These data indicate the necessity of in-situ monitoring, which always should be designed, 

implemented and evaluated in connection with the geotechnical design [8], what is in line with 
observational method. There are some standards describing selected tools which can be used for this 
purpose such as extensometers [9] or inclinometers [10]. 

One of the most important and challenging task is to evaluate the force distribution along the whole 
column length, which allow for estimation the load bearing capacity of the column base and its shaft. 
Such attempts are a common practice in many countries for years [11, 12, 13]. In practice, even the 
simplest control of pile head displacement is difficult for in situ conditions [14], where the stability of 
reference system is difficult to establish. In Poland, some solution involving vibrating wire sensor 
technology was recently elaborated and implemented [15]. Another important measuring challenge is to 
access the load distribution between the ground and concrete columns over a long period of time [16], 
especially in the case of “energy” piles, serving as heat exchangers. 

The main limitation of almost all measuring techniques used in geotechnical instrumentation [17] is 
that they are based on spot sensors, which returns through measurement only one value of considered 
physical quantity. Thus, the question about what is happening between measuring points always remains 
without precise answer. However, nowadays there are the possibilities of applying new measuring tools, 
including distributed optical fibre sensor technology [18], which provide comprehensive and much more 
useful information in comparison with traditional techniques. This tools with reference to a specific 
application within CFA columns are presented and discussed hereafter. 

1.3.  Distributed optical fibre measurements 
Traditional extensometers and many other measuring techniques are able to carry out measurements of 
a given physical quantity (e.g. strains) only at a local scale - figure 3a. Sometimes attempts are made to 
analyse distribution of this quantity along a given line by installing several sensors within this line – 
figure 3b. Distributed optical fibre technology is based on light scattering and allows for strain and/or 
temperature measurements to be made with a spatial resolution starting from as fine as 5 mm along the 
length of the optical fibre [19]. From geotechnical point of view, such measurements can be considered 
as continuous measurements in a geometric sense (figure 3c). 

A number of studies on distributed optical fibre measurements have been conducted under laboratory 
conditions over the last few years. There were attempts to embed measuring fibres into a concrete [20], 
localize cracks within concrete structural members [21] and analyse their strain and temperature 
distributions [22, 23] using different optical phenomena such us Brillouin or Rayleigh scattering [24]. 
What is more, many pilot installations have been carried out in in situ conditions in relation to 
geotechnical structures [25, 26], including different types of piles and columns [27, 28]. 
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Figure 3. Measurement schemes for concrete columns: a) spot, b) quasi-continuous,  

c) distributed (geometrically continuous) 
 
In the case study presented and discussed hereafter, the strain and temperature measurements were 

conducted using reflectometer based on Rayleigh scattering phenomenon [29]. The principle of its 
operation lies in light scattering in optical fibre caused by the particle structure of matter (heterogeneity 
of refractive index at micro-scale). The light reflected from the imperfections of the glass fibre moves 
backward relative to the original direction of motion. Scattering amplitude is a random but constant 
property for a given fibre and can be analysed by advanced reflectometers which finally converse it for 
mechanical or thermal strains in reference to zero readings. During the research presented in the 
following sections of the paper an optical backscatter reflectometer OBR 4600 [30] manufactured by 
Luna Innovations was applied for distributed measurements. The selected technical parameters of this 
device are summarised in Table 1. 

 
Table 1. Selected parameters of distributed measurements 

Parameter Value Unit 

Measuring range (standard mode) 70 m 
Minimal spatial resolution 5 mm 
Temperature resolution ± 0,1 °C 
Strain resolution ± 1,0 µε 

2.  Installation of measuring fibres 
Two main goals were defined before the installation of optical fibres into the concrete CFA columns: 

 to provide appropriate adhesion between analysed medium (concrete) and measuring fibre, 
which enable adequate and reliable strain transfer; 

 to install linear optical fibre sensors to the level as deep as possible without any damages. 
 
These goals were realized through the application of specially designed composite rods integrated 

with optical fibres, which have been finally braided with polypropylene fibre in two directions and 
coated with two-component epoxy. This braid, analogously to traditional reinforcing bar ribs, provides 
mechanical cooperation between concert medium and the sensor. What is more, this solution secures 
the measuring fibre during installation process (pure glass optical fibre with the coating dimeter of 
Φ = 250μm would definitely rupture during concreting). 

For installation the composite rod with rectangular cross section was selected and optical fibres were 
glued to its all four surfaces. Knowing the exact distance between the upper and lower fibre (analogously 
between the left and right) it is possible to converse measured strains into displacements (3D shape). 
Also, one optical fibre was placed freely into polyamide tube, so it was isolated from mechanical strains 
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and thus used as temperature compensating fibre. Simplified cross section through the optical fibre linear 
sensor is presented in figure 4. 

 
Figure 4. Cross section through the optical fibre sensor 

 
The use of appropriately selected composite material for the sensor core makes installation easier 

because of its lightness as well as do not disturb the operation of structural member as its elasticity 
modulus is similar to the concrete modulus.  

 

 
Figure 5. The view of optical sensor in steel, protecting tube during installation process 

 
Because in the analysed CFA columns no reinforcement was applied, the special procedure of 

mounting had to be elaborated. Due to the technology requirements optical sensors protected by steel 
tubes were deepened immediately after concreting. The tube was equipped with special wings to provide 
its appropriate positioning within the cross sectional area of the column. At the very bottom of the tube 
the steel cone-shaped element was used to minimalize friction during deepening and also to anchor the 
sensor within the base of the column. The final step of installation was to remove the tube from the 
column, were only composite rod with optical fibres stayed with axial position. Some exemplary pictures 
from installation time are presented in figure 5. 
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3.  Exemplary results 

3.1.  Early-age concrete strains 
One of the main advantage of installation internal optical fibre sensors is the possibility of measuring 
early-age concrete strains and temperature development. In research described in this article 
measurements were performed according to a planned schedule and the zero readings were taken 
immediately after installation. 

In the first days of hardening, concrete reduced its volume (the length of the column was shorter and 
shorter) due to the phenomenon of thermal contraction as well as autogenous and drying shrinkage. But, 
because the structural member under consideration is not totally free element (constraints through the 
friction within the shaft), tensile stress could be induced in the material. Depending on the level of 
constraints as well as the parameters of concrete mix used, this phenomenon can lead to the cracks 
appearance. This is especially visible in the elements with reinforcement, which is in fact additional 
internal constraint for the concrete [31, 32]. Thus, applying linear optical fibre sensor for early-concrete 
strain and temperature measurements within the whole column length is very useful tool which allows 
for advanced structural condition assessment. With comparison with geological profiles it is also 
possible to analyse cooperation of the column concrete with surrounding ground at selected depths. 

3.2.  Mechanical strains during load test 
The main purpose of the optical measuring system installation was, however, performing measurements 
of mechanical strains during CFA column load tests. This test was conducted by applying force to the 
column head through hydraulic jacket resisted on the steel structure anchored to the four surrounding 
columns. The view from the site during load test is shown in figure 6. 

 
Figure 6. The view of CFA in situ load tests 

 
The measurements were performed automatically on 5 measuring optical channels with the 

frequency of 5 minutes. Later, these measurements were compared with data from testing machine, 
which had synchronized time with optical backscatter reflectometer used for strain and temperature 
records. The spatial resolution for this calculated physical quantities can be set in post processing starting 
from as fine as 5 mm – so, from engineering point of view, almost continuously in a geometrical sense 
(distributed measurements). For this specific case study, the resolution of 10 mm was defined. During 
load test temperature within the column was practically constant, so it will not be presented further. 

In figure 7a selected strain distributions are presented along the column depth, corresponding to the 
different values of applied force during load tests. We can clearly observe some local extremes within 
the compression side, which are located in the weakest places in the column. This phenomenon can be 
caused by reduction of the cross sectional area (A) or the value of concrete elasticity modulus (E) – in 
general, reduction of the column stiffness EA. Also, the kind of the ground in this areas should be taken 
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into account. Analysis of such local phenomena would not be possible with traditional, spot 
measurements.  

Based on strain distributions and knowing measuring base of the one virtual optical sensor, it is 
possible to calculate cumulated changes in length (in this case shortenings) of the column – which are 
presented in figure 7b. For this specific column, summation was started from the depth of 7,5m, but the 
longest sensor which successfully was installed during this project, was 12m long. This plot has more 
intuitive engineering interpretation, as it is expressed in mm. The areas were the plot is the most inclined 
correspond to the local extremes of strains (figure 7a) and physically mean the biggest change in the 
concrete column length. This data could be effectively used for verification and calibration numerical 
model of CFA columns cooperated with the surrounding, layered substrate. 

 

      
 

Figure 7. a) Strain [μɛ] distributions within the column depth during subsequent load steps;  
b) cumulated shortenings [mm] along the column depth during subsequent load steps 

 
Having continuous strain distribution along the whole measuring length, we can choose some depths 

and define any measuring base (which will be used for strain averaging) to show the strain changes in 
the function of time. It was done and presented in figure 8 for 6 selected depths and measuring base of 
10mm. Now we can clearly observe the course of the load test (consisted of two loading-unloading 
cycles). We can also see the natural relationship between the depth and the values of strains: the deeper 
the section is analysed, the smaller changes in strains. 
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Figure 8. Localization and numbering of measuring fibres within platform cross sectional area 
 

 
 

Figure 9. Calculated force values at every depth of measuring line within exemplary CFA column 
 

Based on the measured strains corresponding to the forces applied and recorded by testing machine, 
as well as making some theoretical assumptions e.g. assuming the constant value of elasticity modulus 
E and column cross sectional area A, it is possible to estimate the force distribution along the column. 
In other words, we are able to estimate the part of the force, which is transferred through the shaft to the 
ground at every depth. Thanks to this analysis, it can be also found whether the column base is involved 
in force transfer (for such analysis the length of optical sensor has to be equal to the column length). 
The view of exemplary plot is presented in figure 9. Also other computing techniques are currently being 
developed in this area.  

4.  Discussion and conclusions 
The pilot researches described in the article include distributed measurements of concrete strains and 
temperatures within CFA columns. Measurements were performed within the early-aged concrete 
during its first days of hydration, as well as under mechanical load tests. Analysis of obtained data can 
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be used, among other things, to estimate the integrity and load bearing capacity of the columns, their 
cooperation with surrounding layered ground as well as to calibrate spatial finite element method model 
and verify theoretical assumptions. The results are of the crucial importance as other methods based on 
stress wave transfer in solids (pile or column material) provide acceptable data from the 7th day of 
concrete setting [33, 34].  

Strain, crack and displacement analysis of concrete structural members is crucial in the context of 
the assessment of their technical condition and safety. This is the reason why works and studies are 
ongoing to improve the methods used in this field. Based on the research carried out and presented in 
this article, it can be concluded that the distributed fibre optic technology provides new opportunities in 
comparison with traditional spot measuring techniques (e.g. inductive, electrical resistance or vibrating 
wire). Thus, it can and should be used not only for laboratory tests or short-term in situ load tests, but 
also as a part of long-term structural health monitoring systems, especially in geotechnical applications. 
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