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A b s t r a c t

The goal of this paper is to apply Generalized Additive Models to medical scheme data. 
The flexibility of the nonparametric approach is demonstrated based on a real-life empirical 
example that seeks to model hypertension and the interplay of determinants, such as physiological 
measurements, medical attributes, demographic and socioeconomic characteristics in predicting 
blood pressure. The assessment of nonlinear patterns in the response-predictor relationship and 
the strength of this association are investigated. The extended Generalized Additive Models 
allow for modeling not only location and scale, but also other distribution parameters, such as 
kurtosis and skewness.
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S t r e s z c z e n i e

Celem niniejszego artykułu jest aplikacja uogólnionych modeli addytywnych do danych 
medycznych. Elastyczność nieparametrycznych rozwiązań przedstawiono na przykładzie 
modelowania zmiennych determinujących poziom nadciśnienia tętniczego krwi, takich jak 
atrybuty zdrowotne, fizjologiczne, demograficzne czy charakterystyki społeczno-ekonomiczne. 
W artykule zbadano nieliniowe zależności (oraz ich siłę) pomiędzy zmiennymi objaśniającymi 
a nadciśnieniem tętniczym krwi. Rozszerzona wersja modelu pozwala wyznaczyć nie tylko 
parametry skali i położenia, lecz również inne parametry charakterystyczne rozkładu, takie jak 
kurtoza i skośność.
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1. Introduction

There are loads of methods and techniques for nonparametric/semiparametric regression, 
such as Locally Weighted Regression [2], Regression Splines, Smoothing Splines, B-Splines 
[16], P-Splines [4], etc. All of them are aimed at one problem – to make a precise prediction. 
Compared with standard parametric methods such as  Linear/Binary/Logistic Regression 
Models or Generalized Linear Models (GLM), the  methodology behind nonparametric 
modeling relaxes the assumption of linearity in the response-predictor relationship. It enables 
to uncover structural behavior of the response with the independent variables that may 
otherwise be missed. The notion of exploring data nonparametrically has been proven to be 
successful in the statistical modeling. Unfortunately, this success sometimes is accompanied 
with a weak interpretability and greater variance for greater dimensionality. Proposed by 
Hastie and Tibshirani [9], Generalized Additive Models (GAM) allow for multidimensional 
data and provide the ability to detect the nonlinear associations without any damaging 
repercussion on interpretability.

The aim of this paper is to use Generalized Additive Models (GAM) to predict hypertension 
by multiple independent variables whose effect is modeled nonparametrically. The presented 
results demonstrate the importance of nonparametric solutions, especially in  the context 
of a  real-life data set. The study on the example of hypertension shows that Generalized 
Additive Models (GAM) provide flexible statistical methods for identification of nonlinear 
regression effects and complex shapes in the relationship between the response and the 
predictors which are missed by standard parametric solutions. The models built for Systolic/
Diastolic Blood Pressure account for scale, location, kurtosis and skewness of the continuous 
response distribution.

There is a plethora of studies trying to find and explain the factors influencing blood 
pressure. Unfortunately, most of them follow parametric assumptions [18], other allow 
for semiparametric inferences but strictly restricted to pre-specified response distribution 
belonging to the exponential family and thus, disregarding kurtotic or skewed distributions 
[8]. As presented on the example of Systolic/Diastolic Blood Pressure, the analyzed response 
variables do not follow exponential family features. 

2. Rationale

Modeling hypertension with Generalized Additive Models (GAM) has by its nature 
interdisciplinary scope. Broadening the spectrum of medical applications of Generalized 
Additive Models (GAM) contributes to both IT and medicine. Hypertension is a chronic 
health condition prevalent in most developed nations. Its prevalence in the western population 
exceeds 20%. Untreated high blood pressure is a major risk factor for coronary heart disease, 
cardiovascular disease, stroke or diabetes. Thus, it is of crucial importance to develop models 
identifying potential markers for its prediction. Better knowledge of the blood pressure drivers 
supports the decision making process concerning hypertension diagnosis and its treatment. 

The rationale behind incorporating Generalized Additive Models (GAM) are:
a)	 relaxing the assumptions of parametric models: 1) linear form of  the  relationship 

between response and predictors, 2) diagnostic checking of  the  residuals (normality 
and independence),
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b)	 enabling the use of multidimensional data,
c)	 reasonably easy interpretation.

Generalized Additive Models (GAM) have greater flexibility than their parametric 
counterparts. Traditional methods, although attractively simple, often fail in many applied 
settings. In real-life, effects are generally not linear.

The rationale of relaxing the parametric assumptions of linearity and normality (a) enables 
to explore the data visually and uncovers structural behavior that may be otherwise missed. 
Of note is the fact, that these properties of Generalized Additive Models (GAM) are shared 
by other nonparametric solutions. What make them distinctive from other nonparametric 
models are their properties of multidimensionality and interpretability (b and c). In light of 
the necessity of including large number of explanatory variables in the real-life applications, 
the practical capabilities of the most commonly used nonparametric regression methods, 
such as Thin-Plate Smoothing or Local Regression Methods [2] are significantly restricted. 
In such circumstances, the sparseness of data results in the unacceptably large variance of 
estimates (“the curse of dimensionality”). 

The drawbacks of both parametric (linearity) and standard nonparametric solutions 
(multidimensionality and interpretability) are overcome by Generalized Additive Models 
(GAM). Their methodology allows for estimating the additive terms individually using 
a  univariate smoother – each input is considered independently. This addresses the issue 
associated with “the curse of  dimensionality”. Additionally, individual term’s estimate 
directly explains the relative contribution to the response changes and thus, Generalized 
Additive Models (GAM) are among the most interpretable statistical models.

3. Description of solutions

Generalized Additive Models (GAM) were first proposed by Hastie and Tibshirani [9]. 
Their fit allows to combine:
–– the flexibilities of Generalized Linear Models (GLM) – an arbitrary function of dependent 
variable,

–– the additive assumptions that enable to explore the data nonparametrically.
Generalized Additive Models (GAM) extend Linear Models (LM) and Generalized Linear 

Models (GLM) to include smooth functions of explanatory variables. They are an important 
step forward in the generalization of Generalized Linear Models (GLM). Generalized Additive 
Models (GAM) do not require any transformations of the predictors to improve the fit. The 
different regression models might be envisioned as being nested within each other, with linear 
regression being the most limiting case, and Generalized Additive Models (GAM) the most 
general. They combine the abilities to explore the data nonparametrically simultaneously 
with the distributional flexibilities of Generalized Linear Models (GLM). Instead of having 
a  single estimation coefficient for each of the predictors, Generalized Additive Models 
(GAM) use an arbitrary nonparametric function to approximate the association between each 
of the predictors and the response.

The only underlying assumption made is that the nonparametric functions are additive 
and that the components are smooth. Generalized Additive Models (GAM), like Generalized 
Linear Models (GLM), apply a monotonic link function to establish a  relationship (link) 
between the mean of  the  response variable and a “smoothed” function of the explanatory 
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variables. They are constructed through summing up all the functions which fit the data locally. 
The final model closely represents the behavior of the data (data driven approach). However, 
apart from the nature of the response-predictor relationship, the probability distribution of the 
response must still be specified. In this sense, Generalized Additive Models (GAM) are more 
aptly referred to as semiparametric models. 	

3.1. Fundamentals of Generalized Additive Models (GAM)

Generalized Additive Models (GAM) combine Generalized Linear Models (GLM) and 
Additive Models (AM):

Generalized Linear Models (GLM) extend the response distribution of the linear model into 
the exponential family. Providing that Y is a response random variable and Xj, ..., Xp are explanatory 

variables, a standard linear regression model might be expressed as E Y Xj j
j

p

( ) .= +
=
∑β β0
1

 

Assuming that E(Y) = μ and η = g(μ) where g(•) is a smooth monotonic differentiable (up to 
third order) link function, the response-predictor relationship in Generalized Linear Models 

(GLM) is defined by η β β= +
=
∑0
1

j j
j

p

X .  The link function g(.) describes how the expected 

value of Y is related to linear predictor E(Y) = μ. Because the link function is a monotonic 
and invertible function, the mean can be expressed as the inversely linked linear predictor: 
E(Y) ≡ μ = g–1(η) where g–1(.) is so called inverse link function. The form η = g(μ) emphasizes 
that Generalized Linear Models (GLM) use transformations of the mean (no transformation 
of the data). The second form, i.e. μ = g–1(η) shows how predictions of the mean can be 
obtained following the estimation of η. The most commonly employed link functions are 
Normal, Exponential, Gamma, Inverse Gamma, Poisson and Binomial. For instance, for 
binary data, a common link function is the logit link: g(t) = log[t/(1 – t)]. The mean function 

of Generalized Linear Model (GLM) with the assumed logit link function and one predictor 

can be written as: log µ
µ
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a logistic regression model. The response variable in Generalized Linear Models (GLM) is 
assumed to be a member of exponential family.
–– Additive Models (AM) extend the parametric form of predictors in the linear model 

to  nonparametric forms. Additive Model (AM) is defined as: E Y s s Xj j
j

p
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where the smoothers si, i = 1, ..., p are smoothing splines. Please note that smooth functions 
have to be constrained to have zero mean.
Combining Generalized Linear Models (GLM) and nonparametric Additive Models 

(AM), Generalized Additive Models (GAM) might be defined as: 
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=
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where the response variable has a probability density from the exponential family. Generalized 

Additive Models (GAM) extend Generalized Linear Models (GLM) by replacing the form 

β β0
1

+
=
∑ j j
j

p

X  with the additive form s s Xj j
j

p

0
1

+
=
∑ ( ).

The form and the nature of Generalized Additive Models (GAM) are dependent 
on the backfitting algorithm, the local scoring method, the specified smoothing parameters 
and  the  degrees of freedom (DF) used for their computation. All of these parameters 
are  thoroughly discussed in the literature [19]. In this paper, only a brief summary is 
provided:
–– Backfitting algorithm: The backfitting and the local scoring form an interactive method 
to estimate the smoothers si, i = 1, ..., p. The backfitting algorithm is an algorithm that 
enables to fit Additive Models (AM). It might be used with different smoothers such as 
univariate or bivariate splines. The iterative mechanism permits to estimate each of the 
smoothing functions sk(  ), given estimates  [6].

–– Selection of smoothing parameters: Very different types of smoothing functions 
could be  specified in Generalized Additive Models (GAM): Cubic Smoothing 
Spline, Local Regression, Thin-Plate Smoothing Spline, etc. A smoother is  an 
operator for summarizing the trend and  the  variability of a response measurement 
Y as a nonparametric function of explanatory measurements X1, ..., Xp. Smoothing 
methodology offers a way by which nonlinear and nonparametric relationships can 
be handled without the restrictions of parametric models. In Generalized Additive 
Models (GAM), each smoother has a  single unique smoothing parameter. The 
most commonly used methods for the selection of smoothing parameters are Cross 
Validation (CV) function and Generalized Cross Validation (GCV) technique. For 
more details, please refer to Wahba [19].

4. Empirical results

4.1. Description of data

The data set used in this paper is obtained from the National Health & Nutrition 
Examination Survey (NHANES). NHANES is an ongoing program designed to assess 
the  health status of patients in  the United States. The NHANES collects, among others, 
demographic, health history and  behavioral information. This paper uses blood pressure 
measurements and demographic characteristics data. Blood pressure measurements were 
assessed during physician examinations (taken in the mobile examination centers), whereas 
demographic characteristics were collected during personal interviews. For the analysis 
purposes, the data from 2003 to 2010 is pooled. Calculations are performed using SAS Base 
9.2 and R1.

1	 SAS = Statistical Analysis System (system software provided by SAS Institute Inc., 4GL language), 
R = programming software and language for statistical computing developed by Development Core 
Team (Robert Gentleman and Ross Ihaka).
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The primary objective of this real-life empirical example is to investigate:
1) 	 the usefulness and flexibility of Generalized Additive Models (GAM) for medical scheme 

data, 
2) 	 the dependence of hypertension on various medical factors, 
3) 	 the patterns of hypertension and the effects of the independent variables on the response, 
4) 	 the strength of the association between independent and dependent variables. 

The response measurement is either continuous derived Mean Systolic/Diastolic Blood 
Pressure (referred to as Mean SBP/Mean DBP) or derived binary Hypertension/Borderline 
Hypertension level (Table 1). Mean SBP/Mean DBP is an average of three blood pressure readings 
taken during physician examinations. The binary Hypertension/Borderline Hypertension 
response is derived based on Mean SBP/Mean DBP and takes the value of ‘Yes’ (Hypertension/
Borderline Hypertension) if Mean SBP is greater/equal 120 mmHg or Mean DBP greater/equal 
80 mmHg and the value of ‘No’ (No Hypertension/Borderline Hypertension) otherwise. Its 
derivation is intended to account for both Mean SBP and Mean DBP. The histogram with an 
overlaid univariate kernel density estimate for continuous response variables is presented in 
Fig. 1. One-Way Frequencies for their binary counterparts are shown in Table 2.

T a b l e  1

Response variables used for fitting Generalized Additive Models (GAM)

Variable Name Variable Explanation
HYPERTFL Hypertension/Borderline Hypertension (1=Yes, 0=No) [Derived]
mSBP Mean Systolic Blood Pressure (mm Hg) [Derived]
mDBP Mean Diastolic Blood Pressure (mm Hg) [Derived]

T a b l e  2

One-Way Frequencies for binary Hypertension/Borderline Hypertension response

Hypertension/Borderline 
Hypertension (HYPERTFL) Frequency Percent Cumulative 

Frequency
Cumulative 

Percent

[1=Yes] 9905 44.61 9905 44.61
[0=No] 12299 55.39 22204 100.00

T a b l e  3

Moments for Mean SBP and Mean DBP

Moments Mean SBP Mean DBP Moments Mean SBP Mean DBP
N 22204 22204 Sum Weights 22204 22204
Mean 119.869 67.93787 Sum Observations 2661592 1508492
Std Deviation  17.521 11.81245 Variance 306.997 139.533
Skewness 1.136 0.04760 Kurtosis 1.873 0.160
Coeff Variation 14.617 17.38713 Std Error Mean 0.117 0.079
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Fig. 1. Histogram for Mean SBP/Mean DBP

Rys. 1. Histogram dla Średniego Ciśnienia Skurczowego/Rozkurczowego Krwi

The predictor measurements are mainly variables representing physiological 
measurements, medical attributes as well as demographic and socioeconomic characteristics. 
Ratio of Income to Poverty compares a family’s income with their appropriate  poverty 
threshold2. The explanatory variables are listed in Table 4.

T a b l e  4

Explanatory variables used for fitting Generalized Additive Models (GAM)

Variable Name Variable Explanation
AGEYRS Age at Screening (years)
GENDER Gender (1=Male, 2=Female)
BMXBMI Body Mass Index (kg/m²)
LBXSUA Uric acid (mg/dL)
LBDHDDSI HDL-cholesterol (mmol/L)
LBXSGTSI Gamma Glutamyl Transferase (GGT) (U/L)
INDFMPIR Family PIR (Ratio of Family Income to Poverty)
LBDSGLSI Glucose (mmol/L)
LBDSCRSI Creatinine (umol/L)

Model construction was preceded by outlier’s detection. It involved removing extreme 
or missing values that might unduly influence the results of the analysis and potentially lead 
to incorrect conclusions. Extreme values were defined as values deviating from the expected 
range of 1st percentile and 99th percentile. Additionally, it is important to mention that in order 
to prepare the data for the analysis, it is recommended to apply the reduction of the high-
dimensionality of the data set [12]. Reducing the number of variables under consideration 

2	  Ratio of ‘1’ means living right at the poverty line (income at 100% of poverty level), ratio above ‘1’ 
indicates living above the official definition of poverty (i.e. a ratio of ‘1.5’ means that income is 150% 
above the poverty threshold).
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mitigates the effects of the curse of dimensionality and contributes to more accurate data 
analysis results [11].

Based on raw data and before building Generalized Additive Models (GAM), a positive 
association with Mean SBP/Mean DBP for Age and Body Mass Index (BMI) is noticed.

Fig. 2. Marginal Scatter Plot for Age – Mean SBP Relationship

Rys. 2. Brzegowy Wykres Rozrzutu dla Relacji Wiek – Średnie Ciśnienie Skurczowe Krwi

Knowing the positive response-predictor relationship for both explanatory variables, Age 
at Screening is classified into 4 Age Cohorts: 12–<23 years, 23–<40 years, 40–<57 years 
and 57–<85 years, and Body Mass Index (BMI) into 3 BMI Groups: 14–<25 kg/m², 25–<30 
kg/m², 30–<45 kg/m². Please note that Body Mass Index (BMI) in the range of 25–<30 kg/
m² could be an indicator of being overweight and Body Mass Index (BMI) > 30 kg/m² an 
indicator of being obese. Age Cohort, BMI Group and Gender are treated as the classification 
variables and constitute the parametric part of Generalized Additive Models (GAM). 

Fig. 3. Box plots of Mean SBP for classification variables
Rys. 3. Wykresy pudełkowe Średniego Ciśnienia Skurczowego dla poszczególnych zmiennych 

klasyfikujących
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Alike the classification variables, the continuous predictors are intended to account 
for the nonparametric inferences. To examine the trends between the explanatory variables, 
all of them are put on one panel (Fig. 4). Only a weak correlation exists between explanatory 
variables. Thus, the impact of multicollinearity (concurvity) on parameter estimates is not 
a major issue. Appendix 1 presents bivariate kernel density estimates for selected explanatory 
variables, with contour and surface plots, in which density function is averaged across the 
observed data points to create a smooth approximation. 

Fig. 4. Scatter Plot Matrices for Continuous Explanatory Variables

Rys. 4. Wykres Rozrzutu dla Ciągłych Zmiennych Objaśniających
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4.2. Modeling binary response variable

As assessed by the scatter plot of explanatory variables (Fig. 4), there are striking features 
in the analyzed data set. It is really hard to determine from the plot whether the relationship 
between explanatory variables and the response is linear or not. Another issue has to do 
with the  response distribution. Although histograms for continuous response variables, 
particularly for Mean DBP, seem to look pretty symmetric (Fig. 1), they are not of normal 
distribution and more importantly, do not follow exponential family features (as verified by 
Kolmogorov-Smirnov, Cramer-von Mises and Anderson-Darling Tests). 

To account for both Mean DBP and Mean SBP, as the starting point, Generalized 
Additive Model (GAM) for binary Hypertension/Borderline Hypertension is built (Table 5). 
It depends on additive predictors through a ‘Logit’ link function. An additive model with 
univariate cubic smoothing splines is requested for all continuous explanatory predictors 
(Uric acid, HDL-cholesterol, Gamma Glutamyl Transferase (GGT), Family PIR, Glucose 
and Creatinine).

Parameter Estimates for the parametric (linear) part of the model (Table 5) indicate high 
significance of the linear trends for each of the explanatory variables, with p-values much lower 
than the assumed significance level of 0.05. The Analysis of Deviance (Table 6) presents a χ2 
test comparing the deviance between the fully specified model (all explanatory variables with 
parametric and nonparametric part) and the model without the nonparametric component of 
a given variable (omitting nonlinearity). The nonparametric effects are concluded to be highly 
significant for each univariate smoothing splines introduced into the model.

T a b l e  5

Parameter Estimates (Binary Regression, Link Function = Logit)

Parameter Par. 
Estimate

Standard 
Error t Value Pr > |t|

Intercept –3.28 0.132 –24.9 < 0.0001**
Age Cohort (23–<40 vs 12–<23 years) 0.60 0.048 12.4 < 0.0001**
Age Cohort (40–<57 vs 12–<23 years) 1.42 0.050 28.5 < 0.0001**
Age Cohort (57–<85 vs 12–<23 years) 2.26 0.052 43.5 < 0.0001**
Gender (Male vs Female) 0.35 0.040 8.9 < 0.0001**
BMI Group (25–<30 vs 14–<25 kg/m²) 0.25 0.040 6.1 < 0.0001**
BMI Group (30–<45 vs 14–<25 kg/m²) 0.57 0.044 12.9 < 0.0001**
LINEAR(Uric acid) 0.11 0.015 7.6 < 0.0001**
LINEAR(HDL-cholesterol) 0.20 0.045 4.5 < 0.0001**
LINEAR(Gamma Glutamyl Transferase) < 0.01 < 0.001 9.8 < 0.0001**
LINEAR(Family PIR) –0.03 0.001 –2.7 0.0066*
LINEAR(Glucose) 0.06 0.014 4.6 < 0.0001**
LINEAR(Creatinine) < 0.01 0.001 4.1 < 0.0001**
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Ta b l e  6

Smoothing Model Analysis – Analysis of Deviance

Cubic Spline (CS) Generalized 
Cross Valid.

Sum of 
Squares

Chi-
Square Pr > ChiSq

CS(Uric acid) 0.538 19.550 19.550  0.0002**

CS(HDL-cholesterol) 0.394 11.222 11.222 0.0106*

CS(Gamma Glutamyl Transferase) 5.346 113.702 113.702 < 0.0001**

CS(Family PIR) 0.625 13.693 13.692 0.0034**

CS(Glucose) 3.085 27.985 27.985 < 0.0001**

CS(Creatinine) 4.717 26.990 26.990 < 0.0001**

To allow the visual judgment of the relative nonparametric effect sizes, a curvewise 
Bayesian confidence interval (standard-error band) to each smoothing component is 
used [9]. Smoothing Components Plot (Fig. 5) demonstrates the  estimated smoothing 
spline functions with the linear effect subtracted out. It gives an  idea where significant 

Fig. 5. Smoothing Components Plot for Hypertension/Borderline Hypertension

Rys. 5. Wykres Komponentów Wygładzania dla Nadciśnienia/Podwyższonego Ciśnienia Krwi 
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nonlinearities occur. The small p-values indicate that the data exhibits significant nonlinear 
structure. All variables are nonlinear predictors of Hypertension/Borderline Hypertension. 
They have a pretty pronounced complicated structure with a quadratic pattern for Uric acid 
and HDL-cholesterol, and  even more curved pattern for Gamma Glutamyl Transferase 
(GGT) or Creatinine. It highlights the ability of Generalized Additive Models (GAM) to 
uncover nonlinear relationships and their potential in identifying patterns which are missed 
by standard parametric approaches.

The estimate of Generalized Additive Model (GAM) is just the sum of individual 
predictors’ estimates plus a constant. Fig. 6 shows the partial prediction and the entire 
prediction effects of individual predictors (derived as the sum of the estimated linear terms 
– parametric part and the  respective nonlinear partial predictions – nonparametric part). 
It  further reveals the nature of the data and the overall shape of the relationship between 
the predictors and the response variable. 

Concluding, the estimated Generalized Additive Model (GAM) for binary Hypertension/
Borderline Hypertension response reveals pronouncedly complex nonlinear patterns in the 
response-predictor relationships for all explanatory variables. For more in-depth investigation, 
the estimation of continuous Mean SBP/Mean DBP is needed. However, as verified by 
Kolmogorov-Smirnov, Cramer-von Mises and Anderson-Darling Tests, both Mean SBP and 
Mean DBP do not belong to the class of exponential family distributions. Excess kurtosis is 
negative for both variables (Table 3) indicating platykurtic distributions. Thus, the estimation 
of continuous response variables requires going beyond exponential family distributions. 
This is accomplished by extending the standard Generalized Additive Models (GAM) to 
Generalized Additive Models (GAM) for Location Scale and Shape. 

Fig. 6. Partial predictions for explanatory variables – predictors with and without linear terms

Rys. 6. Prognozy częściowe dla zmiennych objaśniających – predyktory z oraz bez składowych 
liniowych
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4.3. Modeling continuous response variables

In Generalized Additive Models (GAM) for Location Scale and Shape the 
probability density function f yi

i( | )θ  is conditional on distribution parameter vector 
θ θ θ θ θ µ σ υ τi

i i i i i i i i= =( , , , ) ( , , , )1 2 3 4  for i = 1, 2, ..., n. Each of the parameters ( , , , )µ σ υ τi i i i  
may be a function of the predictors. The first two distribution parameters μi and σi are referred 
to as location and scale distribution parameters, whereas υi and τi are referred to as shape 
distribution parameters (skewness and kurtosis). The formulation of Generalized Additive 
Models (GAM) for Location Scale and Shape goes as follows [14]:

	 g h hk k k k k k jk jk
j

Jk
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=
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where:
yT = (y1, y2, ..., yn) 	 – 	the vector of response variables,
θk for k = 1, 2, 3, 4 	 – 	the distribution parameter vector,
μ, σ, υ, τ and ηk 	 – 	vectors of length n,

k
T

k k J kk
= ( , ,... )'β β β1 2  	 – 	a parameter vector of length Jk

' ,
Xk 	 – 	a known design matrix of order n Jk× ' ,
xjk for j = 1, 2, ..., Jk 	 – 	vectors of length n,
gk(.) 	 – 	monotonic link functions relating the distribution 

parameters ( , , , )µ σ υ τi i i i  to explanatory variables,
hjk 	 –	 an unknown smoothing function of explanatory variables xjk, 
hjk = hjk(xjk) 	 – 	a vector evaluating the function hjk at xjk,
hk 	 – 	nonlinear parametric function of explanatory variables.

If equation (2) does not include any of the additive terms in any of the distribution 
parameters (Jk = 0) then the model defined by (2) reduces to the nonlinear parametric model 
gk(θk) = ηk = hk(Xk  βk). If additionally hk k k k

T
k( )X X=  then model (2) reduces to the linear 

parametric one gk(θk) = ηk = Xkβk.
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Equation (2) allows for modeling the distribution parameters as linear/nonlinear parametric 

function (hk(Xk βk)) and nonparametric smooth function h xjk jk
j

Jk

( )
=
∑




1

 of explanatory variables.

The form of the response distribution f yi i i i i( , , , )µ σ υ τ  in Generalized Additive Models 
(GAM) for Location Scale and Shape may be very general. Table 7 compares the goodness of 
fit based on the Akaike Information Criterion (AIC) and the Bayesian Information Criterion 
(BIC) for 28 different continuous distributions fitted to continuous response variables. For 
details about these distributions, please refer to Johnson, Kotz and Kemp [10].

T a b l e  7

Continuous distributions applied to Mean SBP and Mean DBP data – Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC)

Mean SBP Mean DBP

Df AIC BIC Df AIC BIC

Box-Cox Power Exponential 16 177773 177901 16 167818 167946
Box-Cox-t 16 177809 177936 16 167825 167953
Inverse Gaussian 14 177895 178007 14 169376 169488
Zero Adjusted IG 15 177897 178017 15 169378 169498
Generalized Beta Type 2 16 177904 178032 16 167940 168068
Box-Cox Cole and Green 15 178230 178350 15 167880 168000
Generalized Gamma 15 178366 178486 15 167916 168036
Generalized Inverse Gaussian 15 178484 178603 15 168446 168566
Log Normal 14 178619 178732 14 169051 169163
Log Normal (Box-Cox) 14 178620 178732 14 169051 169163
Gamma 14 178896 179008 14 168444 168556
Shash 16 178896 179024 16 167811 167939
Johnson’s SU (the mean) 16 178930 179058 16 167764 167893
Skew t Type 1 16 178986 179113 16 167767 167895
Johnson’s Original SU 16 179076 179204 16 168173 168301
Skew t Type 2 16 179091 179220 16 167766 167894
Skew Power Exponential Type 1 16 179152 179280 16 167764 167892
Skew Power Exponential Type 2 16 179298 179427 16 167764 167892
Generalized y 16 179765 179893 16 167762 167890
t Family 15 179768 179888 15 167764 167884
Power Exponential 15 179911 180032 15 167761 167881
Reverse Gumbel 14 180144 180257 14 171709 171821
NET 14 180166 180278 14 169169 169281
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Mean SBP Mean DBP
Df AIC BIC Df AIC BIC

Normal 14 181593 181705 14 167829 167942
Weibull 14 184068 184180 14 168911 169023
Gumbel 14 190253 190365 14 171757 171869
Exponential 13 256838 256942 13 231641 231745

With both the Akaike Information Criterion (AIC) and the Bayesian Information Criterion 
(BIC), the Box-Cox Power Exponential (BCPE) and the Box-Cox-t (BCT) distributions 
come as the best ones in approximating Mean DBP. For Mean SBP, both AIC and BIC favor 
the Power Exponential distribution. The Box-Cox Power Exponential (BCPE) and the Box-
Cox-t (BCT) are continuous four parameter distributions (μ, σ, υ, τ) They generalize the 
Box-Cox Cole and Green distribution (BCCG) to allow for modeling kurtosis and skewness 
[3]. The Power Exponential distribution requires three distribution parameters (μ, σ, υ). For 
details about probability density functions of  the Box-Cox-t/Box-Cox Power Exponential 
and the Power Exponential distributions please refer to Rigby and Stasinopoulos [14].

The estimation of continuous response variables assuming the Box-Cox Power Exponential 
distribution (BCPE) for Mean DBP and the Power Exponential distribution for Mean SBP 
is preceded by the selection of explanatory variables. The first distribution parameter μ (the 
mean of  the  response) is modeled assuming the inclusion of all the explanatory variables 
defined at the very beginning (Table 4). Table 8 checks whether the model can be simplified 
by potential dropping any of the terms in μ.

T a b l e  8

Single term deletions for μ

Mean DBP Mean SBP
AIC LRT Pr(Chi) AIC LRT Pr(Chi)

Age Cohort (years) 170573 2760 < 0.0001** 184047  4141 < 0.0001**
Gender (1=Male, 2=Female) 167833 17 < 0.0001** 180078 169 < 0.0001**
BMI Group (kg/m²) 167883 69 < 0.0001** 180219 312 < 0.0001**
Uric acid (mg/dL) 167861 45 < 0.0001** 179984 75 < 0.0001**
HDL-cholesterol (mmol/L) 167816 <0 0.6537 179933 23 < 0.0001**
Gamma Glut. Trans. (U/L) 167978 161 < 0.0001** 180048 139 < 0.0001**
Family PIR 167839 22 < 0.0001** 179956 47 < 0.0001**
Glucose (mmol/L) 167843 27 < 0.0001** 179962 52 < 0.0001**
Creatinine (umol/L) 167841 25 < 0.0001** 179969 60 < 0.0001**

Based on the Chi square test, HDL-cholesterol (mmol/L) does not contribute significantly 
to Mean DBP (no significant reduction of Akaike Information Criterion (AIC) as assessed 
by Likelihood-Ratio Test (LRT)). For Mean SBP, no terms can be left out, all of them will 
contribute to the final model.
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Modeling the distribution parameters (μ, σ, υ) and τ of continuous response variables 
and  thus selecting the best distributions for Mean DBP/Mean SBP is performed based 
on the linear parametric functions of the predictors (Table 7). For fitting nonlinear and 
nonparametric smooth functions, as the next step, additive term functions are applied and 
checked for the goodness of fit. Note that in this paper the modeling of the Box-Cox Power 
Exponential distribution (BCPE) for Mean DBP and the Power Exponential distribution 
for Mean SBP as the nonparametric smooth terms is restricted to Cubic Smoothing Spline 
Functions. Alternative additive terms, such as: Penalized Splines [4], Thin-Plate Smoothing 
Splines, Local Regression Splines [2], Fractional Polynomials, Power Polynomials [15], 
Random effects, Random coefficients [1], although very attractive, are not employed and not 
compared in this paper. Of particular notice are Random effects and Generalized Additive 
Mixed Models (GAMM) which pose very different and flexible approach to estimating 
Generalized Additive Models (GAM) [13].

Cubic Smoothing Spline Functions are curves which are made up of sections of joined 
cubic polynomials so that the functions h(x) in model (2) are continuous in value and twice 
continuously differentiable. They are extensively covered in the literature [7, 9], thus their 
derivation is omitted. 

Given X = x, Mean DBP is modeled by the Box-Cox Power Exponential distribution 
denoted as BCPE(μ, σ, υ, τ) where the distribution parameters (μ, σ, υ) and τ are modeled 
as smooth nonparametric functions of x, i.e.: Y ~ BCPE(μ, σ, υ, τ) where g1(μ), g2(μ), 
g3(υ), g4(τ) are defined by (3)–(6), respectively and for k = 1, 2, 3, 4, gk(.) are known link 
functions. The similar approach applies to Mean SBP (the Power Exponential distribution), 
i.e. Y ~ PE(μ, σ, υ).

In order to establish whether smoothing terms are needed in the μ model defined by (3), 
all possible combinations of linear and cubic spline functions to the data are fitted. For each 
of  the estimated models, Akaike Information Criterion (AIC) is assessed (stepwise model 
selection). The  selection process is very time-consuming and its outputs very extensive. 
Thus, the full selection process of smoothing cubic splines is not included in this paper. Table 9 
and Table 10 are brief summaries of the results.

T a b l e  9

Summary of the selection process for Mean DBP – the first distribution parameter μ

From To Deviance Resid. Df Resid. Dev AIC

LINEAR(Creatinine) CS(Creatinine) –181 22186 167606 167641

LINEAR(GGT) CS(GGT) –143 22183 167462 167504

LINEAR(Glucose) CS(Glucose) –70 22180 167392 167440

CLASS(Gender)   < 0 22181 167393 167439
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Ta b l e  10

Summary of the selection process for Mean SBP – the first distribution parameter μ

From To Deviance Resid. Df Resid. Dev AIC

LINEAR(GGT) CS(GGT) –141 22186 179740 179776

LINEAR
(Creatinine) CS(Creatinine) –47 22183 179693 179735

LINEAR(Glucose) CS(Glucose) –31 22180 179662 179710

LINEAR(Uric acid) CS(Uric acid) –27 22177 179636 179689

LINEAR
(HDL-cholesterol) CS(HDL-cholest.) –17 22174 179618 179678

LINEAR
(Family PIR) CS(Family PIR) –16 22171 179603 179668

Having the model for μ determined, models for variance, skewness and kurtosis are 
searched for. The model selection procedure for these distribution parameters comprised of:
–– Choosing link functions: for the Box-Cox Power Exponential distribution (Mean DBP), 
the default identity link functions are chosen for μ and υ, and log link functions are chosen 
for σ and τ;

–– Selecting linear terms influencing the given distribution parameter: this is achieved 
by fitting models with linear terms;

–– Applying cubic spline functions h(x) to explanatory variables exhibiting nonparametric 
relation to the given distribution parameter: this is verified based on the Akaike Information 
Criterion (AIC);

–– Selecting appropriate level of the “smoother” for each of the predictors modeled 
nonparametrically, i.e. choosing the effective degrees of freedom (DF) for smooth cubic 
spline functions h(x) and denoted as dfμ, dfσ, dfυ and dfτ respectively: this is achieved 
by  employing numerical optimization function to minimize the Generalized Akaike 
Information Criterion  over hyper-parameters dfμ, dfσ, dfυ and dfτ 
in  the Box-Cox Power Exponential model for Mean DBP, where  is the maximized 
log-likelihood function, # denotes penalty, df refers to the effective degrees of freedom 
(DF) and  is referred to as the global deviance. Due to limited space for this paper, 
the process of finding and searching for the best fit is not presented here. Note that the 
best model is found for hyper-parameters corresponding to penalty #= 2 and results in 
selecting a vector of hyper-parameters minimizing GAIC (2). For more details please 
refer to Rigby and Stasinopoulos [14].
Given that CS is Cubic Spline function and df denotes degrees of freedom (DF), the 

model for Mean DBP defined by four distribution parameters μ, σ, υ and τ of the Box-Cox 
Power Exponential BCPE(μ, σ, υ, τ) (for patients from Age Cohort: 57–<85 years and with 
Body Mass Index (BMI) Group: 30–<45 kg/m²) is given by:
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Applying similar model selection procedure to Mean SBP for the first three distribution 
parameters, the model assuming the Power Exponential distribution PE(μ, σ, υ) is given by:
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5. Discussion

The real-life example of Mean DBP/Mean SBP demonstrates the need for going beyond 
the exponential family distributions and thus, the usefulness of Generalized Additive Models 
(GAM) for Location, Scale and Shape. This overcomes the shortcomings associated with 
standard Generalized Additive Models (GAM) and Generalized Linear Models (GLM). 
In Generalized Additive Models (GAM) for Location, Scale and Shape the assumption 
of exponential family distributions is  relaxed. It allows for modeling not only the mean 
associated with the location but also other distribution parameters of the response variable 
as additive nonparametric smoothing functions of explanatory variables. In the case of Mean 
DBP/Mean SBP data, the usage of the Box-Cox Power Exponential/Power Exponential 
distributions within Generalized Additive Models (GAM) allowed for modeling kurtotic 
distributions.

The estimated Generalized Additive Model (GAM) for binary Hypertension/
Borderline Hypertension response indicates that all the explanatory variables influence 
hypertension: Age Cohort, Gender, Body Mass Index (BMI) Group, Uric Acid,  
HDL-cholesterol, Gamma Glutamyl Transferase (GGT), Family PIR, Glucose and 
Creatinine. All explanatory variables are statistically significant with p-values much 
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lower than the assumed significance level of 0.05. It applies also to Generalized Additive 
Models (GAM) for  Location, Scale and Shape estimated for Mean SBP. The  results 
suggest that Mean DBP (which refers to the pressure when the heart is resting between 
beats) does not depend on Gender and HDL-cholesterol.

Systolic Blood Pressure seems to have stronger relationship with physiological 
and medical attributes than Diastolic Blood Pressure. All explanatory variables are nonlinear 
predictors of Systolic Blood Pressure. The models estimated for Hypertension/Borderline 
Hypertension and Mean DBP/Mean SBP suggest that:
–– The blood pressure is higher among older subjects and subjects with elevated Body 
Mass Index (BMI). The risk of Hypertension/Borderline Hypertension is higher among 
population groups with overweight and obesity, particularly in Body Max Index Group 
>=30 kg/m2. A similar trend prevails for Age Cohorts. The slopes of blood pressure 
are significantly higher in men than women (Table 5).

–– People with elevated Uric Acid levels are at greater risk of hypertension. It is backed 
by other studies on Uric Acid [5]. The researchers conclude that Uric Acid may be an 
independent driver of high blood pressure and a marker of its prediction. A simple blood 
test can determine how much of it is present in the body. Effective drugs already exist 
which lower the  level of Uric Acid and thus, offer a  potential remedy for high blood 
pressure prevention.

–– HDL-cholesterol levels influence Systolic Blood Pressure response. This is due to 
the association between high HDL-cholesterol and atherosclerosis (accumulation 
of HDL-cholesterol on the walls of arteries – hardening of the arteries). High HDL-
cholesterol accelerates the progression of atherosclerosis which is thought to contribute 
to hypertension. This link is not significant for Diastolic Blood Pressure readings.

–– There is a positive link between Gamma Glutamyl Transferase (GGT) levels, a marker 
of oxidative stress and blood pressure. Although the underlying mechanism of this 
association is still unclear, some studies confirm that higher Gamma Glutamyl Transferase 
(GGT) is implicated in the pathogenesis and progression of hypertension [17].

–– People in low socioeconomic status environments as assessed by Income-Poverty Ratio 
are more susceptible to illnesses. Those with  lower income tend to be at greater risk 
of hypertension. These findings are pretty worrying, especially in light of the fact that 
most researches to date are concentrated on hypertension in developed urban countries. 
As a result, very little is known about the problems and barriers to treatment and diagnosis 
outside high-income areas. This issue is even more acute knowing that the epidemic of 
cardiovascular disease occurring in low-income nations is largely driven by the increasing 
prevalence of high blood pressure.

–– Glucose is able to induce Systolic Blood Pressure. Elevated Glucose level increases 
the likelihood of having diabetes which leads to higher Systolic Blood Pressure and heart 
diseases. The relationship with Diastolic Blood Pressure seems to be reversed.

–– Higher blood pressure is associated with elevated Serum Creatinine level (an indicator of 
chronic renal disease). Creatinine draws water into the muscle what increases body weight 
and muscle volume. Retaining more water in the body impacts  the blood volume and 
thus,  blood  pressure. Of note is the fact that half of the body’s Creatinine is  created 
naturally (produced in the liver and kidney) whereas the rest comes from the diet (the 
consumption of red meat and poultry). It confirms that appropriate diet plays its role in 
the treatment of blood pressure.
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6. Conclusions

In this paper, the underlying methodology for Generalized Additive Models (GAM) 
has been introduced. The real-life data set example has demonstrated how one can use 
the nonparametric approach to model medical scheme data. This was achieved by investigating 
the dependencies and patterns of Hypertension/Borderline Hypertension  and Mean  
DBP/Mean SBP on various physiological measurements, medical attributes and Income to 
Poverty Ratio. It is concluded that Generalized Additive Models (GAM) are a very powerful 
and flexible tool in an exploratory analysis, especially when you have little prior information 
about the data or you want to find new features that parametric tools ignore. Its nonparametric 
nature does not require much prior information and can also shed light on underlying 
parametric relationships. Generalized Additive Models (GAM) help to avoid model 
misspecification and provide information that might not be revealed by standard modeling 
techniques. The presented Generalized Additive Models (GAM) revealed pronouncedly 
complex nonlinear patterns in the response-predictor relationships for all predictors entered 
into the model. These nonlinear associations have been handled without the restrictions of 
parametric models, without sacrificing the interpretability and without the bias associated 
with the “curse of  dimensionality”. The built Generalized Additive Models (GAM) seem 
to represent the behavior of the data closer than the parametric counterparts. It underlines 
the  importance of  this class of models in detecting nonlinear dependencies and suggests 
potential failure of  parametric solutions in capturing important features of the medical 
scheme data.
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T a b l e  11

Distribution parameters of Box-Cox Power Exponential distribution (BCPE) – Mean DBP

Estimate Std. Error t value Pr(>|t|)

μ – Mu Coefficients (Mu link function: identity)

(Intercept) 58.09 0.481 120.7 < 0.0001**

Age Cohort (23–<40 vs 12–<23 years) 5.76 0.212 27.1 < 0.0001**

Age Cohort (40–<57 vs 12–<23 years) 10.81 0.222 48.7 < 0.0001**

Age Cohort (57–<85 vs 12–<23 years) 6.05 0.240 25.2 < 0.0001**

BMI Group (25–<30 vs 14–<25 kg/m²) < 0.01 0.184 < 0.1 0.1986

BMI Group (30–<45 vs 14–<25 kg/m²) 1.33 0.202 6.6 < 0.0001**

LINEAR(Uric acid) 0.25 0.065 3.8 < 0.0001**

CS(Gamma Glutamyl Transferase, df = 6.48) 0.04 0.003 13.1 < 0.0001**

LINEAR(Family PIR) –0.25 0.046 –5.3 < 0.0001**

CS(Glucose, df = 7.25) –0.21 0.067 –3.1 < 0.0001**

CS(Creatinine, df = 9.49) 0.03 0.004 6.2 < 0.0001**



114

Estimate Std. Error t value Pr(>|t|)

σ – Sigma Coefficients (Sigma link function: log)

(Intercept) –1.92 0.031 –62.5 < 0.0001**

Age Cohort (23–<40 vs 12–<23 years) –0.07 0.015 –4.7 < 0.0001**

Age Cohort (40–<57 vs 12–<23 years) –0.19 0.015 –12.6 < 0.0001**

Age Cohort (57–<85 vs 12–<23 years) 0.02 0.015 1.4  0.1503

CS(Uric acid, df = 0.89) 0.01 0.004 3.7  0.0002**

LINEAR(Family PIR) –0.02 0.003 –5.9 < 0.0001**

CS(Glucose, df = 3.20) 0.01 0.004 2.8 0.0049**

υ – Nu Coefficients (Nu link function: identity)

(Intercept) 1.41 0.117 12.0 < 0.0001**

Age Cohort (23–<40 vs 12–<23 years) –0.39 0.101 –3.8 < 0.0001**

Age Cohort (40–<57 vs 12–<23 years) –0.67 0.113 –5.5 < 0.0001**

Age Cohort (57–<85 vs 12–<23 years) –0.20 0.094 –2.2 0.0246*

LINEAR(Family PIR) 0.06 0.022 2.6 0.0082*

CS(Creatinine, df = 2.76) < –0.01 0.001 –2.9  0.0032**

τ – Tau Coefficients (Tau link function: log)

(Intercept) 0.71 0.040 17.8 < 0.0001**

Age Cohort (23–<40 vs 12–<23 years) –0.19 0.042 –4.5 < 0.0001**

Age Cohort (40–<57 vs 12–<23 years) –0.18 0.043 –4.2 < 0.0001**

Age Cohort (57–<85 vs 12–<23 years) –0.13 0.042 –3.2 0.0014**

Gender (Male vs Female) 0.09 0.030 2.9 0.0034**

Degrees of Freedom for the fit: 68.90, No. of observations in the fit: 22204

Ta b l e  12

Distribution parameters of Power Exponential distribution (PE) – Mean SBP

  Estimate Std. Error t value Pr(>|t|)

μ – Mu Coefficients (Mu link function: identity)

(Intercept) 96.23 0.696 138.2 < 0.0001**

Age Cohort (23–<40 vs 12–<23 years) 6.18 0.250 24.7 < 0.0001**

Age Cohort (40–<57 vs 12–<23 years) 18.23 0.319 57.2 < 0.0001**
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  Estimate Std. Error t value Pr(>|t|)

Age Cohort (57–<85 vs 12–<23 years) 2.75 0.198 13.9 <  0.0001**

Gender (Male vs Female) 1.46 0.191 7.6 < 0.0001**

  Estimate Std. Error t value Pr(>|t|)

BMI Group (25–<30 vs 14–<25 kg/m²) 2.20 0.194 11.3 < 0.0001**

BMI Group (30–<45 vs 14–<25 kg/m²) 4.59 0.219 20.9 < 0.0001**

CS(Uric acid, df = 2.18) 0.40 0.077 5.2 < 0.0001**

CS(HDL-cholesterol, df = 3.90) 0.93 0.230 4.1 < 0.0001**

CS(Gamma Glutamyl Transferase, df = 8.11) 0.05 0.004 13.5 < 0.0001**

CS(Family PIR, df = 2.39) –0.20 0.045 –4.2 < 0.0001**

CS(Glucose, df = 6.52) 0.79 0.085 9.4 < 0.0001**

CS(Creatinine, df = 3.54) 0.06 0.005 12.2 < 0.0001**

σ – Sigma Coefficients (Sigma link function: log)

(Intercept) 2.03 0.042 48.1 < 0.0001**

Age Cohort (23–<40 vs 12–<23 years) 0.12 0.015 7.9 < 0.0001**

Age Cohort (40–<57 vs 12–<23 years) 0.48 0.016 29.2 < 0.0001**

Age Cohort (57–<85 vs 12–<23 years) 0.76 0.016 48.7 < 0.0001**

Gender (Male vs Female) –0.04 0.013 –3.3 < 0.0001**

CS(HDL-cholesterol, df = 0.90) 0.04 0.015 3.1 < 0.0001**

CS(Gamma Glutamyl Transferase, df = 2.55) < 0.01 < 0.001 4.1 < .0001**

LINEAR(Family PIR) –0.02 0.003 –6.7 < 0.0001**

CS(Glucose, df = 1.34) 0.01 0.004 2.9 < 0.0001**

LINEAR(Creatinine) < 0.01 <0.001 4.1 < 0.0001**

υ – Nu Coefficients (Nu link function: log)

(Intercept) 0.53 0.065 8.4 <0.0001**

Age Cohort (23–<40 vs 12–<23 years) –0.19 0.041 –4.7 <0.0001**

Age Cohort (40–<57 vs 12–<23 years) –0.32 0.041 –7.8 <0.0001**

Age Cohort (57–<85 vs 12–<23 years) –0.09 0.042 –2.0 0.0430*

Gender (Male vs Female) 0.06 0.028 2.1 0.0350*

Degrees of Freedom for the fit: 63.59, No. of observations in the fit: 22204
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A p p e n d i x  1

Kernel Density for selected Explanatory Variables: Density Surface and Contour Plot

A p p e n d i x  2

Probability density functions of Box-Cox-t, Box-Cox Power Exponential and Power 
Exponential distributions

The probability density function f yT i i i i i( , , , )µ σ υ τ  of the Box-Cox-t distribution (BCT) 
is given by:

	
f y

y f z

F
T

T

T

( | , , , )
( )

| |

µ σ υ τ
µ σ

σ υ

υ

υ

=






−1

1 	 (7)

for y > 0, where Y is a positive random variable of the Box-Cox t distribution, μ > 0, σ > 0, 
and – ∞ < υ < ∞ and Z is the transformed random variable given by:
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1 1 , 0

1 log , 0

Y if
Z

Y if

υ     − υ ≠ συ µ    = 
   υ =  σ µ 

	 (8)

where Z follows a truncated t distribution with degrees of freedom (DF), τ > 0. fT(t) and FT(t) 
are respectively the probability density function and the cumulative distribution function 
of a random variable T. T has a standard t distribution with degrees of freedom (DF) τ > 0.

The probability density function of the Box-Cox Power Exponential distribution (BCPE) 
is given by (7) where Z follows a truncated standard Power Exponential distribution with 
power distribution parameter, τ > 0. The Power Exponential distribution requires three 
parameters. The probability density function of the Power Exponential family distribution 
is defined by:

	 f y
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for – ∞ < y < ∞, where – ∞ < μ < ∞, σ > 0 and υ > 0 and where z = (y – μ)/σ and  

c2
1

1 3
= 
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−

Γ Γ
υ υ

.  In this parameterization, E(Y) = μ and Var (Y) = σ2. 


