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S t r e s z c z e n i e  

Celem niniejszego artykułu jest prezentacja nowego typu niejednorodnego elementu sko�czonego słu��cego do mode-
lowania cienkiej warstwy materiału kompozytowego FGM. Cech� główn� materiału FGM (functionally graded mate-
rials) jest gładka, funkcyjna zmienno�� parametrów materiałowych, takich jak moduł Younga, współczynnik rozszerzal-
no�ci termicznej czy współczynnik przewodno�ci termicznej w zale�no�ci od zmiany mikrostruktury. Materiał kompo-
zytowy zawieraj�cy metal lub stop metali jako matryc� i materiał ceramiczny jako włókna bez warstwy przej�ciowej 
FGM nara�ony jest na powstawanie lokalnych koncentracji napr��e� na granicach interfejsu. Klasycznie sformułowany 
element sko�czony zawiera stałe parametry materiałowe, co prowadzi do znacznych bł�dów numerycznych. Rozwi�za-
niem tego problemu jest zastosowanie sformułowania elementu sko�czonego z dodatkow� funkcj� aproksymacyjn� słu-
��c� do interpolacji własno�ci materiałowych na poziomie ka�dego elementu. W praktyce materiałowe funkcje kształtu 
s� definiowane jako funkcje eksponencjalne lub pot�gowe opisuj�ce indywidualny charakter niejednorodno�ci.  
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A b s t r a c t  

The aim of this paper is new concept of nonhomogeneous finite elements due to FGM composite material. The main idea 
of functionally graded materials is a smooth variation of material properties, such as modulus of elasticity, coefficient of 
thermal conductivity or coefficient of thermal expansion, due to continuous change of microstructure. Composite 
material containing metal or metal alloy as a matrix and ceramic as fibres without FGM interface thin layer may lead to 
damage or failure due to delamination of the ceramic film from the substrate. This is the result of localized stress 
gradients at the interface. Classical finite element formulation contains constant material properties, which leads to 
numerical errors. A proper approach to solve this problem requires application of nonhomogeneous FE containing 
additional approximation functions in order  to interpolate material properties at the level of each finite element. In 
practice, material shape functions can be represented by exponential or power functions describing individual character 
of inhomogeneity.  
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1. Introduction 

In last few years, material processing allowed to manufacture special kind of the 
material composite called functionally graded materials (FGM). Thermomechanical 
properties of those materials varied along the thickness. In this case, FGM materials are 
nonhomogeneous [1–4]. 

Single-component materials are usually characterized either by high thermal resistance 
like ceramics or high strength, like metals. Composite materials contain two or more 
constituents (phase), where the ceramic phase is usually characterized by higher thermal 
and corrosion resistance. Metal or metal alloy phase is characterized by high strength and 
toughness. However, discontinuity of thermomechanical properties at the coating substrate 
interface causes stress concentrations and consequently, transverse cracks or delamination. 
Those kind of failures follow loss of functionality due to locally removed coating by 
spalling. As a remedy to this rupture, in 1980 Japanese engineering and scientists involved 
new generation of ceramic materials, which contains interface with varying, graded 
material properties [2–4].  

2. Motivation 

Functionally graded composites, with smooth variation of volume fractions, offer 
various advantages, such as reduction of residual stress [5] and increased bonding 
strength [6]. Moreover, if properly used, such materials also lead to reduction of stress 
concentration or stress intensity factor [7]. For example, Hasselman and Youngblood [8] 
found that the maximum tensile thermal stresses in brittle ceramic can be reduced 
significantly by spatially varying thermal conductivity in hollow circular cylinder subjected 
to radially inward and outward steady-state heat flow.  

The thickness of the FG interface is usually small. Moreover the changes of 
thermomechanical properties are huge. For example, the thermal conductivity for 
aluminium alloy is equal 154 [W/mK] in comparison to 2 [W/mK] for ceramic material 
ZrO2 + Y2O3, after Wang [9] and Lee [10]. 

Classical finite element formulation contains constant constitutive matrix on the FE 
level. This assumption leads to errors. Numerical simulations of the structure made of 
functionally graded materials are causing convergence problems. More information and 
further discussion about classical finite element method in comparison to another numerical 
method is possible to find in [11–12].  

The aim of this paper is an advanced formulation of finite element method for 
nonhomogeneous material. The advantages of nonhomogeneous FEM will be presented 
based on numerical example. 

3. Finite element formulation 

3.1 Classical homogeneity isoparametric finite element 

Isoparametric elements are characterized by the shape function, used to approximate the 
geometry of the element and the unknown function. In this case the displacement function 
and definition of the coordinate can be written as 
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u = N u , x = N x� �  (1) 

where: 
Ni – is a shape function, ui is the nodal displacement corresponding to i-th node 

and m is the number of nodal points in the element.  
For example, for a Q4 element, the standard shape function is given as follows 

� �� �1
1 1 1, , 4

4i i iN = +�� + , i =�� �  (2) 

where: 

� �,� �  – denotes intrinsic coordinates in the interval [–1, 1] and � �,i i� � denotes the local 

coordinates of node i. Usually, strains are obtained from displacement by differentiation as 

e e e= B u� (3) 

where: 
Be  – is the strain-displacement matrix of shape function derivatives, and ue is the 

nodal displacement vector. Thus strain-stress relations are given by 

e e e= D� � (4) 

where:  

D
e – is the constitutive matrix, and e� is the stress tensor. The principle of 

virtual work yields the following finite element stiffness equations 

e e ek u = F  (5) 

where: 
F

e – is the load vector and the element stiffness matrix is given by integral 

� � d
T

e e e e e

e

k = B D B

�

�	  (6) 

in which �e is the domain of element (e), and T denotes transpose. The reasoning above, at 
the element level, can be readily extended to whole domain, which leads to a system of 
algebraic equations for the unknown nodal displacements.  

It is worth to noticed that in classical finite element formulation the constitutive matrix 
is constant. The material properties vary in a piecewise continuous manner, from one 
element, to the other, but all integration points within an element have a common property 
value. It is possible to shift the constitutive matrix in front of the integral in Eq. (6). 
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3.2. Isoparametric nonhomogeneous finite element formulation 

For simplicity of notation, the superscript (e), connecting to element, is dropped in the 
further part of this paper.  

Kim and Paulino in [14] have proposed special kind of isoparametric finite element to 
interpolate nonhomogeneous FGM material. They have introduced next interpolation 
function to approximate material properties such as Young's modulus E = E(x) and Poisson 
ratio ( )�= � x as follows 

1 1

( ) ( )
m m

i i i i

i= i=

E x = N E , � x = N �� �  (7) 

and it is illustrated in Fig. 1.  
Kim and Paulino have assumed that the interpolation function due to material properties 

is the same as the shape functions for isoparametric finite element. On the other hand, the 
individual character of material composite constituents can be represented by a special kind 
of function, especially connected to the mixture rule. For example, the appropriate 
functions could be a power or exponential functions described below: 
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, , exp ,
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All things above consider, for nonhomogeneous material the stiffness matrix is given by 

� � � � d
T

k = B D B
�

�
� �	  (9) 

Fig. 1. Generalized isoparametric formulation for isotropic or orthotropic 
FGMs material using graded elements (after Kim and Paulino [14]) 

Rys. 1. Uogólnione izotropowe lub ortotropowe sformułowanie dla materiałów 
FGM izoparametrycznego gradientowego elementu sko�czonego (Kim 
and Paulino [14])
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where the constitutive matrix contains functions of local coordinate and cannot be shifted in 
front of the integral, in opposition to classical formulation of stiffness matrix, Eq. (6). 

4. Numerical example 

As an example the rectangular plane in plane stress state is considered. The numerical 
model is presented in Fig. 2, in detail. It is worth to noticed that the model is consisted of 
two materials (virgin material made of pure aluminium and Al2O3 ceramic phase), 
connected using FGM interface.  

In the classical finite element formulation, the FGM interface is divided into a few 
parts. All of them contain constant material properties, however the material coefficients 
change from one to other parts (elements). Taking into account nonhomogeneous finite 
element formulation, where it is existed additional approximation function due to material 
properties, it is not necessary to divide the interface to so many times before and the FE 
mesh could be coarser (Fig. 3). 

Fig. 5. Comparison of results 

Rys. 4. Porównanie uzyskanych wyników 

Fig. 2. Numerical model 

Rys. 2. Model numeryczny 

Fig. 4. Young's modulus 

Rys. 5. Modułu Younga 

Fig. 3. Finite element mesh 

Rys. 3. Siatka elementów sko�czonych 
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Firstly, a numerical example was solved by commercial finite element program called 
Ansys. In this program, the formulation of the finite element method is classical, which 
means that the finite elements are homogeneous. The FGM interface was divided into five 
parts to interpolate the gradation of Young's modulus as it was written before. It is worth to 
noticed that the finite element mesh contains 434 elements.  

In the next step, example was solved using own finite element code, but the finite mesh 
was the same as before and elements at the interface was still homogeneous. The main 
point of this solution is validation of numerical code.  

Last solution contains nonhomogeneous finite elements at the interface and was solved 
by my own finite element code. However the finite element mesh was not so fine as in 
previous cases, because it is not necessary to divide the area, where the FGM interface is. 
Taking this fact into account, the amount of finite element mesh is 288. Young's modulus 
was approximated by power function connected to Eq. (15), however Poisson ratio � is 
constant in this example. The function of Young's modulus is presented in Fig. 4. 

In the Fig. 5 there is presented comparison of obtained results, which have been 
discussed in the previous paragraphs. Detailed analysis is shown that the reference example 
solved by Ansys and my own code with homogeneous elements is leading to the same 
result, which means that the numerical code is correct. Last line represents the solution with 
non-homogeneous elements. We can see a little differences between blue line and other 
lines in the ceramic part. This is a consequence of using nonhomogeneous finite elements 
and more realistic approximation of the material parameters which leads to better results. 

In Fig. 6 and Fig. 7 there are presented maps of displacement in x direction. On the left 
hand side there is a map from the finite element code with nonhomogeneous elements and 
on the right side there is a map from the solution made by Ansys.  

Fig. 7. Displacement map in x direction made 
of Ansys 

Rys. 6. Mapa przemieszcze� w kierunku x
wykonana w programie Ansys 

Fig. 6. Displacement map in x direction made of 
FEM with nonhomogeneous elements 

Rys. 7. Mapa przemieszcze� w kierunku x
wykonana przy pomocy kodu MES 

z elementami niejednorodnymi 
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This paper clearly shows advantageous of using the FEM with nonhomogeneous finite 
elements in numerical analysis of structures with FGM materials. 

5. Conclusions 

1. Classical finite element method with constant material properties at the each element 
level can not modelled FGM materials in a good way, especially, when the material 
homogeneity changes drastically.  

2. New concept according to FGM materials of finite element formulation based on non-
homogeneity FE was investigated. 

3. Including the orthotropic or anisotropic materials and dependency of temperature for all 
material properties to non-homogeneity finite element formulation are going to improve 
adjustment of numerical model to the real structure. 
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