Wyszukiwanie:
|
|
Sortowanie:
|
|
|
Bibliografia Publikacji Pracowników PK (50021) | Inne bazy bibliograficzne (15019) Architektura i Sztuka Krakowa (2298) | Historia i Ludzie PK – baza w przygotowaniu (0) | Konferencje Krynickie - Referaty (7776) LXVII Konferencja Naukowa, 2022 (41) | LXVI Konferencja Naukowa, 2020 (67) | LXV Konferencja Naukowa, 2019 (58) | LXIV Konferencja Naukowa, 2018 (139) | LXIII Konferencja Naukowa, 2017 (136) | LXII Konferencja Naukowa, 2016 (150) | LXI Konferencja Naukowa, 2015 (145) | LX Konferencja Naukowa, 2014 (190) | LIX Konferencja Naukowa, 2013 (110) | LVIII Konferencja Naukowa, 2012 (168) | LVII Konferencja Naukowa, 2011 (111) | LVI Konferencja Naukowa, 2010 (130) | LV Konferencja Naukowa, 2009 (108) | LIV Konferencja Naukowa, 2008 (161) | LIII Konferencja Naukowa, 2007 (161) | LII Konferencja Naukowa, 2006 (123) | LI Konferencja Naukowa, 2005 (113) | L Konferencja Naukowa, 2004 (165) | XLIX Konferencja Naukowa, 2003 (125) | XLVIII Konferencja Naukowa, 2002 (137) | XLVII Konferencja Naukowa, 2001 (154) | XLVI Konferencja Naukowa, 2000 (140) | XLV Konferencja Naukowa, 1999 (161) | XLIV Konferencja Naukowa, 1998 (140) | XLIII Konferencja Naukowa, 1997 (153) | XLII Konferencja Naukowa, 1996 (164) | XLI Konferencja Naukowa, 1995 (173) | XL Konferencja Naukowa, 1994 (151) | XXXIX Konferencja Naukowa, 1993 (148) | XXXVIII Konferencja Naukowa, 1992 (117) | XXXVII Konferencja Naukowa, 1991 (125) | XXXVI Konferencja Naukowa, 1990 (109) | XXXV Konferencja Naukowa, 1989 (150) | XXXIV Konferencja Naukowa, 1988 (177) | XXXIII Konferencja Naukowa, 1987 (195) | XXXII Konferencja Naukowa, 1986 (190) | XXXI Konferencja Naukowa, 1985 (180) | XXX Konferencja Naukowa, 1984 (143) | XXIX Konferencja Naukowa, 1983 (141) | XXVIII Konferencja Naukowa, 1982 (120) | XXVII Konferencja Naukowa, 1981 (160) | XXVI Konferencja Naukowa, 1980 (169) | XXV Konferencja Naukowa, 1979 (177) | XXIV Konferencja Naukowa, 1978 (143) | XXIII Konferencja Naukowa, 1977 (120) | XXII Konferencja Naukowa, 1976 (143) | XXI Konferencja Naukowa, 1975 (132) | XX Konferencja Naukowa, 1974 (151) | XIX Konferencja Naukowa, 1973 (131) | XVIII Konferencja Naukowa, 1972 (112) | XVII Konferencja Naukowa, 1971 (120) | XVI Konferencja Naukowa, 1970 (116) | XV Konferencja Naukowa, 1969 (75) | XIV Konferencja Naukowa, 1968 (114) | XIII Konferencja Naukowa, 1967 (100) | XII Konferencja Naukowa, 1966 (106) | XI Konferencja Naukowa, 1965 (81) |
| Niepublikowane prace naukowe pracowników PK (1994-2012) (4941) |
|
Typy zasobów
Jednostki PK
Tematyka bazy Historia i Ludzie PK
Opcje
| | Ivan Tsyfra Zastosowanie grup Liego do konstrukcji rozwiązań równań różniczkowych fizyki matematycznej typ: niepublikowana praca | |
|
|
Wariant tytułu | | Application of Lie groups to construction of solutions for mathematical physics differential equations | Rok ukończenia pracy | | 2011 | Jednostka wykonująca | | Politechnika Krakowska Instytut Matematyki |
Rodzaj pracy | | naukowa | Klasyfikacja PKT | | [233233] Równania różniczkowe [233200] Analiza matematyczna [230000] Matematyka | Słowa kluczowe autorskie | | Równanie różniczkowe Grupa Liego Algebra Liego Niezmienniczość Differential equation Lie group Lie algebra Invariance | Abstrakt | | Sformułowanie warunku dostatecznego linearyzacji równań różniczkowych cząstkowych o dwóch zmiennych niezależnych, który związany jest z wymiarem i strukturą algebry Liego grupy Liego niezmienniczości ... więcejSformułowanie warunku dostatecznego linearyzacji równań różniczkowych cząstkowych o dwóch zmiennych niezależnych, który związany jest z wymiarem i strukturą algebry Liego grupy Liego niezmienniczości rozpatrywanego równania. Badanie zastosowania tej metody do równań różniczkowych cząstkowych o trzech zmiennych niezależnych. Konstruowanie grupy przekształceń Liego z dyskretnym parametrem, która jest grupą niezmienniczości nieliniowego równania Schrodingera.
Formulation of the sufficient condition for linearization of partial differential equations with two independent variables. The condition is connected with the dimension and the structure of Lie algebra ... więcejFormulation of the sufficient condition for linearization of partial differential equations with two independent variables. The condition is connected with the dimension and the structure of Lie algebra of the Lie invariance group for the studied equation. Investigation of the application of this method to partial differntial equations with three independent variables. Construction of the Lie group of transformations with descrete parameter wich is the symmetry group for nonlinear Schrodinger equation. |
|